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Abstract. We state and prove that a certain class of smooth functions said to be BH-se-
parable is a meagre subset for the Fréchet topology. Because these functions are the only
admissible Hamiltonians for Arnold–Liouville systems admitting a bi-Hamiltonian structure,
we get that, generically, Arnold–Liouville systems cannot be bi-Hamiltonian. At the end of
the paper, we determine, both as a concrete representation of our general result and as an
illustrative list, which polynomial Hamiltonians H of the form H(x, y) = xy+ ax3 + bx2y+
cxy2 + dy3 are BH-separable.
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1 Introduction

In the late 1970s and early 1980s appeared the notion of bi-Hamiltonian system in a seminal
paper by F. Magri [18]. This theory was widely developped a few years later by F. Magri
and C. Morosi in [19]. At the same time, another fundamental work was done in this field
by I. Gel’fand and I. Dorfman [10] but, in fact, this theory had already its roots in the so-
called “Lenard recursion formula” as well explained in [21]. In the late 1980s and early 1990s
some works were carried out to well understand the link between, on the one hand, those
of the Hamiltonian systems which are completely integrable in the sense of Arnold–Liouville
and, on the other hand, the bi-Hamiltonian systems [4, 5, 9, 15]. We emphasize the fact that
the studies in the first three references above presented a completely different approach to the
problem than the fourth. Here we focus only on the first approach which is the original approach
presented by Magri and Morosi. We also point out that the present work only considers the
compatibility of symplectic forms and never examines the compatibility between degenerate
Poisson structures. Moreover, other approaches have been made to provide interesting geometric
structures on the phase space of an integrable Hamiltonian system. We can quote for example
works of the early 2000’s on separability [8, 13] or a very recent work on Haantjes structures [22].
The work presented in this article is a natural questioning of the results stated in [4, 5, 9] leading
us to examine a very particular class of Hamiltonians verifying a separability property which
seems quite restrictive. Roughly speaking, such Hamiltonians need to be locally separable
through a change of local coordinates which also separates the initial (action) variables of the
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Hamiltonian. A function satisfying this property will be said BH-separable and we will denote
by SBH their set. In a recent work [3] we studied the topology of a class of smooth functions that
we called locally separable, constituting a set denoted by S. Precisely, we defined these latter
functions in the following way: a function1 H : (x1, . . . , xn) 7→ H(x1, . . . , xn) defined on an open
ball centered at the origin O is called a locally separable function if it can be locally separated
in the sense that there exists a smooth diffeomorphism φ (depending on H), fixing O, from an
open neighborhood V of O onto its image W

φ : V → W, (x1, . . . , xn) 7→ (u1(x1, . . . , xn), . . . , un(x1, . . . , xn)),

such that for all (x1, . . . , xn) ∈ V we have

H(x1, . . . , xn) = H1(u1(x1, . . . , xn)) + · · ·+Hn(un(x1, . . . , xn)).

The work previously mentioned explained how such separable functions are generic among
smooth functions. Now, in the case of the BH-separability studied in the present work the
condition imposed on the functions is more restrictive and consists of asking that not only
the function H belongs to S but also that one of the smooth diffeomorphisms φ separating H
also separates the coordinates xi in the sense that for all i ∈ J1, nK, we could write for some
functions xij ,

∀i ∈ J1, nK, xi =

n∑
j=1

xij(uj).

So, finally H is BH-separable if we can find new local coordinates (u1, . . . , un) around O such
that

∀i ∈ J1, nK, ∀(k, l) ∈ J1, nK2, k ̸= l,
∂2H

∂uk∂ul
=

∂2xi
∂uk∂ul

= 0.

The aim of this paper is to prove that, this time, unlike the case of locally separable functions
studied in [3], the set of BH-separable functions is meagre.2 So, it will conclude that, generically,
Arnold–Liouville completely integrable Hamiltonian systems cannot be bi-Hamiltonian or, in
other words, that generically the complete integrability in the sense of Arnold–Liouville cannot
be explained and got by the existence of an underlying bi-Hamiltonian structure.

In the first part we will recall the origin of this special separability and how it appears in the
context of the bi-Hamiltonian systems. In the second part we will give our main result, stated
in two different frames, namely:

Theorem 3.5. The set SBH of the BH-separable functions is a meagre subset, for the Fréchet
topology, of the space C∞(U,R) of smooth real functions defined on the open ball U = B(O, 1)
of Rn.

Theorem 3.7. Generically, an Arnold–Liouville system admits none bi-Hamiltonian structure.

In the third and last part, we will determine among a special class of polynomial Hamiltonians
which of them are BH-separable.

1Actually, in this paper, all the functions we treat are considered as Hamiltonians of systems with 2n degrees
of freedom and should therefore depend a priori on 2n variables. Nevertheless, we underline the fact that we are
working in the framework of action-angle coordinates and thus that these Hamiltonians depend only on the n
action coordinates, denoted here x1, . . . , xn.

2We recall that a subset of a metric space is said to be meagre if it is contained in a countable union of closed
subsets without interior points.
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2 The mechanics origin of BH-separability

In order to understand why we are interested in this strange property of BH-separability we
have to recall briefly how it appeared in the frame of bi-Hamiltonian systems, and hence the
genesis of the problem.

Let (M,ω,H) be a Hamiltonian system, namely a symplectic manifold (with a dimension
denoted by 2n) and a smooth function (the Hamiltonian) H on M . This Hamiltonian system
is said to be completely integrable if there are n functions f1, . . . , fn satisfying the following
conditions [1, 2, 16]:

(1) they are first integrals of the Hamiltonian vector field XH , i.e.,

∀i ∈ J1, nK, XH .fi = dfi(XH) = {H, fi} = 0,

where { , } denotes the Poisson bracket associated with the symplectic form ω;

(2) they Poisson-commute, or are in involution, in the sense that

∀i, j ∈ J1, nK, {fi, fj} = 0;

(3) they are functionaly independent, at least on a dense open subset of M , i.e.,

df1 ∧ · · · ∧ dfn ̸= 0.

