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Abstract. In this note we present a formula for the Cachazo–Early–Guevara–Mizera
(CEGM) generalized biadjoint amplitudes for all k and n on what we call the minimal
kinematics. We prove that on the minimal kinematics, the scattering equations on the con-
figuration space of n points on CPk−1 has a unique solution, and that this solution is in the
image of a Veronese embedding. The minimal kinematics is an all k generalization of the
one recently introduced by Early for k = 2 and uses a choice of cyclic ordering. We conjec-

ture an explicit formula for m
(k)
n (I, I) which we have checked analytically through n = 10

for all k. The answer is a simple rational function which has only simple poles; the poles

have the combinatorial structure of the circulant graph C
(1,2,...,k−2)
n . Generalized biadjoint

amplitudes can also be evaluated using the positive tropical Grassmannian Tr+G(k, n) in
terms of generalized planar Feynman diagrams. We find perfect agreement between both
definitions for all cases where the latter is known in the literature. In particular, this gives
the first strong consistency check on the 90 608 planar arrays for Tr+G(4, 8) recently com-
puted by Cachazo, Guevara, Umbert and Zhang. We also introduce another class of special
kinematics called planar-basis kinematics which generalizes the one introduced by Cachazo,
He and Yuan for k = 2 and uses the planar basis recently introduced by Early for all k.
Based on numerical computations through n = 8 for all k, we conjecture that on the planar-

basis kinematics m
(k)
n (I, I) evaluates to the multidimensional Catalan numbers, suggesting

the possibility of novel combinatorial interpretations. For k = 2 these are the standard
Catalan numbers.
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1 Introduction

The most basic theory which admits a simple Cachazo–He–Yuan formulation (CHY) is the biad-
joint scalar theory. This is a theory of a massless scalar field in the adjoint representation of the
flavor group U(N)×U(M) and with only cubic interactions. Color decomposition in both U(N)
and U(M) leads to n-point partial amplitudes that depend on two orderings, mn(α, β). In this
work we are only concerned with the canonical planar ordering I := (1, 2, . . . , n) and its corre-
sponding partial amplitudes mn(I, I).

The CHY formulation ofmn(I, I) is an integral over the configuration space of n points on CP1

localized to points satisfying the scattering equations [9, 10, 11, 24, 25].

Recently, Cachazo, Early, Guevara, and Mizera (CEGM) introduced a generalization of the
CHY formulation that uses the configuration space of n points on CPk−1 [7, 13, 14]. This also

led to generalized biadjoint amplitudes m
(k)
n (I, I). Also noted by CEGM, the beautiful connec-
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tion between k = 2 Feynman diagrams entering in the expansion of m
(2)
n (I, I) and the tropical

Grassmannian TropG(2, n) naturally extends to TropG(k, n). Moreover, if one is only inter-

ested in m
(k)
n (I, I) then it is enough to consider the positive part, Trop+G(k, n) [35], as explicitly

pointed out in [17].

An expansion of m
(k)
n (I, I) in terms of generalized planar Feynman diagrams was introduced

by Borges and one of the authors for k = 3 [5], building on the beautiful work of Herrmann,
Jensen, Joswig and Sturmfels [28], and later extended to arrays of Feynman diagrams to all k
by Cachazo, Guevara, Umbert and Zhang (CGUZ) [8].

While the definition of m
(k)
n (I, I) either as a CHY integral or as a sum over planar arrays

of Feynman diagrams is well-understood, its explicit evaluation becomes forbiddingly compli-
cated even for modest values of k and n.

In this note we present the first all k and n result obtained by evaluating the CEMG biad-
joint amplitudes on what we call the minimal kinematics. The minimal kinematics is an all k
generalization of the one introduced by the second author in [19]. The explicit answer is a very
compact formula with the combinatorial structure of a circulant graph. Here we see the power
of the CHY formula in action as it re-sums large numbers of (generalized) Feynman diagrams
into a single compact rational function. We compare our results to the explicit evaluation of the
CEMG amplitudes obtained by summing over (generalized) Feynman diagrams and find perfect
agreement in the cases that are known in the literature. The most impressive comparisons are
those for Trop+G(3, 8) and Trop+G(4, 8), where 13 612 collections and 90 608 matrices all give
non-vanishing contributions and their sums collapse to the compact result. This is a very strong
consistency check on the Trop+G(4, 8) CGUZ results. The Trop+G(3, 8) CGUZ collections
were already checked to reproduce the results obtained by Drummond, Foster, Gürdoğan, and
Kalousios using cluster algebras in [17].

In 2013, CHY noticed that the kinematic invariants of all possible planar poles in a k = 2
biadjoint amplitude form a basis of the corresponding kinematic space [11]. Using this fact CHY
set all planar kinematic invariants to unity so that each planar Feynman diagram contributes

exactly 1 to the amplitude leading to the result that m
(2)
n (I, I) = Cn−2 with Cm the mth Catalan

number. In this work we also present a generalization of this planar-basis kinematics to all k
and n using the recently introduced planar basis by the second author in [21]. We evaluate the
CEGM biadjoint amplitude for k = 3 and n = 5, 6, 7, 8 and find 5, 42, 462, 6 006 respectively.
These numbers are the first three-dimensional Catalan numbers. We also evaluate k = 4 and
n = 6, 7, 8 and find 14, 42, 24 024 which are the first four-dimensional Catalan numbers.1 This
hints that the pattern continues to all values of k and n in which case the amplitude would
evaluate to the k-dimensional Catalan numbers.

