Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 092, 41 pages      arXiv:2005.11419      https://doi.org/10.3842/SIGMA.2021.092

Cluster Configuration Spaces of Finite Type

Nima Arkani-Hamed a, Song He bcde and Thomas Lam f
a) School of Natural Sciences, Institute for Advanced Studies, Princeton, NJ, 08540, USA
b) CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
c) School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
d) ICTP-AP International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
e) School of Physical Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
f) Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA

Received January 05, 2021, in final form October 04, 2021; Published online October 16, 2021

Abstract
For each Dynkin diagram $D$, we define a ''cluster configuration space'' ${\mathcal{M}}_D$ and a partial compactification ${\widetilde {\mathcal{M}}}_D$. For $D = A_{n-3}$, we have ${\mathcal{M}}_{A_{n-3}} = {\mathcal{M}}_{0,n}$, the configuration space of $n$ points on ${\mathbb P}^1$, and the partial compactification ${\widetilde {\mathcal{M}}}_{A_{n-3}}$ was studied in this case by Brown. The space ${\widetilde {\mathcal{M}}}_D$ is a smooth affine algebraic variety with a stratification in bijection with the faces of the Chapoton-Fomin-Zelevinsky generalized associahedron. The regular functions on ${\widetilde {\mathcal{M}}}_D$ are generated by coordinates $u_\gamma$, in bijection with the cluster variables of type $D$, and the relations are described completely in terms of the compatibility degree function of the cluster algebra. As an application, we define and study cluster algebra analogues of tree-level open string amplitudes.

Key words: configuration space; cluster algebras; generalized associahedron; string amplitudes.

pdf (737 kb)   tex (54 kb)  

References

  1. Arkani-Hamed N., Bai Y., He S., Yan G., Scattering forms and the positive geometry of kinematics, color and the worldsheet, J. High Energy Phys. 2018 (2018), no. 5, 096, 76 pages, arXiv:1711.09102.
  2. Arkani-Hamed N., Bai Y., Lam T., Positive geometries and canonical forms, J. High Energy Phys. 2017 (2017), no. 11, 039, 122 pages, arXiv:1703.04541.
  3. Arkani-Hamed N., He S., Lam T., Stringy canonical forms, J. High Energy Phys. 2021 (2021), no. 2, 069, 59 pages, arXiv:1912.08707.
  4. Arkani-Hamed N., He S., Lam T., Thomas H., Binary geometries, generalized particles and strings, and cluster algebras, arXiv:1912.11764.
  5. Arkani-Hamed N., Lam T., Spradlin M., Non-perturbative geometries for planar ${\mathcal N} = 4$ SYM amplitudes, J. High Energy Phys. 2021 (2021), no. 3, 065, 14 pages, arXiv:1912.08222.
  6. Arkani-Hamed N., Lam T., Spradlin M., Positive configuration space, Comm. Math. Phys. 384 (2021), 909-954, arXiv:2003.03904.
  7. Assem I., Schiffler R., Shramchenko V., Cluster automorphisms, Proc. Lond. Math. Soc. 104 (2012), 1271-1302, arXiv:1009.0742.
  8. Bazier-Matte V., Douville G., Mousavand J., Thomas H., Yildirim E., ABHY associahedra and Newton polytopes of $F$-polynomials for finite type cluster algebras, arXiv:1808.09986.
  9. Brown F., Carr S., Schneps L., The algebra of cell-zeta values, Compos. Math. 146 (2010), 731-771, arXiv:0910.0122.
  10. Brown F., Dupont C., Single-valued integration and superstring amplitudes in genus zero, arXiv:1910.01107.
  11. Brown F.C.S., Multiple zeta values and periods of moduli spaces $\overline{\mathfrak M}_{0,n}$, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 371-489, arXiv:math.AG/0606419.
  12. Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566, arXiv:math.CO/0202004.
  13. Dupont G., An approach to non-simply laced cluster algebras, J. Algebra 320 (2008), 1626-1661, arXiv:math.RT/0512043.
  14. Fei J., Combinatorics of $F$-polynomials, arXiv:1909.10151.
  15. Fei J., Tropical $F$-polynomials and general presentation, arXiv:1911.10513.
  16. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, arXiv:math.AG/0311245.
  17. Fomin S., Zelevinsky A., $Y$-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018, arXiv:hep-th/0111053.
  18. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
  19. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  20. Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.
  21. Hohlweg C., Lange C.E.M.C., Thomas H., Permutahedra and generalized associahedra, Adv. Math. 226 (2011), 608-640, arXiv:0709.4241.
  22. Jahn D., Löwe R., Stump C., Minkowski decompositions for generalized associahedra of acyclic type, arXiv:2005.14065.
  23. Lam T., Speyer D.E., Cohomology of cluster varieties. I. Locally acylic case, Algebra Number Theory, to appear, arXiv:1604.06843.
  24. Muller G., Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207-247, arXiv:1111.4468.
  25. Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, Vol. 300, Springer-Verlag, Berlin, 1992.
  26. Padrol A., Palu Y., Pilaud V., Plamondon P.-G., Associahedra for finite type cluster algebras and minimal relations between $g$-vectors, arXiv:1906.06861.
  27. Reading N., Universal geometric cluster algebras, Math. Z. 277 (2014), 499-547, arXiv:1209.3987.
  28. Shi J.Y., The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Math., Vol. 1179, Springer-Verlag, Berlin, 1986.
  29. Speyer D., Williams L., The tropical totally positive Grassmannian, J. Algebraic Combin. 22 (2005), 189-210, arXiv:math.CO/0312297.
  30. Stanley R.P., An introduction to hyperplane arrangements, in Geometric Combinatorics, IAS/Park City Math. Ser., Vol. 13, Amer. Math. Soc., Providence, RI, 2007, 389-496.
  31. Yang S.-W., Zelevinsky A., Cluster algebras of finite type via Coxeter elements and principal minors, Transform. Groups 13 (2008), 855-895, arXiv:0804.3303.

Previous article  Next article  Contents of Volume 17 (2021)