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Abstract. In paper by I.T. Habibullin and our joint paper the algorithm for classifica-
tion of integrable equations with three independent variables was proposed. This method
is based on the requirement of the existence of an infinite set of Darboux integrable re-
ductions and on the notion of the characteristic Lie-Rinehart algebras. The method
was applied for the classification of integrable cases of different subclasses of equations
Un,zy = [(Unt1,Un, Un—1,Un g, Un,y) Of special forms. Under this approach the novel inte-
grable chain was obtained. In present paper we construct Lax pair for the novel chain. To
construct the Lax pair, we use the scheme suggested in papers by E.V. Ferapontov. We also
study the periodic reduction of the chain.
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1 Introduction

In a number of recent publications [8, 13, 14, 15, 16, 18] the problem of integrable classification
of two-dimensional lattices

Un,zy = f(un+17un; Unp—1, un,an“n,y)a —00 < n <00, (11)

was studied. Here the sought function w, = u,(x,y) depends on the real variables z, y and the
integer variable n. In these papers we proposed the method for seeking and classifying integrable
equations with three independent variables based on the requirement of the existence of a set
of Darboux integrable reductions and on the notion of the characteristic Lie-Rinehart algebras.
The method was applied to different subclasses of equations (1.1) of special forms.

Within this approach we use the following

Definition 1.1. A lattice of the form (1.1) is called integrable if there exist locally analytic
functions ¢ and 9 of two variables such that for any choice of integers N1, Na the hyperbolic
type system

UNy,zy = QO(UN1+17U’N1)7
Un,zy = f(un-i—lyunuun—la“n,xa“n,y)a N1 <n < Na, (12)

uNz,a:y - 1/1<UN2,UN2—1)7

obtained from lattice (1.1) by imposing cut-off conditions at n = Ny and n = Ny, is integrable
in the sense of Darboux.

Let us recall what Darboux integrability means.
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Definition 1.2. A function I = I(z,u, s, Uy, ... ) is called an y-integral if it satisfies the
equation D, I = 0 for every solution of system (1.2). A function J = J(y, @, Uy, tyy, . . . ) is called
a z-integral if it satisfies the equation D,J = 0. Integrals of the form I = I(z) and J = J(y)
are called trivial.

Here @ is a vector @ = (un,, UN;+1, - - -, UN, ), Uy 1S its derivative and so on. The operators D,
and D, are operators of the total derivative with respect to the variable y or x, correspondingly,
by virtue of system (1.2).

Definition 1.3. A system (1.2) is called Darboux integrable if it possesses No — N1 + 1 func-
tionally independent nontrivial integrals in both characteristic directions = and y.

Darboux integrable systems are amenable to study by the Lie-Rinehart algebras. Let I =
I(x, U, Uy, gy, ... ) be a nontrivial y-integral for the system (1.2). Then I must satisfy the
following system:

YI=0, X:I=0,

where

No
0 0 0 0
X; Y = iy + fim— + Dp(fi) e 4 -

© Ougg
i,y =N, i,

and f; = f(wiy1, Wi, Ui—1, Uiz, Uiy). The first equation follows from the fact that the operator D,
acts on functions I = I(x, @, Uy, Uz, - . . ) by the rule D, = Y'I, the second one arises because [
doesn’t depend on variables u; .

Let us consider the Lie algebra L, generated by the operators Y, X; over the ring A of locally
analytic functions of the dynamical variables iy, @, Uz, gz, - ... To the standard multiplication
operation [Z, W] = ZW — W Z we add two conditions: [Z,aW] = Z(a)W +a[Z, W] and (aZ)b =
aZ(b) valid for any Z,W € L, and a,b € A. These equalities means that for any Z € L, and
any a € A, the element aZ € L,. In this case the algebra L, is called the Lie-Rinehart
algebra [20, 22].

If there exists a finite basis Z1, Zo, . .., Z}, € Ly such that an arbitrary element Z € L, is repre-

sented as a linear combination Z = a1 21 +aoZs+- - -+ay Zy, where coefficients aq, as, ..., a € A;
and if the equality Z = 0 implies that a; = a2 = --- = a, = 0, then algebra L, is of a finite
dimension.