This paper is organized as follows: In Section 2 we summarize the main results of this work.
In Section 3 we review the construction of the CEGM biadjoint amplitudes. In Section 4 we
show that on minimal kinematics there is a single solution to the scattering equations onX(k, n).
In Section 5 we evaluate the reduced determinant. In Section 6 we compare the results to those
obtained by evaluating planar arrays of Feynman diagrams which are the analog of Feynman
diagrams for higher k and correspond to facets of Trop+G(k, n). In Section 7 we introduce
the notion of next-to-minimal kinematics. In Section 8 we introduce and start the study of
planar-basis kinematics and its connection to multidimensional Catalan numbers. In Section 9
we conjecture the expression for the evaluation of the planar basis elements on the minimal
kinematics, and in Appendix A we conclude with discussions which include some future direc-
tions. Appendix A.1 contains the evaluation of the planar basis on minimal kinematics while
Appendix A.2 contains the evaluation of the (3, 8) and (4, 8) amplitudes on planar kinematics
using their definition as arrays of Feynman diagrams.

1For the general sequence of multi-dimensional Catalan numbers, see [39, OEIS A060854].
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2 Main results

The (k, n) space of kinematic invariants is defined in terms of a completely symmetric rank k
tensor sa1,a2,...,ak satisfying a k-masslessness condition sb,b,a3,...,ak = 0 and k-momentum conser-
vation [7]

n∑
a2,a3,...,ak=1

sa1a2···ak = 0 ∀a1. (2.1)

Given an ordering, say I = (1, 2, . . . , n), the minimal kinematics sets to zero all kinematic
invariants except for 2(n− 1) of them which take values

s1,2,...,k = x1 − xk, s2,3,...,k+1 = x2 − xk+1, . . . , sn−1,1,...,k−1 = xn−1 − xk−1,

s1,2,...,k−1,n = xk − xn−1, s2,3,...,k,n = xk+1 − x1, . . . , sn−1,1,...,k−2,n = xk−1 − xn−2. (2.2)

The ellipses represent terms obtained by applying a cyclic transformation on the labels in the
set {1, 2, . . . , n − 1}. In other words, this kinematics is cyclic with respect to the first n − 1
labels and hence label n plays a special role.

This kinematics is a generalization of the k = 2 version introduced by the second author
in [19],2 where continuous (respectively discrete) Laplace transforms were used to compute the
simplified expression for m(2)(In, In) when α′ → 0 (respectively, α′ > 0).

As an illustration of the definition, let us write the k = 2 version more explicitly,

s1,2 = x1 − x2, s2,3 = x2 − x3, . . . , sn−2,n−1 = xn−2 − xn−1, sn−1,1 = xn−1 − x1,

s1,n = x2 − xn−1, s2,n = x3 − x1, . . . , sn−2,n = xn−1 − xn−3, sn−1,n = x1 − xn−2.

The reason this is called minimal kinematics is that for any k and n the scattering equations,
which are the conditions for finding the critical points of the potential function

Sk :=
∑

1≤a1<a2<···<ak≤n

sa1a2...ak log |a1, a2, . . . , ak|,

possess a single solution on the minimal kinematics as argued in Section 4. Sk serves as a Morse
function on the configuration space of n points in CPk−1. Here we use the standard nota-
tion |a1, a2, . . . , ak| for the determinant of the matrix made from the homogeneous coordinates
of points {a1, a2, . . . , ak}.

In general it is not yet known how many solutions the scattering equations possess. Some
known facts are the following: For k = 2 there are (n− 3)! solutions [9] while for (k, n) = (3, 6),
(3, 7), (3, 8) there are 26, 1 272 and 188 112 solutions respectively [7, 13, 14].

The minimal kinematics is reminiscent of the dual coordinate space used for the definition
of momentum twistors [29] (for a review see Section 5 of [22]). Here the dual coordinate space is
one-dimensional with points x1, x2, . . . , xn−1 in it. It is convenient to think of this space as a CP1

and to introduce an extra point denoted xn. The inhomogenous coordinates can be arranged in
a 2× n matrix(

1 1 · · · 1 0
x1 x2 · · · xn−1 1

)
.

Note that the auxiliary nth point has been located at infinity.

2In [19], particle n was special because it was made massive while the rest were kept massless.
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On the minimal kinematics the single solution is given in terms of a Veronese map from
the auxiliary one-dimensional dual kinematic space onto the configuration space of n points
on CPk−1. More explicitly, in a convenient gauge fixing, the solution is then given by

M (k)
n :=


1 1 · · · 1 1 0
x1 x2 · · · xn−2 xn−1 0

x21 x22 · · · x2n−2 x2n−1 0
...

