Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 079, 14 pages      arXiv:2009.13573      https://doi.org/10.3842/SIGMA.2021.079

Triality for Homogeneous Polynomials

Laura P. Schaposnik a and Sebastian Schulz b
a) University of Illinois at Chicago, USA
b) University of Texas at Austin, USA

Received February 15, 2021, in final form August 18, 2021; Published online August 27, 2021

Abstract
Through the triality of ${\rm SO}(8,\mathbb{C})$, we study three interrelated homogeneous basis of the ring of invariant polynomials of Lie algebras, which give the basis of three Hitchin fibrations, and identify the explicit automorphisms that relate them.

Key words: triality; Higgs bundles; invariant polynomials.

pdf (544 kb)   tex (146 kb)  

References

  1. Aganagic M., Haouzi N., Shakirov S., $A_n$-triality, arXiv:1403.3657.
  2. Antón Sancho Á., Fibrados de Higgs y trialidad, Ph.D. Thesis, Universidad Complutense de Madrid, 2009.
  3. Baraglia D., Schaposnik L.P., Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys. 20 (2016), 525-551, arXiv:1309.1195.
  4. Beck F., Donagi R., Wendland K., Folding of Hitchin systems and crepant resolutions, Int. Math. Res. Not., to appear, arXiv:2004.04245.
  5. Corlette K., Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.
  6. Donagi R., Pantev T., Langlands duality for Hitchin systems, Invent. Math. 189 (2012), 653-735, arXiv:math.AG/0604617.
  7. Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127-131.
  8. Fuchs J., Schellekens B., Schweigert C., From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 39-97, arXiv:hep-th/9506135.
  9. García-Prada O., Ramanan S., Involutions and higher order automorphisms of Higgs bundle moduli spaces, Proc. Lond. Math. Soc. 119 (2019), 681-732, arXiv:1605.05143.
  10. Hausel T., Thaddeus M., Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003), 197-229, arXiv:math.AG/0205236.
  11. Heller S., Schaposnik L.P., Branes through finite group actions, J. Geom. Phys. 129 (2018), 279-293, arXiv:1611.00391.
  12. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  13. Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  14. Hitchin N.J., Langlands duality and $G_2$ spectral curves, Q. J. Math. 58 (2007), 319-344, arXiv:math.AG/0611524.
  15. Kapustin A., Witten E., Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), 1-236, arXiv:hep-th/0604151.
  16. Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  17. Ngô B.C., Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1-169, arXiv:0801.0446.
  18. Schaposnik L.P., Spectral data for $G$-Higgs bundles, Ph.D. Thesis, University of Oxford, 2013, arXiv:1301.1981.
  19. Schaposnik L.P., Higgs bundles - recent applications, Notices Amer. Math. Soc. 67 (2020), 625-634, arXiv:1909.10543.
  20. Simpson C.T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.
  21. Slodowy P., Simple singularities and simple algebraic groups, Lecture Notes in Math., Vol. 815, Springer, Berlin, 1980.
  22. Springer T.A., Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009.
  23. Uhlenbeck K., Yau S.-T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), S257-S293.
  24. Wolf J.A., Gray A., Homogeneous spaces defined by Lie group automorphisms I, J. Differential Geometry 2 (1968), 77-114.
  25. Yokota I., Exceptional Lie groups, arXiv:0902.0431.

Previous article  Next article  Contents of Volume 17 (2021)