The integrability criterion of the hyperbolic type system in the sense of Darboux is formulated
as follows [28, 29]:

Theorem 1.4. System (1.2) admits a complete set of the y-integrals (a complete set of the
x-integrals) if and only if its characteristic algebra L, (respectively, characteristic algebra Ly) is
of finite dimension.

Corollary 1.5. System (1.2) is integrable in the sense of Darboux if both characteristic alge-
bras L, and L, are of finite dimension.

The above statements play a key role in our classification works. Within the scope of this
paper we need one of our results: paper [16] provides a complete list of integrable two-dimensional
lattices of the form

Un,zy = a(un—i-l y Un, un—l)un,xun,y + B(Un—‘rla Unp, un—l)un,x

+7(un+1’unaun—1)un,y + 5(un+17unuun—1)) (13)

with the coefficient « satisfying the conditions %ﬁ’f‘m % 0. This list consists of two
equations:
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Theorem 1.6. Integrable equation of the form (1.3) can be reduced by a point transformation
to one of the following forms:

Un,zy = Onln zlUny, (1.4)

Unzy = On (un@ —u? - 1) (“n,y — ui — 1) + 2uy, (un,x + Upy — ui — 1), (1.5)
where

o, = 1 _ 1 _ Ungl — 2Up + Up—1

Up — Un—1 Un+1 — Un (unJrl - un)(un - unfl) ‘

Equation (1.4) was found before in papers [7, 23] by Ferapontov and Shabat and Yamilov.
Equation (1.5) appeared in [16] as a result of the classification procedure.

The aim of the paper is to find Lax pair for novel chain (1.5), to explain the method of finding
Lax pairs and to prove that periodic closings of the chain possesses higher symmetries.

The Lax pair for equation (1.4)

U U

djn,x — $(¢n+l - ¢n)a ¢n,y = i(d)n - ¢n71)
Up+1 — Un Up — Up—1

was found by E.V. Ferapontov. To construct Lax pair for chain (1.5), we use the scheme

suggested in paper [12]. Let us describe the procedure in detailed. First of all, we represent

lattice (1.5) in the equivalent following form:

Azgu

’U/xy: (ux—u2—1)(uy—u2—1)m

+ 2u(ug +uy —u® —1). (1.6)

Here A, = Tze_l, Nz = % are the forward/backward discrete derivatives and A,z = %
is the symmetrised second-order discrete derivative; the operators T, 15 are the forward and
backward e-shifts operators in the variable z.

The method consists of three steps:

1) First we construct the dispersionless limit of the equation (obtained as € — 0).

2) Secondly, for the equation found at the previous step we find dispersionless Lax pair.
Usually this problem is effectively solved.

3) Finally, we reconstruct Lax pair by appropriate “quantization” of dispersionless Lax pair
as proposed in [27].

The paper is organized as follows. In Section 2 Lax pair for chain (1.5) is constructed.
Section 3 is devoted to periodic closings. Namely, we impose the periodic closure conditions
Up4+2 = Uy to infinite chains (1.4), (1.5) and obtain finite systems. Lax pairs and higher sym-
metries of the second order are constructed for obtained finite systems. Conclusion contains
a discussion of the results.

2 Construction Lax pair for equation (1.5)

The main result of this section is as follows:
Theorem 2.1. Equation (1.5) possesses the Lax pair

U, gz —u2 -1

77/)71,:13 = —n(¢n+1 - wn) + Un¥n,
Un+1 — Un
Upy — u% —1
¢n,y = (71}11 - @Z}nfl) + Un¢n

Up — Un—1
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Proof. The dispersionless limit of the equation (1.6) coincides with equation:

Upy = (um —u?— 1) (uy —u?— 1) uzzz + 2u(ux + Uy — u? — 1). (2.1)

z

There exists a direct method for finding Lax pairs for equations of this form. Lax pair is sought
in the following form:

Se = F(u>ux>uy7uz>5z)a (2'2)
Sy = G(u, Ug, Uy, Uz, S>).