...
. . .

...
...

...

xk−1
1 xk−1

2 · · · xk−1
n−2 xk−1

n−1 1

. (2.3)

In order to express the result of the explicit computation of the CEGM biadjoint amplitude
for any k and n on the minimal kinematics it is convenient to introduce some notation.

A circulant graph, C
(l1,l2,...,lr)
m , is a graph on m labelled vertices {1, 2, . . . ,m} with edges

connecting the ith and jth vertices if and only if |i− j| ∈ {l1, l2, . . . , lr,m− l1,m− l2, . . . ,m− lr}.

1

2

3

4 5

6

7

8

9

Figure 1. Circulant graph C
(1,2)
9 : This is the graph on 9 vertices with an edge joining the ith and jth

vertices whenever |i− j| ∈ {1, 2, 9− 1, 9− 2} = {1, 2, 8, 7}.

The evaluation of a circulant graph C
(l1,l2,...,lr)
m on the minimal kinematics is simply a poly-

nomial in xi’s given by∥∥C(l1,l2,...,lr)
m

∥∥ :=
∏

e∈E(C)

(xea − xeb).

The product is over the edge set of C
(l1,l2,...,lr)
m while ea and eb denote the endpoint vertices of

the edge e. Since ea, eb ∈ {1, 2, . . . ,m} we take ea < eb.
The main result of this work is an explicit formula for the CEGM biadjoint amplitude eva-

luated on the minimal kinematics:

m(k)
n (I, I) =

(
R

(k)
n

)2∥∥C(1,2,...,k−1)
n−1

∥∥ (2.4)

with

R(k)
n :=

|n− (k − 1), . . . , n− 1, 1||n− (k − 2), . . . , 1, 2| · · · |n− 1, 1, 2, . . . , k − 1|
|n− (k − 1), . . . , n− 1, n||n− (k − 2), . . . , n, 1| · · · |n, 1, . . . , k − 1|

(2.5)

and |a1, a2, . . . , ak| the k × k minor of M
(k)
n , defined in (2.3), formed by the athi columns.
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The reader familiar with gluon scattering amplitudes can recognize R
(k)
n as a generalization

of an inverse soft factor. More explicitly,

R(2)
n =

|n− 1, 1|
|n− 1, n||n, 1|

.

As an illustration of (2.4), the k = 3 case evaluates to

m(3)
n (I, I) =

(xn−1 − x2)
2(xn−1 − x1)

2(x1 − xn−2)
2∏n−1

i=1 ((xi − xi+1)(xi − xi+2))
,

where the labels in the denominator are defined cyclically in {1, 2, . . . , n− 1}.

3 CEGM biadjoint amplitudes

In this section we review the definition of the CEGM biadjoint amplitude and all the ingredients
that have to be computed in order to evaluate the amplitude on the minimal kinematics.

The first ingredient is the CPk−1 scattering equations, i.e., the conditions for finding the
critical points of Sk

∂Sk

∂za,i
= 0 ∀ (a, i),

where za,i represent inhomogeneous coordinates of the ath point on CPk−1. More explicitly, the
coordinates can be arranged in a matrix

1 1 · · · 1 1 0
z1,1 z2,1 · · · zn−2,1 zn−1,1 0
z1,2 z2,2 · · · zn−2,2 zn−1,2 0
...

...
. . .

...
...

...
z1,k−1 z2,k−1 · · · zn−2,k−1 zn−1,k−1 1

.

Without loss of generality, here we have already used part of the redundancies inherent to this
coordinates to fix that of the nth point to infinity in a particular direction.

In Section 4, we show that on the minimal kinematics these equations possess a single solution
given by the Veronese map Mk

n introduced in (2.3).
The second ingredient is what is known as the reduced determinant of the Jacobian matrix

(for details, see for instance [12, Appendix A]). The Jacobian matrix is the Hessian of the
potential Sk. This matrix has corank k2−1 and it is usually denoted by Φ. Its components, ΦIJ ,
have composed indices I = (a, i) and J = (b, j) so that

ΦIJ :=
∂2Sk

∂za,i∂zb,j
.

The reduced determinant is defined by selecting a submatrix obtained from Φ by deleting k2−1
rows and k2−1 columns, computing its determinant and compensating with a factor which makes
the object independent of the choices made. Let us denote the submatrix obtained by deleting all
rows that contain labels {a1, a2, . . . , ak+1}, and rows containing labels {b1, b2, . . . , bk+1} in their
indices by Φ

a1,a2,...,ak+1

b1,b2,...,bk+1
. Then the reduced determinant is

det′Φ(k) :=
detΦ

a1,a2,...,ak+1

b1,b2,...,bk+1

Va1,a2,...,ak+1
Vb1,b2,...,bk+1

,
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where the Va1,a2,...,ak+1
is a generalization of a Vandermonde determinant defined by

Va1,a2,...,ak+1
:=

k+1∏
i=1

|a1, a2, . . . , âi, . . . , ak+1|,

where âi indices that the column ai has been omitted.
In Section 5, we argue that the reduced determinant has a remarkably simple form when

evaluated on the minimal kinematics and its corresponding solution to the scattering equations.
The final result is simply given by

det′Φ(k) :=
1∥∥C(1)

n−1

∥∥2k−3∥∥C(2)
n−1

∥∥2k−5 · · ·
∥∥C(k−1)

n−1

∥∥ .
The last ingredient in the computation of the CEGM biadjoint amplitude is the so-called

k-Parke–Taylor factor,

PT(1, 2, . . . , n) :=
1

|1, 2, . . . , k||2, 3, . . . , k + 1| · · · |n, 1, . . . , k − 1|
.