In this situation, let us denote by F the function

F : M → Rn, m 7→ (f1(m), . . . , fn(m)).

Because of the above property (3), F is a submersion.3 If c is in the range of F then F−1(c) is
a submanifold of M . If F is a proper map, then F is a fibration (Ehresmann theorem [7]). If we
assume that its fibres are connected then they are n-tori Tn. Moreover, any of these fibres F−1(c)
possesses a tubular neighborhood Ω which can be identified, up to a symplectomorphism Φ, to
the symplectic manifold (U × Tn, ω0), where U is some open set of Rn (that we can assume,
without loss of generality, to be some open ball centered at the origin) endowed with coordinates
(x1, . . . , xn) and ω0 denotes the canonical symplectic form defined as

ω0 :=
n∑

i=1

dxi ∧ dθi,

θ1, . . . , θn being angle coordinates on the torus; this symplectic identification between Ω and
U ×Tn can be furthermore factorized via a map φ between the basis of the fibration F and the
basis U of the trivial fibration pr1 : U × Tn → U , in such a way that the following diagram be
commutative

Ω
Φ //

F
��

⟲

U × Tn

pr1
��

F (Ω)
φ // U.

Finally, the Hamiltonian H in the coordinates (xi, θi) depends only on the xi, so is a basic
function with respect to the fibration. All these properties constitute the statement of the classic

3We suppose that the condition (3) is everywhere satisfied, replacing if necessary M by the open set on which
it is actually true.
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Arnold–Liouville theorem [1, 2]; the coordinates (x1, . . . , xn, θ1, . . . , θn) defined by the map Φ are
called action-angle coordinates. In what follows we will call Arnold–Liouville system the semi-
local model described by the Arnold–Liouville theorem for a completely integrable Hamiltonian
system verifying the conditions of the theorem, namely (U × Tn, ω0, H), where H is a basic
function for the trivial fibration, so a function depending only on the action coordinates xi.

In the early eighties the concept of bi-Hamiltonian system was introduced by Magri and
Morosi [19]. Roughly speaking, the main idea of this theory is the following: if there exists
a second symplectic form, compatible in a natural sense with the first one, and if the initial
Hamiltonian field is also Hamiltonian with respect to this new symplectic structure, then it
would be possible to generate mechanically first integrals in involution and so get the complete
integrability of the Hamiltonian vector field. Precisely, two symplectic forms ω0 and ω1 on
a manifold M define a (1, 1) tensor field J , called in this context a recursion operator, by the
formula

∀X,Y ∈ X (M), ω1(X,Y ) = ω0(JX, Y ),

where X (M) denotes the set of the vector fields on M . These two symplectic forms are said
compatible if the Nijenhuis torsion of J [20] vanishes, i.e.,

∀X,Y ∈ X (M), [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ] = 0.

This torsion appears also in the frame of Kähler manifolds and its vanishing is an integrability
condition of the eigenspaces distribution. Now a vector field X is said bi-Hamiltonian with
respect to such compatible symplectic forms if it is a Hamiltonian vector field for both forms.
Actually, we generally assume that iXω0 = −dH (so X is Hamiltonian with respect to ω0) and
that LXω1 = 0 (ω1 is invariant by X), condition which can also be written diXω1 = 0, meaning
that X is only locally Hamiltonian with respect to ω1. What was proved by Magri and Morosi
in [19] is that, for such a bi-Hamiltonian vector field X, the functions Tr

(
Jk
)
, k ∈ N constitute

a Poisson commuting family of first integrals of X. It produces the result that, in the case
where at each point m of the manifold, Jm owns the maximum possible number of eigenvalues,
namely n, the spectrum {λ1, . . . , λn} of J provides also a Poisson commuting family of first
integrals of X and so that X is completely integrable as soon as dλ1∧· · ·∧dλn ̸= 0. So, roughly
speaking one can say that a bi-Hamiltonian vector field is completely integrable, at least in
the case where its recursion operator possesses a convenient spectrum. So the natural question
is: what about the converse? If X is some completely integrable Hamiltonian system, is it
possible to find a bi-Hamiltonian structure which explains this integrability, in the sense that
the eigenvalues of the associated recursion operator constitute a Poisson commuting family of
first integrals for the given field? At the end of the eighties and the beginning of the nineties
some works [4, 5, 9] were done to answer this question for an Arnold–Liouville system, i.e.,
they study the existence of such a bi-Hamiltonian structure on the whole manifold U × Tn and
not only locally, this latter problem being almost obvious. The answer was negative because
such an existence implies very restrictive conditions on the Hamiltonian, namely that it must
be BH-separable in the sense that we have defined it above in this article. Precisely the next
result was proved [4, 5, 9]:

Theorem 2.1. Let (M0 = U × Tn, H, ω0) be an “Arnold–Liouville system” in the sense that
U = B(O, 1) ⊂ Rn, endowed with (action) coordinates xi, ω0 is the canonical symplectic form
on M0 defined by ω0 =

∑n
i=1 dxi ∧ dθi, the θi denoting the angle coordinates on the tori Tn

and H is a function (the Hamiltonian) of the xi. Let us assume that:

(i) This system is bi-Hamiltonian, i.e., there exists on M0 a second symplectic form ω1, com-
patible with ω0, such that the Hamiltonian (with respect to ω0) vector field XH is also
Hamiltonian with respect to ω1 (at least locally).



Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian 5

(ii) The number of eigenvalues of the recursion operator associated to the couple (ω0, ω1) is
maximum (so equal to n).

(iii) The Hamiltonian H is non-degenerate in the sense that the Hessian matrix
(

∂2H
∂xi∂qj

)
is

invertible on a dense open subset of U .

Then there are around each point of U local coordinates (u1, . . . , un) such that

∀(k, l) ∈ J1, nK2, k ̸= l, ∀i ∈ J1, nK,
∂2H

∂uk∂ul
=

∂2xi
∂uk∂ul

= 0.

In particular the Hamiltonian H is BH-separable.

At that time, some examples were provided [4, 5, 9] showing some Arnold–Liouville systems
for which no such bi-Hamiltonian structure exists, because their Hamiltonians were not BH-
separable. The aim of this paper is to state and prove that not only there exists Arnold–Liouville
systems with no bi-Hamiltonian structure but also that these cases are not exceptions but the
general rule.

3 The main theorem: from function space to integrability

3.1 Frame and preliminary results

In what follows we will work on the space C∞(U,R) of real functions defined on an open set U
of Rn that we can assume to be the open ball B(O, 1). This space will be endowed with its
structure of Fréchet metric space [12].

The first statement allows us to only consider functions for which the 1-jet at O is zero.

Proposition 3.1. Let H ∈ C∞(B(O, 1),R) and let us denote by J1
O(H) its 1-jet at O. Then,

H ∈ SBH if and only if H − J1
O(H) ∈ SBH. So, the BH-separability is independent of the 1-jet of

the function at the origin.

Proof. Indeed, J1
O(H) =

∑n
i=1 aixi, where the ai are real constants so under a change of

coordinates (x1, . . . , xn) 7→ (u1, . . . , un) which separates the xi, we get

∀(k, l) ∈ J1, nK2, k ̸= l,
∂2J1

O(H)

∂uk∂ul
=

n∑
i=1

ai
∂2xi

∂uk∂ul
= 0.

It follows, because H =
(
H − J1

O(H)
)
+ J1

O(H), that for all (k, l) ∈ J1, nK2, with k ̸= l, the
vanishing of the quantities

∂2H

∂uk∂ul
and

∂2
(
H − J1

O(H)
)

∂uk∂ul

are equivalent. ■

So we can always suppose, without loss of generality, that all our functions have O as a critical
point, i.e., that their 1-jet at O is zero. From now on we will suppose that we are in this situation.

In [4, 5], or [9], some examples of polynomial Hamiltonians which are not BH-separable
were given. For example, as we will see in the last section, a Hamiltonian H as H(x, y) =
xy + xy2 is not BH-separable. However, because its Hessian is not degenerate, this function is
locally separable in the sense defined in [3] and mentioned in the introduction; this is a direct
consequence of Morse’s lemma. So, in a general way, we have

Proposition 3.2. SBH ⊊ S.
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Remark 3.3. Of course the obvious inclusion of SBH into S gives S̊BH ⊂ S̊. So, if we use a recent
work [3] which studies S̊ we can have some informations about S̊BH Nevertheless, it would be
impossible by this mean to conclude that it is a meager subset of the space of smooth functions.

Finally, we recall the Faà Di Bruno’s formula [6, 14] which will furnish a precious tool in the
proof of our main theorem in the next subsection:

Theorem 3.4 (Faà Di Bruno’s formula4). Let H be a real function defined on an open subset Ω
of Rn and ϕ defined on an open subset O of Rn with values in Ω.

If H and ϕ are functions of class Ck then for all x = (x1, . . . , xn) in O we have

(H ◦ ϕ)(k)(x) =
∑
P∈Pk

H(|P |)(ϕ(x))
(
ϕ(|B|)(x)

)
B∈P ,

where for any smooth function f of n variables f (k) denotes its differential of order k, Pk denotes
the set of partitions of J1, kK and |P | denotes the cardinality of P .

Formulae of Faà Di Bruno type, but for partial derivatives were given by M. Hardy [11] and
T-W. Ma [17]. But, for our purpose, it is not necessary to use them.

3.2 Main theorem (function space topology version)

Now, we can state and prove the first version of the main result of this paper, purely stated in
terms of function space topology.

Theorem 3.5. The set SBH of the BH-separable functions is a meagre subset, for the Fréchet
topology, of the space C∞(U ,R) of smooth real functions defined on the open ball U = B(O, 1)
of Rn.

Proof. First, let us introduce some useful notations. If f is a smooth function, let us denote
by Tk(f) the homogeneous part of degree k of its Taylor’s expansion at the origin; so Tk(f)
belongs to the space Hn

k of the homogeneous polynomials of degree k with n indeterminates
X1, . . . , Xn. We will denote also by Jk

O(f) its k-jet at the origin defined as

Jk
O(f) = T0(f) + T1(f) + · · ·+ Tk(f),

which is nothing but its Taylor polynomial at O and with degree k. Now, by the very definition
of the set SBH, the fact that the function f belongs to SBH means that there exists:

� a change of variables U : (x1, . . . , xn) 7→ (u1, . . . , un),

� n functions g1, . . . , gn of class C∞ depending on only one variable,

4This Faà Di Bruno’s formula is somewhat frightening at first sight! Perhaps a little illustration might clarify
this. Let us consider the simple case where H depends only on one variable and let us try to visualise what P is,
what B is and so on. For the choice k = 3, we get

(H ◦ Φ)(3) = H(3)Φ′3 + 3H ′′Φ′Φ′′ +H ′Φ(3),

where actually all the terms in H, or its derivatives, in the right hand side, have to be understood as H ◦Φ, H ′ ◦Φ
and so on. Now, what is P3 and the different P and B here? We have

P3 = {{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}, {{1}, {2}, {3}}}.