The compatibility condition S, = Sy, of system (2.2), (2.3) by virtue of equation (2.1) leads
to the overdetermined equation

Fuyuyyu Guytzg>— (Gg, Fy, — Gy, Fs, 4+ Go )uzpu®— (Gu, Fs., — Gs. Fy, — Fuz)uzyug
+ s ((u? — uy +1) (v = uy + 1) (Fu, — Gu,) — u2(Gs, Fu. — Gu.Fs.))
—u (2u(1 +u? —u, — Uy) (Fu, — Gu,) + uz(Gs, Fy — GuFs,) + usGy — uyFy,) = 0.

Because of the fact that variables u, ug, uy, us, Ugz, Uyy, Usz, Usy, U, are independent, this
equation splits down into the overdetermined system of equations:

F,, =0, G, =0, (2.
Gs.Fu, — Gu,Fs. + G, =0, (2.
Gy, Fs. — Gs.F,, —F,. =0, (2.
(v —uy + 1) (u® — uy + 1) (Fy, — Gu,) — u2(Gs, Fu, — Gy Fs,) =0, (2.
2u(1+u® — up — uy) (Fu, — Gu,) + u.(Gs. Fy — Gy Fs,) + u, Gy — uyFy = 0. (2.

MI\DM[\DM
OO\]CT:OT%
o — D D

Equations (2.4) mean that F' = F(u, ug, u;, S;) and G = G(u, uy, u,, S;). Substituting F' and G
into (2.5), (2.6), we arrive at the equations:

Gy, +Ggs, Fy, =0, F,, + GuyFsz =0. (2.9)

We differentiate the first equation (2.9) by wu,, the second equation (2.9) — by u,, and obtain
that Gg, Fy, =0, F5,Gy,u, = 0. Obviously that the functions F' and G take the following
forms:

zUx

F(uu Ugy Uz, Sz) = FQ(U, Uz, Sz)u:r: + F3(Ua Uz, Sz)a
G(u,uy, uz, S;) = Fa(u,us, Sy)uy + Fs(u, us, S).

Then we rewrite (2.9) and (2.7), (2.8) using the last formulas. Because of the fact that the
variables u, u;, uy, u, are independent, obtained equations split down one more time. Thus we
arrive at the system for unknown functions Fj(u,u,,S), i = 2,3,4,5:

FyFyg, + Fyq, =0, Fyby g, + Fo,, =0, ( )
By — Fy+u(Fos, Fry, — Fug. Foy,) =0, (2.11)
Fiy—Fou+u.(FouFus, — FiulFhs,) =0, (2.12)
FyF3 s, + F3,, =0, (2.13)
(1+u®)(Fy — Fo) + ul(Fy.s, Fau, — Fus. F30.) =0, (2.14)
2u(Fy — Fy) +up(F3uFys, — Fuulss.) — Fsu =0, (2.15)
FyFs g, + F5,, =0, ( )
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2u(Fy — Fy) + u,(FouFs5. — FsuFas.) + Fsu =0, (2.17)
(u? +1)(F1 — Fa) + u?(Fa5. Fs 0, — F55.Fay.) = 0, (2.18)
(W2 + 1) (Fy — Fy) + u2(Fs.5. Fs . — Fs.5.F30.) = 0, (2.19)
2u(u® + 1) (Fy — Fy) + u.(F35, Fs 0 — F5 5. F3,) = 0. (2.20)

Now we will work with equations (2.10)—(2.12) to clarify functions F», Fy. Let us express Fi,,_,
F5,, from (2.10) and substitute them into (2.12). This leads to the condition F; = F; or to the
equation

(1 —uiFy g Fygs.) =0. (2.21)
Let us consider case (2.21). We look for Fy, F in the following form:

A z B » M2z
FQ(u7uZ7SZ) = (ZZS’)a F4(uauzasz) = (1;5’)

Then A, B have to satisfy the system obtained using (2.21), (2.10), and (2.11),
1-— ASZBSZ =0, —A+ BASZ =0, —-B+ ABSZ =0, (2.22)
B, — A, + Bs, Ay, — As. B, = 0. (2.23)
This system has the solution:

a1 (u)Sz+ai(w)az(u) _ 1
A(u, S,) = =

a1(u)
Here a1, ay are arbitrary functions. Similarly, we find that

04 (w)Sz+as(u)as(u) _

B(u,S,) = e

with arbitrary functions as, a4. Under obtained A and B the first equation (2.22) becomes