The simplest way to evaluate this object on the solution M
(k)
n is to recall that the solution is

completely symmetric in labels {1, 2, . . . , n − 1}. Therefore PT(1, 2, . . . , n − 1) is clearly cyclic
in xi and therefore evaluates in terms of circulant graphs as

PT(1, 2, . . . , n− 1) =
1∥∥C(1)

n−1

∥∥k−1∥∥C(2)
n−1

∥∥k−2 · · ·
∥∥C(k−1)

n−1

∥∥ .
The ratio PT(1, 2, . . . , n− 1)/PT(1, 2, . . . , n) is precisely the object R

(k)
n defined in (2.5).

Finally, the CHY formulation of the CEGM biadjoint amplitude is constructed as follows

m(k)
n (I, I) =

Nn,k∑
m=1

1

det′Φ(k)
(PT(1, 2, . . . , n− 1, n))2

∣∣∣∣
za=z

(m)
a

,

where the sum runs over all Nn,k solutions to the scattering equations denoted z
(m)
a .

Substituting the ingredients evaluated on the minimal kinematics and its unique solution to
the scattering equations one easily finds the desired result (2.4)

m(k)
n (I, I) =

(
R

(k)
n

)2∥∥C1,2,...,k−1
n−1

∥∥ . (3.1)

Note the remarkable simplicity of this result given the fact that it has to agree with the sum
over a large number of (generalized) Feynman diagrams. As shown in Section 6 for the cases avai-
lable in the literature, each (generalized) Feynman diagram coming from facets of Trop+G(k, n)
has a non-zero contribution to the amplitude on the minimal kinematics. Moreover, individual
diagrams possess a variety of poles not present in the (3.1) as well as poles of various orders
which all cancel in the final answer to lead to only simple poles.

4 Uniqueness of the solution

The scattering equations are a set of polynomial equations in (k − 1)(n − (k + 1)) variables.

In general each equation obtained by differentiating S(k)
n with respect to za,i depends on all n

points on CPk−1. The key simplification that occurs for the minimal kinematics is that the range
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of dependence is vastly limited to neighbors of a. The reason is that the only non-vanishing
invariants that involve a are

sa−(k−1),a−(k−2),...,a, sa−(k−2),a−(k−3),...,a+1, . . . , sa,a+1,...,a+(k−1),

sa−(k−2),a−(k−3),...,a,n, sa−(k−3),a−(k−4),...,a+1,n, . . . , sa,a+1,...,a−(k−2),n.

As illustration consider k = 3, a = 3 and n ≥ 6,

∂S(3)
n

∂za,i
=

s123|12|i
|123|

− s234|24|i
|234|

+
s345|45|i
|345|

− s23n|2n|i
|23n|

+
s34n|4n|i
|34n|

. (4.1)

Here |ab|i is the determinant of the 2 × 2 matrix obtained by eliminating the ith row from the
3 × 2 matrix whose columns are the coordinates of points a and b. The minus signs in (4.1)
compensate for the fact that we have chosen to write every minor in the cyclic order induced by
the kinematics.

Going back to the general case, the key to easily solving the scattering equations on the
minimal kinematics is a wise choice of gauge fixing. Using GL(k) and torus action redundancies
in Xk,n one can set

1 1 · · · 1 1 · · · 1 1 0
x1 x2 · · · xk zk+1,1 · · · zn−2,1 zn−1,1 0
x21 x22 · · · x2k zk+1,2 · · · zn−2,2 zn−1,2 0
...

...
. . .

...
...

. . .
...

...
...

xk−1
1 xk−1

2 · · · xk−1
k zk+1,k−1 · · · zn−2,k−1 zn−1,k−1 1

. (4.2)

This is nothing but choosing a gauge in which the first k columns and the last are the image of
the Veronese map from the auxiliary kinematic space to X(k, n). The task at hand is to show
that the scattering equations localize the rest of the za,i variables to their corresponding value
under the Veronese map.

The key idea is that in this gauge the scattering equations obtained by differentiating with re-
spect to the points that are gauge fixed (after differentiation) can be turned into linear equations
for some of the variables.

Let us illustrate the procedure in detail using k = 5. The gauge fixed columns needed
for the computation are {1, 2, 3, 4, 5}. Differentiating the potential function with respect to z2,i
and i ∈ {1, 2, 3, 4} gives equations that can be used to solve for zn−1,1, z6,1, z7,1, z8,1. Of parti-
cular interest is

z6,1 =
z6,4 − s

(1)
3456z6,3 + s

(2)
3456z6,2 + s

(4)
3456

s
(3)
3456

. (4.3)

Here s
(m)
3456 is the mth elementary symmetric polynomial of x3, x4, x5, x6.