For P = {{1, 2, 3}} we have |P | = 3 and only one B in P , namely {1, 2, 3}, so |B| = 1. The corresponding term
in the Faà Di Bruno’s formula is then H(3)(Φ′,Φ′,Φ′) (do not forget that H(3) is a trilinear form) and so in this
context of one variable H(3)Φ′3. The others terms follow in the same way.



Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian 7

� n2 functions (fij)1≤i,j≤n of class C∞ depending only on one variable, such that, in a neigh-
borhood of the origin, the functions f, x1, . . . , xn can be written as

f(x1, . . . , xn) = g1(u1) + · · ·+ gn(un),

∀i ∈ J1, nK, xi =

n∑
j=1

fij(uj). (3.1)

Let us denote respectively by G and F the functions

G(u1, . . . , un) = g1(u1) + · · ·+ gn(un)

and

F (u1, . . . , un) =

(
n∑

j=1

f1j(uj), . . . ,
n∑

j=1

fnj(uj)

)
.

By means of these functions we can write the relations (3.1) in a condensed way, namely

f = G ◦ U and F ◦ U = idW ,

where W is an open neighborhood of the origin in Rn. Differentiating the relation F ◦U = idW
at O we get that dF (O) ◦ dU(O) = idRn so dU(O) = dF (O)−1, or with notations used in the
Faà di Bruno’s formula, U ′(O) = F ′(O)−1. Using Jacobian matrix, this relation can be written

JacO(U) =
1

det JacO(F )
tCom(JacO(F )),

where Com(M) denotes the comatrix of a matrix M . It follows from this formula that each

partial derivative ∂ui
∂xp

is a rational fraction
Pip

Qip
of the numbers f ′

rs(0). The coefficients of this

rational fraction are independent from U , F and G; they only depend on the indices i and p.
On the other hand,

∂f

∂xp
(O) =

n∑
i=1

g′i(0)
∂ui
∂xp

(O).

So, let us introduce the application

L1 : Rn ×GLn(R) → Hn
1 , (a1, . . . , an, (brs)1≤r,s≤n) 7→

n∑
p=1

(
n∑

i=1

ai
Pip

Qip
(brs)

)
Xp,

where Hn
1 denotes the space of homogeneous polynomial functions of degree 1 with n indeter-

minates. Then the previous discussion shows that if f belongs to SBH, then T1(f) belongs to
the range of the application L1.

Next, using the Faà di Bruno’s formula, we get the differential of order 2 at O of U , namely

U ′′(O)(., .) = −F ′(O)−1
[
F ′′(O)

(
F ′(O)−1(.), F ′(O)−1(.)

)]
.

We deduce from this relation that each of the second partial derivatives ∂2ui
∂xp∂xq

(0) is a rational

fraction
Ripq

Sipq
of the numbers f ′

rs(0) and f ′′
rs(0), the latter not appearing in the denominators.

Here again the coefficients of these fractions depend only on the indices i, p and q and not on
the functions U , F and G.
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On the other hand, we have also

∂2f

∂xp∂xq
(O) =

n∑
i=1

g′′i (0)
∂ui
∂xp

(O)
∂ui
∂xq

(O) + g′i(0)
∂2ui

∂xp∂xq
(O).

So, let us introduce the map

L2 : Rn × Rn ×GLn(R)×Mn(R) → Hn
2 ,

where

L2(a1, . . . , an, b1, . . . , bn, A,M) :=
∑

1≤p,q≤n

(
n∑

i=1

ai
Pip

Qip
(A)

Piq

Qiq
(A) + bi

Ripq

Sipq
(M)

)
XpXq.

As in the case of first derivatives, if f belongs to SBH, then T2(f) belongs to the range of the
application L2. What happens for higher degrees of derivation? Using induction, we can easily
prove that, around O, for all positive integer k, each of k-th order partial derivatives of the ui
are rational fractions of all the derivatives of the functions frs. It is true for k = 1. Indeed,
we have seen that at the origin but actually it is also true near O because F ′(O) is invertible
and so F ′(u) remains invertible for u close to O. Now, if we have

∂kui
∂xi1 · · · ∂xik

= R
(
f ′
rs, . . . , f

(k)
rs

)
,

where R is some rational function with m variables t1, . . . , tm, then

∂k+1ui
∂xi1 · · · ∂xik∂xik+1

=
m∑
j=1

∂R

∂tj

(
f ′
rs, . . . , f

(k)
rs

) ∂tj
∂xik+1

,

where, for the sake of simplicity, we denote by tj in
∂tj

∂xik+1
something which is some f

(l)
rs (us).

So actually,

∂tj
∂xik+1

= f (l+1)
rs (us)

∂us
∂xik+1

.

Now, since the ∂R
∂tj

are rational fractions of the f ′
rs, . . . , f

(k)
rs and the ∂us

∂xik+1
are also rational

fractions of the f ′
rs, the announced result is proved by induction.

Let us return now to the derivatives of f . With the notations used in the Faà di Bruno’s
formula, we have

∂kf

∂xi1 · · · ∂xik
(O) =

n∑
i=1

∑
P∈Pk

g
(|P |)
i (0)

∏
B∈P

∂|B|ui∏
j∈B ∂xij

(O).