1 — ela1(W)+aa(u))Sz+az(u)ar(u)+asz(w)as(uw) _

Thus one can derive that ay = —aq, ag = as. Finally, equation (2.23) takes the form

(—a1(u)d; (u)S. — ai(u)ay(u) — a1 (w)as(w)ay (u) + 2a} (u)) e (S=Fo2(w)

+ (a%(u)ag(u) + a1 (uw)ag(u)a) (u) + 2a) (u) + a1 (u)d} (u)SZ)e*“I(”)(SﬁaQ(”)) — 4a’) (u) = 0.
We assume essential dependence on S, for functions Fs, Fy and, therefore, for A, B, so the
functions e® (W9 g=a1(W)S: ga1(w)S: g e—a1(w)S: G  are independent. Hence we have a; (u) = ey,

az(u) = ca, where cj, cg are arbitrary constants.
Thus, we have clarified the right hand sides of Lax pair (2.2), (2.3)

(601(Sz+62) _ 1)Ux
ClUy
(6761(524’02) _ 1)uy

ClUy

Sy = F(u, ug, uy, uz, S;) = + F3(u, uz, S-),

Sy = G(“?”:muy?uz’sz) = -

+ F5(U, Uz, Sz)

By the shift transformation S — S — coz and by the scaling z — ¢;z these equations can be
reduced to

S, 1 v
Sy = F(u7ux7uyyuz7sz) = u + F3(u7uz75z)7

Uy
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O
Uz

Sy = G(u, ug, uy, uy, S;) = — + F5(u,uy, S,).

To clarify F3, we substitute the above functions into (2.13), (2.14), and (2.15)

(e = 1)u.Fs, — 2u(e™ +2) =0,
Uy (e_SZ —1- uze_SZ)F&SZ - (u2 + 1) (eSZ +e % — 2) =0,
—(e™% —1)Fy 5. +u.Fs,, = 0.

This system has the solution

s, )
Fy(u,u., S,) = — (e 172 (u + 1) |

Now we rewrite equations (2.16)—(2.20) and we obtain the system on the unknown function Fj:

(€% = 1) Fs,5. +u.Fs0, =0,
Uy (eSZ — 1)F5,5Z + uzeSzFauz — (u2 + 1) (eSz +e % — 2) =0,
—uy(—e 2% £ 3675 — 345 )Fy g, —u(e + e — 2)Fy .
+ (u? + 1) (=4 + &% —4e725 4 G + e735) =0,
uz(l — eSZ)F57u — 2u(eSZ +e % — 2) =0,
2uu, (e_QSZ —3e % 43— eSz)Fg,,Sz + (u2 + l)uz (eSz +e % — 2)F57u
+ Qu(u2 + 1) (e_SSZ + 6075 — do72% 4 o — 4) =0.

This system possesses the solution

— e %) (u?
F5(u,uz,5’z):—(1 )( +1).

Uy

Thus we have found the Lax pair

Uy —u? —1 1
S, =2 = (e -1 — 2.24
e R R 221
Uy —u? — 1 1
S = ) 1— =S\ _ 2.25
Y . ( € ) % ( )

for equation (2.1).

Now we reconstruct the dispersive Lax pair by an appropriate quantization the dispersionless
Lax pair (2.24), (2.25). First, we “quantise” [27] the terms in every equation (2.24), (2.25): u, is
replaced by A,u; €% — 1 by A,y due to the formal representation evr ~ 1 + % + ---, and,
similarly 1 — e by Az.

In most cases, this procedure provides the necessary Lax pair. But in this case we do not
obtain the Lax pair for (1.6) if we act in the same way. It was experimentally found that we
should fit the second term in the r.h.s. of equations (2.24), (2.25) by the following way (i.e., we
guess some part):

Uy —u” — 1
AN
2

Uy —u” — 1

thy = TA2¢ + Q(u)y.

z

¢x = A;ﬂl) + P(u)¢>
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The compatibility condition t;, = 1, is straightforward to solve. Thus we find that equa-
tion (1.6) possesses the Lax pair

Uy —u? — 1 uy —u? — 1
= ———— A\, , =4 A, .
P A Y+ u Py A Y+ up
It finally proved Theorem 2.1. |