Repeating the same computation for the equations obtained by differentiating with respect
to {z3,1, z3,2, z3,3, z3,4}, {z4,1, z4,2, z4,3, z4,4} and {z5,1, z5,2, z5,3, z5,4} and solving for z6,1 one finds

z6,1 =
z6,4 − s

(1)
2456z6,3 + s

(2)
2456z6,2 + s

(4)
2456

s
(3)
2456

,

z6,1 =
z6,4 − s

(1)
2356z6,3 + s

(2)
2356z6,2 + s

(4)
2356

s
(3)
2356

,

z6,1 =
z6,4 − s

(1)
2346z6,3 + s

(2)
2346z6,2 + s

(4)
2346

s
(3)
2346

, (4.4)
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respectively. Very nicely, these are four equations for the four coordinates of point 6. The solu-
tion to these equations is fairly easy to find by realizing that the first equation (4.3) has the
same structure as

(z − x3)(z − x4)(z − x5)(z − x6) = z4 − s
(1)
3456z

3 + s
(2)
3456z

2 − s
(3)
3456z + s

(4)
3456

which clearly vanishes when z = x6. Likewise the other three equations in (4.4) have the
structure of (z − x2)(z − x4)(z − x5)(z − x6), (z − x2)(z − x3)(z − x5)(z − x6) and (z − x2) ×
(z − x3)(z − x4)(z − x6) respectively. The only common solution is z = x6 and therefore

z6,1 = x6, z6,2 = x26, z6,3 = x36, and z6,4 = x46.

Having proven that z6,i = xi6 the whole argument can be repeated starting with the equations
obtained by differentiating with respect to {2, 3, 4, 5, 6} to find that z7,i = xi7. The process ends
when proving that zn−1,i = xin−1. This fills up the matrix (4.2) to the complete Veronese map
as desired.

5 Evaluation of the reduced determinant

The purpose of this section is to argue that on the minimal kinematics the reduced determinant

det′Φ(k) :=
detΦ

a1,a2,...,ak+1

b1,b2,...,bk+1

Va1,a2,...,ak+1
Vb1,b2,...,bk+1

,

evaluates to

det′Φ(k) =
1∥∥C(1)

n−1

∥∥2k−3∥∥C(2)
n−1

∥∥2k−5 · · ·
∥∥C(k−1)

n−1

∥∥ . (5.1)

The first observation is that the reduced determinant is permutation invariant under a re-
placement of labels that acts on both the kinematic invariants and the coordinates of points
on CPk−1. This means that it inherits the symmetries of the minimal kinematics and that of
the solutions on which it is evaluated. The minimal kinematics is cyclic in {x1, x2, . . . , xn−1}
and so is the solution. Therefore the reduced determinant must also be cyclic. Moreover, the
kinematics is also invariant under translations of xa by a constant. This means that the reduced

determinant must be a function of only evaluations of circulant graph, i.e.,
∥∥C(m)

n−1

∥∥ with various
values of m.

In order to determine the function we can consider the dependence on a single variable, say x1.
The task at hand it to determine a rational function in x1. Let us illustrate the procedure by
studying the k = 2 case.

Our aim is to show that det′Φ(2) = 1/
∥∥C(1)

n−1

∥∥. Using the freedom to eliminate three rows
and columns we choose them to be n, 1, 2. This gives

det′Φ(2) =
detΦn,1,2

n,1,2

|n, 1, 2|2
.

Let us start with poles. Clearly the only poles can be of the form x1 − x2 and x1 − xn−1.
The only entry of detΦn,1,2

n,1,2 evaluated on the minimal kinematics and its corresponding solution
that depends on x1 is the one in the last diagonal position, i.e. the one obtained by differentiating
the potential function twice with respect to zn−1,

∂2S(2)
n

∂z2n−1

=
x1 − xn−1

(x1 − xn−1)(xn−1 − xn−2)
.
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This shows that detΦn,1,2
n,1,2 has a simple pole of the form 1/(x1 − xn−1). It also shows that it

must have a simple zero in x1 − x2 since |n, 1, 2|2 = (x1 − x2)
2 and the invariance under the

change of choices made for removing columns and rows. Combining these results one has that
det′Φ(2)’s dependence on x1 is simply 1/(xn−1−x1)(x1−x2). Using cyclicity in n− 1 labels one

concludes that det′Φ(2) = 1/
∥∥C(1)

n−1

∥∥. Similar analysis can be carried out for k > 2.
We have explicitly evaluated the reduced determinant for all (k, n) up to and including (5, 10)

finding the expected result (5.1).