We can write this last formula by ordering terms with respect to the length of P , namely

∂kf

∂xi1 · · · ∂xik
(O) =

n∑
i=1

k∑
l=1

g
(l)
i (0)

∑
P∈Pk, |P |=l

∏
B∈P

∂|B|ui∏
j∈B ∂xij

(O),

the term
∑

P∈Pk, |P |=l

∏
B∈P

∂|B|ui∏
j∈B ∂xij

(O) being a rational fraction Rii1...ik(M1,M2, . . . ,Mk),

where Mj is the matrix
(
f
(j)
rs (0)

)
r,s

and so M1 is invertible. Then we can define the map

Lk : (Rn)k ×GLn(R)× (Mn(R))k−1 → Hk
n,
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by

Lk

(
a1, . . . , ak,M1, . . . ,Mk

)
=

∑
1≤i1,...,ik≤n

(
n∑

i=1

k∑
l=1

aliRii1...ik(M1,M2, . . . ,Mk)

)
Xi1 · · ·Xik ,

in such a way that if a function f belongs to SBH then for all positive integers k, Tk(f) is in
the range of Lk. The dimension of the domain of the map Lk is k

(
n+ n2

)
whereas those of its

codomain Hn
k is

dimHn
k =

n(n+ 1) · · · (n+ k − 1)

k!
,

which we can also write as

dimHn
k =

(k + n− 1)(k + n− 2) · · · (k + 1)

(n− 1)!
,

showing that it is a polynomial function of k with a degree n−1. So if n ≥ 3, its degree is a least
quadratic and so its increase at infinity ensures that for k sufficiently large it will be strictly
larger than the linear expression k

(
n+ n2

)
and so the inequality

k
(
n+ n2

)
< dimHn

k =
n(n+ 1) · · · (n+ k − 1)

k!
(3.2)

holds. On the contrary, for n = 2, the two compared dimensions are respectively 6k and k + 1
and so the inequality 6k < k+1 is always false. For that reason we will have to deal separately
with the cases n ≥ 3 and n = 2. Let us begin with the case n ≥ 3. Let k be an integer such
that the inequality (3.2) holds. Then the range of Lk has a Lebesgue measure equal to zero.
We know that Rkn × Rkn2

is a countable union of compact sets (Ki)i≥0, so the range of Lk is
a countable union of the compact sets (Lk(Ki))i≥0 and each Lk(Ki) has no interior points since
its measure is zero. Because Tk is an open and continuous map we get that each T−1

k (Lk(Ki))
is a closed set with no interior points. So we deduce that SBH is meagre.

It remains to examine the case n = 2. In this case, we can proceed as previously but by
replacing Tk(f) by the k-jet of f , namely Jk

O(f). This time we introduce a map

L̂k : R2k ×GL2(R)× R4(k−1) × R → Rk[x, y],

defined by

L̂k(a, b, c, d) = d+

k∑
i=1

Li(a, b, c),

where Rk[x, y] denotes the space of homogeneous polynomial functions with two indeterminates
and total degree ≤ k. With these notations the expression

L̂k

((
g
(j)
i

)
(i,j)∈[[1,n]]×[[1,k]]

, F (l)(0))l∈[[1,k]], λ
)

is nothing else than the k-jet of f . The function f belongs to SBH then Jk
O(f) is in the range of L̂k.

We know that Rk[x, y] has dimension equal to (k+2)(k+1)
2 . For k > 9 we have 6k+1 < (k+1)(k+2)

2 ,

so the range of L̂k has its measure equal to zero. Thus, we can apply the same arguments as in
the case n ≥ 3 and conclude that SBH is a meagre set. ■
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3.3 Main theorem (integrability version): Arnold–Liouville vs BH-systems

Before we state and prove our main result, we need to introduce some notations and special
subsets of the space of smooth functions and to state a lemma. For H ∈ C∞(B(O, 1)) let us
define the open set ΩH by

ΩH :=
{
x ∈ B(O, 1), rank(Hessx(H)) = n

}
.

Let us also introduce the two sets

ND :=
{
H ∈ C∞(B(O, 1)), B(O, 1) ⊂ ΩH

}
and D = C∞(B(O, 1)) \ ND.

A function of the first set is said to be non-degenerate; it is exactly the condition assumed on
the Hamiltonians of Theorem 2.1. A function of the second set, which we will say degenerate,
has a Hessian matrix with a vanishing determinant on at least a small open ball B(a, r) centered
on a point a ∈ B(O, 1).

Lemma 3.6. The set D is meagre.

Proof. Let (Ok)k∈N be a countable neighborhood basis of B(O, 1). Then, clearly,

D =
⋃
k∈N

Dk,

where Dk is the set of functions H such that detHessH = 0 everywhere on Ok. Each of the
sets Dk is closed. Let us prove that D̊k = ∅. For that, let us fix some H ∈ Dk and some point a
in Ok. Arbitrarily close to Hessa(H) we can find a symmetric matrix A with a rank equal to n.
Let us define the function f on B(O, 1) by

f(x) = H(x) + txAx− txHessa(H)x,

where x denotes here the column vector of the xi. This function f can be arbitrarily close to H
according as to the choice made on A and does not belong to Dk, so H ̸∈ D̊k. So D is a meagre
set as a countable union of nowhere dense closed sets. ■

According to Theorems 2.1 and 3.5 we can state that:

Theorem 3.7. Generically, an Arnold–Liouville system admits none bi-Hamiltonian structure
in the sense of Theorem 2.1.

By this statement we understand the following result: the set HBH of Hamiltonians H ∈
C∞(B(O, 1),R) for which the Arnold–Liouville system (M0, ω0, H) admits a bi-Hamiltonian
structure (with the conditions of Theorem 2.1) is meagre for the Fréchet’s topology.

Proof. Using the notation of the previous lemma we can write

HBH =
(
D ∩HBH

)
∪
(
ND ∩HBH

)
.