3 Higher symmetries of periodic closings

Let us impose the periodic closure conditions w42 = u, to infinite lattice (1.4). Then we obtain
the following finite system:

2 2

UQ,z U0,y Ul,zy =
Up — U1 Uy — uog

U0,y = UL,z UL,y- (31)

System (3.1) has the z-integral and the y-integral

uozyulvy uo,(Eul,:D
(uo — u1)? (uo — u1)? (32)
Lax pair for (3.1) has the form
U, =(AN+B)¥, ¥, =(AN"'+ D)V, (3.3)

where ¥ = (¢1, )" and

U,z UQ,z

0 0 -
Up — U1 Ug — U1
= u =
A (1’”” o) B 0 - Wae |’
do—u upg — uy
U0,y
A 0 0 » _UO —u1 0
= u =
A 0 _¢ ’ B _ u17y _ u17y ’
ug — U1
Ul — Ug Ul — Ug

A is a spectral parameter.
The classical symmetry can be found directly from the consistency condition (u;ey)s, =

(ui7t1 )a;y:

2
Ut = uowF(W) + crug + coup + cs,

2
ULy = ’U,LxF(W) + ciuj + couy + c3,

where F' is an arbitrary function depending on the y-integral W defined by the second formula
of (3.2); c1, co, c3 are arbitrary constants. The classical symmetry in the another direction is
simply found because the system is symmetric under the change of variables = < y:

~ 92 ~ ~
UQ ¢y = UO@G(U}) + ciug + coug + C3,

uy,, = u1,G(w) + Elu% + couy + cs.
Higher symmetry of the second order is sought in the following form:

Ui = A4 (u07 U1, U0,z ul,x)uo,:ca: + b; (UO’ U1, U0,z ul,x)ul,xx + Ny (u07 U1, U0,z ul,x)y
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i = 1,2, where a;, b;, h; are functions to be found. To find the higher symmetry we use Lax
pair (3.3). Let us consider the linear problem

Ty, = (aX? + BA+7) 7, (3.4)

where a = (a4 5), B = (Bij), ¥ = (7ij), ©, 7 = 1,2 are matrices to be found. It is assumed that
elements of the matrices depend on the variables ug, w1, %oz, U1 4, U0,zz, U1,22- The compatibility
condition (V) = (¥, ), for the systems

Uy =(AN+B)V, Uy = (aX+BA+7)7,
results in the system of relations

Aa = aA, A+ Ba=a, +aB + A,
Ar + Ay + BB =fs+BB+7vA, By +By=7+7B.

A complete study of these equations leads to the following formulas:

2

U
Uug,r; = H(W)Uo,m + %Q(W)Ul,wx + (UO - ul)g(u()a Uy, U0, ul,x)
(uo — u1)
c2

-+ (uo — ul)(co —Cclu; — 5) — (cluf + couy + 63),

Uq Up — uU1)ul
Ui, = = H(W)UO,IJ: + Wq)(W)ul,xx + QQ(”O; Uy, U0,z Ul,m)

UQ, UQ,

Uy — U)U ¢
w(m + g + ) = (erud + caur + ),

+ UQ 2

where H, ®, g are arbitrary functions; ¢; are arbitrary constants. To define precisely obtained
formulas we substitute them into the compatibility condition (u;gy)r = (@ir )zy. Thus, we
finally found the higher symmetry of the second order:

2 _
om — (Uo,m N U0,z e — U0,z (U0 & le)) POV, (3.5)
Ul (up —u1)
2 _
Uty = (u1 T ) e — .0 (U0 “1’”*“)> F(W), (3.6)
o,z (up —u1)

where F' is an arbitrary function; W is the y-integral defined by the second formula of (3.2).
Also we finally found matrices «, 3, v involved in (3.4):

_(an O _ B 0
“= < 0 (111) ’ 5 N <521(u7uxyu;cz) Bll) ’

- <m(u,uw,um) vlz(u,ux,um)>

0 Yoo (U, Uy, Uzz)
where
B (8, T ) = (u()(zz_m)uo b - 2“1’(”155‘(21;1)31@)) FOW),
(% T To) = ((uo i ul)uo’m * u1,z(zz’m— up) O 2“0?5:0_,27;1)21@)) B,
Y12 (U, Uy, Ugy) = <_(ugiul)u0’m - IM(ZZ’:ZWULM + Uo,:zgéo,_x ;j;,:;:)) F(W),
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11, (11 are arbitrary constants. Thus it is seen that definitive answer is given by formu-
las (3.5), (3.6) and

\IITI = (ﬁA +’7)\Ija B = <ﬁ(2)1 8) ; Y= (7(1)1 3;;) )

where 321, v;; have been described just above.