6 Comparison to Trop+G(k, n)

CEGM biadjoint amplitudes can also be computed as a sum over generalized Feynman diagrams.
These are planar arrays of Feynman diagrams which satisfy a certain compatibility condition
which makes them parameterize rays in what is known as the positive Dressian Dr+(k, n).
As announced in [30] and proved independently in [4, 36], the positive Dressian coincides with
the positive Grassmannian Trop+G(k, n), introduced by Speyer and Williams [35]. The CEGM
biadjoint amplitude can be thought of the Laplace transform of Trop+G(k, n). The space of
kinematic invariants is the Laplace dual space to Trop+G(k, n). Exploring Trop+G(k, n) for
large values of k and n is notoriously difficult, this is one of the motivations for introducing the
minimal kinematics. Our all k and n result gives a peek into the structure of all positive tropical
Grassmannians.

We leave the study of the implications of our results about the structure of Trop+G(k, n) for
future work and instead concentrate here on the known cases. The very compact formulas pro-
duced from the evaluation of the CHY integral formulation imply what seems to be miraculous
resummations of (generalized) Feynman diagrams.

6.1 Resumming trees: k = 2

Let us start with the k = 2 case. Here Trop+G(2, n) coincides with the space of all planar
cubic Feynman diagrams.3 Our goal is to prove that the sum over all planar Feynman diagrams
evaluated on the minimal kinematics is exactly given by

m(2):CHY
n (I, I) =

x1 − xn−1

(x1 − x2)(x2 − x3) · · · (xn−2 − xn−1)
.

This formula was derived in [19] by triangulating the type An−1 root cone4 and applying the
homomorphism property of the continuous Laplace transform valuation on the simplicial cones
in the triangulation.

Here the superscript “CHY” is introduced to denote the formula obtained by evaluating the

CHY integral. The idea is to prove that this agrees with m
(2):tree
n (I, I), where the superscript

“tree” is introduced to denote the sum over all planar trees.
The proof is very simple. Let us start with a computation of all planar poles on the minimal

kinematics. Using momentum conservation all kinematic invariants can be expressed without
using label n. Planar kinematic invariants are then given by

t[r]a := (ka + ka+1 + · · ·+ ka+r)
2 = xa − xa+r.

The proof proceeds by induction and much in the same way as the BCFW recursion relations
work for MHV amplitudes of gluons. This fact actually strengthens the similarities with the
Parke–Taylor formula.

3Of course, cubic Feynman diagrams can degenerate to produce higher degree vertices. This is the way one
diagram can connect to another.

4Also known as the dual associahedron.
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Let us consider the amplitude as a rational function of xa with a /∈ {n− 1, 1}, while holding

the rest generic and fixed. Let us choose a = 2 and define f(x2) := m
(2):tree
n (I, I).

Clearly, every planar Feynman diagram vanishes as x2 → ∞ because there is at least one
propagator of the form 1/(x2−xa). This is the reason for the restriction a /∈ {n−1, 1}. Since the
planar poles are distinct from each other, f(x2) can only have simple poles. Poles are naturally
separated into multi-particle and collinear.

Let us start by showing that f(x2) does not possess any multi-particle poles. Near the region
where x2 − xa → 0 with a /∈ {1, 3}, only Feynman diagrams with an edge separating particles
2, 3, . . . , a from the rest can contribute to the residue at x2 = xa. The sum over such diagrams
precisely turns into the product

m
(2):tree
L (2, 3, . . . , a, I)m

(2):tree
R (I, a+ 1, a+ 2, . . . , 1).

The label I refers to the internal on-shell particle that appears when x2 = xa. In fact, the
minimal kinematics restricted to the set 2, 3, . . . , a can be completed into an a-particle physical
kinematics by introducing the I particle

0 x2 − x3 0 · · · 0 x3 − x2
x2 − x3 0 x3 − x4 · · · 0 x4 − x2

0 x3 − x4 0 · · · 0 x5 − x3
...

...
. . .

...
...

0 0 0 · · · xa−1 − x2 x2 − xa−2

0 0 0 · · · 0 x2 − xa−1

x3 − x2 x4 − x2 · · · · · · x2 − xa−1 0


.

This kinematics is nothing but the minimal kinematics for particles 2, 3, . . . , a, I on the codi-
mension one subspace given by x2 = xa. Using the induction hypothesis for the points on the

left amplitude, m
(2):tree
L (2, 3, . . . , a, I) = m

(2):CHY
L (2, 3, . . . , a, I), one finds that the amplitude

vanishes since

m
(2):tree
L (2, 3, . . . , a, I) =

x2 − xa
(x2 − x3)(x3 − x4) · · · (xa−1 − xa)

→ 0.

This means that the residue of f(x2) on all multiparticle singularities is zero. Precisely as it is
the case for MHV amplitudes of gluons.

Finally, we consider the collinear poles which are given by regions where x2 − x1 → 0
or x2 − x3 → 0. In each case there are exactly two Feynman diagrams that contribute and
adding them up gives rise to the desired residue.

6.2 Resumming generalized Feynman diagrams

The Laplace transform of Trop+G(k, n) can be computed using the space of planar generalized
Feynman diagrams. These are nothing but arrays of metric Feynman diagrams satisfying certain
compatibility conditions on their metrics. The arrays viewpoint introduced by Guevara, Umbert,
Zhang and the first author allows for bootstrap approaches which have provided explicit answers
for (k, n) up to (4, 9).