According to Theorem 2.1, we have the inclusion (ND ∩HBH) ⊂ SBH, so Theorem 3.5 implies
that ND∩HBH is meagre. But D∩HBH ⊂ D so, using the previous lemma, we get that D∩HBH

is meagre. It results in that HBH is meagre as the union of two meagre sets. ■
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4 BH-separability of a special class of polynomial Hamiltonians

4.1 Preliminary considerations

The previous sections have shown that among the smooth functions, the BH-separable ones are
rather “rare”. Nevertheless, of course, they do exist. In this last part, we will determine among
a class of particular Hamiltonians with two variables,5 which are BH-separable. This study will
be doubly useful: first, obviously, to obtain these rare candidates but also to visualize perfectly
and concretely the previously studied phenomenon of scarcity in a restricted family of functions.

A challenging study would be to determine (in the case of two variables) which Hamiltonians
of the form H = Q + C, where Q is a non-degenerate quadratic form and C a general cubic
polynomial, are BH-separable. Let us begin with a few remarks.

• The quadratic part Q has a signature (2, 0), (1, 1) or (0, 2) because it is assumed to be
non-degenerate. So, using a linear change of coordinates it can be written x2 + y2, x2 − y2

or −x2 − y2. Unfortunately, under a change of coordinates, even under a linear change of
coordinates, the property of BH-separability does not necessarily remain. Indeed, the problem
is that the coordinate change must separate both functions x and y. So, the only study of these
three cases would not allow us to cover all the situations.

• The study of the three cases Q = x2 + y2, Q = x2 − y2, Q = −x2 − y2 (the third would
be essentially the same as the first) is tedious and leads to awful calculations, even using some
symbolic computing tool. For all those reasons we will present here only one of these cases and
we have chosen the case where Q has signature (1, 1). Moreover, we will deal with Q = xy
instead of Q = x2 − y2, the first case being a little more pleasant than the last. So we will
search, inside the family

xy + ax3 + bx2y + cxy2 + dy3

indexed by (a, b, c, d) ∈ R4, the BH-separable elements. We can remark that this family is
a 4-dimensional affine subspace of the space of smooth functions.

We can also remark that all these Hamiltonians are locally separable in the sense studied
in [3], because they are Morse’s functions at the origin.6

• If H is BH-separable there is some change of variable (x, y) 7→ (u, v) around the origin O,
fixing O, and which separates H, x and y. In other words we have six smooth functions f , g, h,
k, H1, H2, each of them depending only on one variable (u or v) such that

x = f(u) + g(v), y = h(u) + k(v)

and

H(f(u) + g(v), h(u) + k(v)) = H1(u) +H2(v). (∗)

Replacing if necessary f by f − f(0) we can assume that f(0) = 0. Since the change of
variable fixes O, then g(0) = 0. In the same way we can suppose that h(0) = k(0) = 0.
Because the considered map is a change of variable, then necessarily (f ′(0), g′(0)) ̸= (0, 0) and
(h′(0), k′(0)) ̸= (0, 0). Because in these families of Hamiltonians the 1-jet at (0, 0) is zero,
it remains zero in coordinates u, v and the quadratic part (the Hessian) is tensorial, so its
signature is invariant under any change of coordinates, in particular in coordinates u, v. So,
writing

H1(u) = αu2 + o
(
u2
)
, H2(v) = βv2 + o

(
v2
)

5These two variables will be denoted here x, y and can be interpreted as the two action coordinates of
a Hamiltonian function written in action-angle coordinates.

6We mean that the origin is a critical point of the function and that its Hessian matrix at this point is invertible.



12 H. Boualem and R. Brouzet

and comparing the two expressions of H in coordinates u, v given by (∗) we get

(a1u+ a2v)(a3u+ a4v) = αu2 + βv2,

where ( a1 a2
a3 a4 ) denotes the Jacobian matrix at the origin of the map (u, v) 7→ (x, y). Because

the signature of the considered quadratic form is (1, 1), then necessarily α ̸= 0 and β ̸= 0 and
because α = a1a3 and β = a2a4, none of the real numbers a1, a2, a3, a4 is zero. So, without loss
of generality, we can assume that x = u+ v (or y = u+ v). Indeed, because a1 = f ′(0) ̸= 0, the
map u 7→ U = f(u) is a local diffeomorphism around 0 fixing 0 and we can write u = f−1(U);
in the same way, because a2 = g′(0) ̸= 0, we get locally v = g−1(V ) and so we can write
x = U+V and y = h

(
f−1(U)

)
+k
(
g−1(V )

)
. The same thing could be done with the functions h

and k instead of f and g in order to get y = U + V if we would wish it.7

4.2 Some families of BH-separable Hamiltonians

The previous discussion allows us to assume that if a suitable change of coordinates exists then
we can choose x = u + v and y = p(u) + q(v) or y = u + v and x = p(u) + q(v). We will deal
with the first case then we will exchange the roles of x and y to get all the cases. The condition
of BH-separability requires that

∂2

∂u∂v

(
H(u+ v, p(u) + q(v))

)
= 0. (4.1)

Writing the relation (4.1) for H = xy + ax3 + bx2y + cxy2 + dy3 we get

6a(u+ v) + 2b(p+ q) + (p′ + q′)(1 + 2b(u+ v) + 2c(p+ q))

+ p′q′(6d(p+ q) + 2c(u+ v)) = 0. (4.2)

Evaluating the relation (4.2) at u = v = 0, we get q′(0) = −p′(0). Let us denote k = p′(0). Now,
evaluating separately (4.2) at v = 0, then at u = 0, we get the two differential equations

6au+ 2bp+ (p′ − k)(1 + 2bu+ 2cp)− kp′(6dp+ 2cu) = 0

and

6av + 2bq + (q′ + k)(1 + 2bv + 2cq) + kq′(6dq + 2cv) = 0.