Remark 3.1. The symmetry given by (3.5), (3.6) can be written as'

W, Wy
W, U177—1 = ULxF(W)W

Therefore this is actually the classical symmetry in disguise.

U0, = uO,a?F(W)

Let us consider chain (1.5). We impose the periodic closure conditions w42 = uy, to infinite
chain (1.5) and obtain the following finite system:

2
UQzy = — (UU,:): — ug — 1) (uo,y — u% — 1) + 2ug (U[Lx + ug,y — u(% - 1),

2

Uup — uo

Uy gy = (u1,0 — u? — 1) (ury — u? — 1) 4 2uy (w10 + w1y — u? — 1). (3.7)

This system possesses the y-integral and the x-integral

(Uo,x — u% — 1) (uLx — u% — 1)

(uﬂyy - U(2) - 1) (“Ly —uf — 1)

P = ) J = (3.8)
(uo — u1)? (up — u1)”
System (3.7) is the compatibility condition for the Lax pair
D, =(SA+T)®,  @,=(SA\'+1)&, (3.9)
where ® = (¢g, $1)7,
0 0 7u0,x—u(2)—1+u0 uo,x—ug—l
S = 2_1 ’ T = U1 — U U1 — U ’
W7~ Uy —ud—1
Uy — U 0 — 4 u
uyp — Ul
2
Ugy —ug — 1
i 0 g,y — ud — 1 ) 70’20_21 + ug 0
5= o — U1 ’ r= Uy —ud—1 up, —ud—1
0 0 _ Wy 1 Y 1 T+
Uy — Ug up — uo
To find the higher symmetry it is sufficient (as we have just seen) to consider the system
(I)Tz = (/é/\ + :Y)(I)v (3'10>

compatible with the first equation of (3.9). In this way we obtained the higher symmetry of
system (3.7):

2
Uy — UG — 1 20(ug, U1, U 2, U
UO,TQ = UOJ}x + 7071, (2] Ul,xx + SO( 0 3 1, 0z 1@) F(P), (311)
Uy —uy — 1 (u1,0 — ui — 1)(uo — u1)
2
Uy —uy —1 20(ug, U1, Ug 2, U
ul,’rz = (méu[)’wx +u1,xx + SD( 0 ; 1 0711? 1737) >F(P)7 (3.12)
Ug,z — Uy — 1 (Uoﬂ; — Uy — 1)(U0 - ul)

1T am grateful to the anonymous referee for this constructive comment.
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where P is the y-integral given by the first formula of (3.8),

(0, U1, U0z, U1 2) = U001 2 (Ute — Uoz) + uf, (1 +ut) —uf , (14 uj)