Using these results we have computed and added all arrays of Feynman diagrams in the cases
shown in the table on minimal kinematics and have found perfect agreement with the CHY
evaluations. This is a strong consistency check on the CGUZ results.



Minimal Kinematics: An All k and n Peek into Trop+G(k, n) 11

(k, n) ♯ of Feynman diagrams

(3, 6) 48

(3, 7) 693

(3, 8) 13 612

(4, 8) 90 608

Some comments are in order: first, we find that all diagrams give a non-zero contribution
just as they did for k = 2. This means that the CHY computation performs a surprisingly
efficient resummation. The second is that while for k = 2 all poles in the amplitude are of the
form xi − xj , the same is not true for k > 2. This means that from the generalized Feynman
diagram perspective it is not evident that if x1, x2, . . . , xn−1 are kept generic the amplitude
would not diverge.

We leave the important problem of deriving information regarding the structure of the full
Trop+G(k, n) for future work.

7 Induced kinematics

Given any set of kinematic invariants for k1 and n one can canonically induce kinematics for k2
and n with k2 < k1 by summing over indices. More explicitly, if sa1,a2,...,ak1 satisfies momentum
conservation for (k1, n) then

sa1,a2,...,ak2 :=

n∑
ak2+1,ak2+2,...,ak1=1

sa1,a2,...,ak2 ,ak2+1,...,ak1

satisfies momentum conservation for (k2, n).

Using the minimal kinematics for k1 and n induces different levels of minimal kinematics
in lower k’s. We say that k1 = k kinematics induces next-to-minimal kinematics (NMK) in
k2 = k−1. More generally, k1 = k induces nextm-to-minimal kinematics (NmMK) in k2 = k−m.

There are two basic properties which make this an interesting generalization. The first is that
the number of solutions to the scattering equations increases the farther we move from minimal
kinematics, i.e., the larger the value of m. The second property is that for any NmMK one can
show that the Veronese embedding solution of the minimal kinematics remains a solution of the
new system of equations.

We leave the study of the scattering equations on NmMK and their solutions for future work
and here we only prove the second property. The proof is very simple and in order to avoid the
cluttering of notation we illustrate it using k = 4 minimal kinematics and the NmMK it induces.

Let us start with the equations obtained by differentiating with respect to za,3

∂S(4)
n

∂za,3
=

n∑
b,c,d ̸=a

sabcd|bcd|3
|abcd|

.

Evaluating on the Veronese solution one finds

∂S(4)
n

∂za,3
=

n∑
b,c,d ̸=a

sabcd
xabxacxad

= 0. (7.1)

Here we are assuming the k = 4 minimal kinematics is being used. This is why the right hand
side is zero.
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Next consider the equations obtained by differentiating with respect to za,2 again on the
Veronese solution

∂S(4)
n

∂za,2
=

n∑
b,c,d ̸=a

sabcd(xb + xc + xd)

xabxacxad
. (7.2)

The numerator can be written as xb+xc+xd = −xab−xac−xad+3xa. The term containing 3xa
is proportional to (7.1) and hence can be dropped. The other terms are all identical due to the
symmetry under the exchange of labels b, c, d and therefore

∂S(4)
n

∂za,2
=

n∑
b,c ̸=a

(∑n
d=1 sabcd

)
xabxac

= 0.

This is nothing but the k = 3 scattering equations for NMK evaluated on the Veronese solutions.

Finally, consider the equations obtained by differentiating with respect to za,1 again on the
Veronese solution

∂S(4)
n

∂za,1
=

n∑
b,c,d ̸=a

sabcd(xbxc + xbxd + xcxd)

xabxacxad
.

Using the same arguments as above including (7.1) and (7.2) leads to the k = 2 scattering
equations on N2MK, i.e.,

∂S(4)
n

∂za,1
=

n∑
b ̸=a

(∑n
c,d=1 sabcd

)
xab

= 0.

Let us end this section with a few comments on what NmMK looks like for k = 2. Minimal
kinematics for k = 2 can be nicely expressed in matrix form. Here we choose to omit the nth

row and column as their entries are completely determined by momentum conservation:

K(2):MK
n =



0 x1 − x2 0 · · · 0 xn−1 − x1
x1 − x2 0 x2 − x3 · · · 0 0

0 x2 − x3 0 · · · 0 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 xn−2 − xn−1

xn−1 − x1 0 0 · · · xn−2 − xn−1 0


.

Note that MK fills up the first level of entries next to the diagonal. It is easy to show that
NMK corresponds to simply filling up the first two levels next to the diagonal. More explicitly,
the only non-zero entries in the matrix of kinematic invariants for NMK are (with san determined
by momentum conservation)5

s12 = x1 − x2, s23 = x2 − x3, . . . , sn−1,1 = xn−1 − x1,

s13 = x1 − x3, s24 = x2 − x4, . . . , sn−1,2 = xn−1 − x2.

Likewise for NmMK more levels are filled the more m is increased.