These two ODE are equivalent by the change k 7→ −k. Rewriting the first one we get

p′(1 + 2bu+ 2cp− 6kdp− 2kcu) + 6au+ 2bp− k(1 + 2bu+ 2cp) = 0

or, denoting A = 2c− 6kd, B = 2(b− kc) and C = 6a− 2kb,

p′(Ap+Bu+ 1) +Bp+ Cu− k = 0.

Let us suppose that A ̸= 0 and let us denote L = Ap + Bu + 1. Then the last differential
equation can be written as

L′L+
(
AC −B2

)
u−B −Ak = 0.

7If we chose to deal with Q = x2 − y2, or with Q = x2 + y2 the situation would be quite different. Indeed,
we get

(a1u+ a2v)
2 ± (a3u+ a4v)

2 = αu2 + βv2,

a condition which does not imply that the four coefficients a1, a2, a3, a4 are not zero. For example a2 may be
zero but, in this case, a1 ̸= 0 and a4 ̸= 0 since a1a4 − a2a3 ̸= 0. It follows that in this case we can always assume
that x = u+ q(v) and y = p(u) + v or x = p(u) + v and y = u+ q(v).
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Taking into account that L(0) = 1, we deduce that L2

2 +
(
AC −B2

)
u2

2 − (B+Ak)u− 1
2 = 0 and

so that L2 = −
(
AC − B2

)
u2 + 2(B + Ak)u + 1, or L =

√
−
(
AC −B2

)
u2 + 2(B +Ak)u+ 1,

in order to finally get

p(u) =
−1−Bu+

√
−
(
AC −B2

)
u2 + 2(B +Ak)u+ 1

A
. (4.3)

We get the formula for q replacing k by −k:

q(v) =
−1−B′v +

√
−
(
A′C ′ −B′2

)
v2 + 2(B′ −A′k)v + 1

A′ , (4.4)

where A′ = 2c+ 6kd, B′ = 2(b+ kc) and C ′ = 6a+ 2kb.
So, the previous formulae (4.3) and (4.4) give the necessary form of a change of variables

(u, v) 7→ (x = u+ v, y = p(u) + q(v)) which could separate the Hamiltonian H in turn. Let us
denote

H̃(u, v) := H(u+ v, p(u) + q(v)),

the functions p and q being replaced by the expressions obtained in (4.3) and (4.4) and H̃ukvl the

derivatives ∂k+lH̃
∂uk∂vl

. All the terms H̃ukvl(0, 0) have to be zero. Using some symbolic computing
tool8 we verify that

H̃uv(0, 0) = H̃u2v(0, 0) = H̃uv2(0, 0) = 0.

But higher derivatives do not vanish. Indeed we get successively:

H̃u2v2(0, 0) = −24
(
cdk4 + (3ad− bc)k2 + ab

)
, (4.5)

H̃u3v2(0, 0) = 24
(
3dk3 − ck2 − bk + 3a

)
×
(
−6cdk3 −

(
c2 + 3bd

)
k2 + 3(bc− 3ad)k + 3ac+ b2

)
(4.6)

and

H̃u3v3(0, 0) = −288c
(
3dk3 − ck2 − bk + 3a

)(
−3dk2 + b

)(
−3dk3 − ck2 + bk + 3a

)
. (4.7)

This last equality is especially interesting and we will base the next discussion on it by distin-
guishing several cases. We emphasize that all of the following calculations were performed using
a symbolic calculation tool.

First case: c = 0

Let us first notice that in this case we must assume d ̸= 0 because if d = 0, expressions of the
functions p and q have no sense (denominators vanish). So the case c = d = 0 will have to be
studied separately.

In this case, the condition (4.7) is, of course, satisfied and the two others ((4.5) and (4.6))
give respectively

a
(
3dk2 + b

)
= 0 and

(
3dk3 − bk + 3a

)(
−3bdk2 − 9adk + b2

)
= 0. (4.8)

These two conditions invite us to look at the special case a = 0. If a = 0 then the first of
the previous relations is satisfied and the second one gives, because k ̸= 0, b

(
3dk2 − b

)2
= 0.

Consequently, the next subcases have to be considered:

8For instance Maple.
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� a = b = 0: H(x, y) = xy + dy3. In this case the functions p and q become

p(u) =
−1 +

√
1− 12dk2u

6dk
, q(v) =

−1 +
√
1− 12dk2v

6dk
,

and they allow us to separate H since

H̃(u, v) =
u
√
1− 12dk2u

9dk
+

√
1− 12dk2u

54d2k3
− v

√
1− 12dk2v

9dk
−

√
1− 12dk2v

54d2k3
.

� a = 0 and b = 3dk2: H = xy + 3dk2xy2 + dy3. In this case we get

p(u) = −ku, q(v) = kv

and

H̃(u, v) = −ku2 − 4k3du3 + kv2 + 4k3dv3.

So H is BH-separable.

Now, if a ̸= 0, necessarily b = −3dk2. In this case the second part of the relation (4.8)
writes 27kd

(
2dk3 + a

)(
2dk3 − a

)
= 0. Because k and d are not zero, we get two possibilities:

a = ±2dk3. Replacing these values in relation (4.6) we do not get zero so the case a ̸= 0 cannot
lead to a case of BH-separability when c = 0.

Second case: b = 3dk2

Under this assumption, condition (4.5) becomes

48dk2
(
3a− ck2

)
= 0.

This condition leads us to consider the two subcases d = 0 and 3a− ck2 = 0.