— g5 (1 +uf +uour + uoui) + ur e (14 uf + uour +ugur).  (3.13)
Matrices 3, 4 (see (3.10)) are defined by the following formulas:
3 _ <~ 0 0) 5/ _ (ﬁ/ll(aaamﬁmx) 712(a>ﬂxyﬂmx)>
/821(ﬂ7ﬂ$7ﬂ1‘x) 0/’ 0 722(a7ﬂxvﬂa:x) ’
where
5o Ul — ’LL% -1 Ul,zx
621 (u7 Uy, umt) = D) U0, xx
(uo — u1) (uge — ud — 1) —uy
20(ug, U1, Uy z, U
+ 90( 02 1, 40,z l,m) - F(P),
(w00 — ug — 1) (ug — u1)
2
o U Uz — uy — 1)ug,
A1 (U, Ty ) = [ 22 4 (to. — )Uta
ug — U1 (Ul,x —ujy — 1)(u0 — ul)
200(u0, U1, U0z, U1,z)
+ — F(P),
(uo — u1)? (w0 — uf — 1)
12 (T, Ty Tg) = | ——22T (02 = g — 1) u
12\, Uy, Ugy Uo — Uy (UL;(; _ U% _ 1) (UO _ u1) 1l,xx
B 290(“0,;1,%@, U;,x) F(P),
(up — uyp) (Ul,x —uf — 1)
GRS gy UL S .
22\, Ugy Uz (UO _ u1)(u07x _ ug _ 1) 0,zx Uo — Uy
B 2@(“0,2U1,U0,x, Ui,) ) Fep),
(u0z — ug — 1) (uo — u1)
(U, U1, oz, u1,2) is defined by (3.13).
Remark 3.2. The symmetry given by (3.11), (3.12) can be written as
P, P,
o,y = (U0 — ut — l)F(P)%, Uty = (U1,0 — uf — l)F(P)Fx
Therefore this is actually the classical symmetry in disguise.
Note, that periodic closing obtained by the conditions wu,+3 = wu, imposing on infinite

chain (1.5) leads to the system

Uo,zy = <
Ul,ay = <
U2,zy = (

1

1

ug — U2 Ul — Up

1

) (Uo,x — u% — 1) (uo,y — u% — 1) + 2ug (uo@ + ugy — ug — 1),

1

Uy — uo

1

Uy — U1> (Ul,x - U% - ]-) (Ul,y - u% — 1) + 2U1 (ULI + ULy — ’LL% _ ]_)7

1

U2 — U

ug — u2> (U2,x - U% - 1) (U2,y - u% — 1) + 2usg (uQJ + Uy — u% _ 1).
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This system has y-integral and x-integral

UQz — u% — 1) (ul,x — u% — 1) (uzz — u% — 1)
(u2 — u1)(uo — u1)(uo — u2)

_ (uoy —uf — 1) (ury —ui — 1) (ugy —u3 — 1)
a (u2 — u1)(ug — u1)(uo — uz) '

Lax pair has the following form:

U, = (AN+ BV, ¥, = (AN 4+ B)U,
where W = (¢07¢17 wQ)T’

.

)

0 00
A 0 0 0
= > ,
U2, — U — 1 0 0
ur — uo
2 2
uO,w—uO—l_i_u Ug gz —uj— 1 0
_Yr 70~ 0 Or 0~
Ul — Uo Ul — Uo
2 2
B— 0 —ul’m_ul_l—i—ul Uy —u] — 1
)
Uz — U1 U2 — U1
2
Ug z — U5 — 1
0 0 —M‘F’UQ
Uug — U
upy —ui — 1
~ 0 0
A= upg — u2
0 0 0 ’
0 0 0
2
oy o —1 0 0
ug — U
~ Uy uy — 1 Uy u 1
B = Y 1 Y 1 + uy 0
Ul — U Uy — U
0 Uy —uy — 1 ugy—u2—1+u2
U2 — Ul Uz — U1

4 Conclusion

The problem of classification multidimensional equations is actively studied by many authors,
using different algebraic and geometry approaches [1, 2, 3, 5, 6, 9, 10, 11, 21]. We note that the
classification algorithm for integrable two-dimensional lattices proposed in our previous papers
does not provide any algorithm for constructing the Lax pair.

It is known that finite systems obtained from infinite integrable chains by degenerate bound-
ary conditions imposing at the two points of the form wu, ; = ¢1, unt+s = c2 (where c¢1, co are
constants) are integrable in the sense of Darboux (they have complete set of integrals in both
characteristic directions, i.e., the number of independent integrals is equal to the order of the
system). We study finite systems obtained from infinite chains (1.4), (1.5) by periodic closure
conditions. It is interesting fact that each of these systems also has one z-integral and one
y-integral. We obtained that symmetries of these systems depend on integrals. It is known that
Darboux integrable systems possesses symmetries which depend on integrals [24, 30]. Symme-
tries of systems with incomplete sets of integrals might depend on these integrals [17, 19]. In
a discrete version, this fact is discussed in paper [26]. In papers [4, 25] an algorithm is proposed
which allows one to construct higher symmetries of arbitrary order for some special classes of
hyperbolic systems possessing the integrals.
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