Under the assumption d = 0, condition (4.6) becomes

24c
(
3a− ck2

)2
= 0,

and so the relation 3a−ck2 = 0 must be verified since we have already noted that c and d cannot
be simultaneously equal to zero in the present discussion (this particular case will be discussed
separately). So, let us only assume:

� 3a− ck2 = 0: H = xy + ck2

3 x3 + 3dk2x2y + cxy2 + dy3. In this situation, we get

p(u) = −ku, q(k) = kv,

and

H̃ = −ku2 + kv2 +
4

3
ck2u3 +

4

3
ck2v3 − 4dk3u3 + 4dk3v3,

and so H is BH-separable.
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Third case: 3dk3 − ck2 − bk + 3a = 0

In this case, in order to find a solution for the function p(u) such that p(0) = 0 it is necessary9

that c + 3dk = 0 and, under this supplementary condition we find p(u) = −ku and q(v) = kv.
Calculation of H̃ gives

H̃ = −ku2 + kv2 − 6k3du3 − 6k3duv2 − 4k3dv3 − 2

3
bku3 + 2bkuv2 +

4

3
bkv3,

which is separate in u, v if and only if b− 3dk2 = 0, giving finally

H̃ = −ku2 + kv2 − 8k3du3.

In this case, the assumption of all the relations leads to a = −dk3, b = 3dk2, c = −3dk, so

H = xy − dk3x3 + 3dk2x2y − 3dkxy2 + dy3.

Fourth case: −3dk3 − ck2 + bk + 3a = 0

It is the same situation as the previous one replacing k by −k.
Partial conclusion: the previous discussion and calculations gave four families of BH-separable

Hamiltonians:

H = xy + dy3,

H = xy + 3dk2x2y + dy3,

H = xy +
ck2

3
x3 + 3dk2x2y + cxy2 + dy3,

H = xy − dk3x3 + 3dk2x2y − 3dkxy2 + dy3.

The second one is a special case of the third one with c = 0 and the fourth one is also a special
case of the third one with c = −3dk. So we only need to consider two families:

H = xy + dy3 and H = xy +
ck2

3
x3 + 3dk2x2y + cxy2 + dy3.

We can notice that the first one seems to be a particular case of the second one corresponding to
k = 0. But we have to remind ourselves that here the parameter k comes from the linear part of
the change of coordinates, namely k = p′(0) and so does not become equal to zero. By the way,
the reader could check that if we choose k = 0 and cd ̸= 0 in the second family we do not obtain
a BH-separable Hamiltonian. This fact clearly shows that we must necessarily avoid k = 0 in
the second family. So, for the moment we have two families of BH-separable Hamiltonians, the
first one is a 1-parameter family and the second one, a 3-parameters family, namely (taking 3c
instead of c in the second one):

H = xy + dy3, d ∈ R,
H = xy + ck2x3 + 3dk2x2y + 3cxy2 + dy3, (c, d, k) ∈ R2 × R∗. (4.9)

It remains to study the case which we did not deal with: c = d = 0. In this case, we find that
necessarily

p(u) =
−ku− 3au2 − bu2k

1 + 2bu
, q(v) =

kv − 3av2 + bv2k

1 + 2bv
.

9Indeed, without any additional condition, the symbolic calculus tool we used does not indicate any solution
for this Cauchy problem. Then, leaving the initial condition, we obtain the general solution depending on an
arbitrary constant. A simple calculation then gives that if the solution p satisfies p(0) = 0 then necessarily
c+ 3dk = 0. Conversely, under this assumption, we get p(u) = −ku.
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Replacing them in H we get that the term in u2v2 is equal to −6ab, so necessarily a = 0 or
b = 0. For example, if a = 0, we get that the term in u2v3 is equal to 2kb3 and so vanishes if
and only if b = 0. If we suppose b = 0, we get in the same manner that a = 0. So, once we
have c = d = 0, right away we get a = b = 0 and so H = xy, which is a trivial case already
contained in the first family for d = 0. The last thing that we have to consider is that we have
prioritized the variable x over the variable y and so we have to exchange x and y to get forgotten
Hamiltonians, namely

H = xy + dx3, d ∈ R,
H = xy + dx3 + 3cx2y + 3dk2xy2 + ck2y3, (c, d, k) ∈ R2 × R∗. (4.10)

The two forms (4.9) and (4.10) are not equivalent because, for example, H = xy + y3 belongs
to one of the families (4.9) and not to one of the families (4.10). We can summarize all this
discussion by this result:

Theorem 4.1. Among Hamiltonians of the form

H = xy + ax3 + bx2y + cxy2 + dy3, (a, b, c, d) ∈ R4,

the only ones to be BH-separable are those belonging to one of the four families:

Hd = xy + dy3, d ∈ R,
Hd = xy + dx3, d ∈ R,
Hc,d,k = xy + ck2x3 + 3dk2x2y + 3cxy2 + dy3, (c, d, k) ∈ R2 × R∗,

Hc,d,k = xy + dx3 + 3cx2y + 3dk2xy2 + ck2y3, (c, d, k) ∈ R2 × R∗.

Remark 4.2. We can outline that for the two 1-parameter families the change of coordinates al-
lowing to separate H, x and y is not linear whereas for the two others families with 3 parameters,
it is linear.

Remark 4.3. This result is a very good illustration of the main theorem of this paper, namely
Theorem 3.5 stating that Hamiltonians which are not BH-separable are generic. Indeed the
family of Hamiltonians studied above is a 4-dimensional affine space whereas, in that space,
the set SBH of convenient (BH-separable) functions consists only in d-parameters families with
d < 4. Precisely, the smooth maps

(c, d, k) 7→
(
ck2, 3dk2, 3c, d

)
and (c, d, k) 7→

(
d, 3c, 3dk2, ck2

)
have clearly a Jacobian matrix with a rank r ∈ {2, 3} and so the set SBH is a finite union of
regular hypersurfaces and 2-codimensional submanifolds, so something with a Lebesgue measure
equal to zero and which is a meagre subset of the ambient affine space.
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