5That is, each row and each column should sum to zero.
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8 Planar-basis kinematics and multidimensional
Catalan numbers

In [11], Cachazo, He and Yuan made the observation that the set of all possible planar kine-
matics invariants for k = 2 forms a basis of the space of kinematics invariants, i.e., the set has(
n
2

)
− n elements that can be independently chosen.6 CHY used this observation to compute

the biadjoint amplitude m
(2)
n (I, I) on the kinematic point where all planar poles are set to unity.

The motivation was two-fold. First, the computation of the amplitude as a sum over Feynman
diagrams trivializes since each Feynman diagram, given by a product of planar poles, evaluates

to one, and therefore m
(2)
n (I, I) is nothing but counting the number of planar cubic trees which

is known to be Cn−2, the (n − 2)th Catalan number. The second reason is that when all pla-
nar poles are set to one, all basic Mandelstam invariants, sab, vanish except for 2n of them.
Note that this number is only two larger than the minimal kinematics. It turns out that the
non-vanishing invariants take values

s12 = s23 = · · · = sn−1,n = sn,1 = 1,

s13 = s24 = · · · = sn−1,1 = sn,2 = −1. (8.1)

In fact, it is easy to see that any planar kinematic invariant evaluates to one, i.e.,

(k1 + k2 + · · ·+ km)2 = s12 + s23 + · · ·+ sm−1,m + s13 + s24 + · · ·+ sm−2,m = 1.

The scattering equations on this kinematics also simplify (not as dramatically as on the
minimal kinematics). CHY showed that the number of solutions is

⌈
n−1
2

⌉
and the equations

can be mapped to a Y-system, which is a set of polynomial equations, whose solution is known.
The evaluation of the CHY formula on these solutions leads to the expected answer. At the
time this was taken as evidence for the k = 2 CHY formula which was later proven by Dolan
and Goddard in [15].

Motivated by the k = 2 case, in this section we discuss the generalization to higher k. For
general (k, n) the space of kinematic invariants has dimension

(
n
k

)
− n.

When k > 2 is it not true that all poles appearing in the biadjoint amplitude are linearly
independent as found by CEGM where 16 planar poles were found in (k, n) = (3, 6)

s123, s234, s345, s456, s561, s612, (8.2)

t1234, t2345, t3456, t4561, t5612, t6123, (8.3)

R123456, R234561, R̃123456, R̃234561, (8.4)

and two linear relations along them,

t1234 + t3456 + t5612 = R123456 + R̃123456,

t2345 + t4561 + t6123 = R234561 + R̃234561. (8.5)

These poles are dual to rays in TropG(3, 6) and with the corresponding identifications the
relations coincide with relations found by Speyer and Sturmfels in [34].

Clearly, it is impossible to set all planar kinematics invariants to unity due to (8.5). The idea
is then to define a basis of planar kinematics invariants. This means that we must selected 14 out
of the 16 possible ones. One can check that setting all s and t invariants to one and R, R̃ to 3/2

6This is provided the dimension of space time is large enough. If the space-time dimension is less than the
number of particles there are linear dependencies coming from the vanishing of Gram determinants which reduce
the dimension of the space from

(
n
2

)
− n.



14 F. Cachazo and N. Early

leads to a generic point in kinematic space and therefore the scattering equations possess 26
solutions.

Luckily, in [21] the second author introduced a planar basis of kinematic invariants with
remarkable properties which come from its definition using arrangements of blades on the hyper-
simplex.

Here we show yet another remarkable property of Early’s planar basis: setting all elements
in the basis to unity gives rise to kinematics which naturally generalizes the CHY kinematics
for k = 2 and leads to amplitudes with a beautiful combinatorial structure.

Early’s planar basis for (3, 6) minimally breaks the Z2 automorphism of the planar kinematics
invariants, induced by that of G(3, 6) onto itself, by selecting all elements in (8.2) and (8.3) but
only the two R’s from (8.4). Setting these 14 elements to unity sets to zero all sabd kinematics
except for 12 of them given by

s123 = s234 = · · · = s561 = s612 = 1,

s613 = s124 = · · · = s451 = s562 = −1.

This is clearly a generalization of (8.1) to k = 3.
Let us review the construction of Early’s planar basis from [20, 21]. Define linear functions

L1, . . . , Ln on Rn by

Lj(x) = xj+1 + 2xj+2 + · · · (n− 1)xj−1,

where the indices are cyclic modulo n.
If J = {j1, . . . , jk} is a subset of {1, . . . , n}, define

ηJ(s) = − 1

n

∑
I

sI min
{
L1(eI − eJ), . . . , Ln(eI − eJ)

}
,

where we abbreviate eJ = ej1 + · · ·+ ejk .
In [21, Corollary 3.9], an invertible linear transformation was used to prove that the set{

ηJ(s) : J ⊂ {1, . . . , n}, |J | = k, J is not a cyclic interval {j, j + 1, . . . , j + k − 1}
}

(8.6)

is a basis of linear functions on the kinematic space. Moreover, if J is a single cyclic interval it
turns out that ηJ = 0, owing to equation (2.1). The basis in equation (8.6) is called the planar
basis.

Definition 8.1. Planar basis kinematics is the point in the kinematic space where ηJ = 1 for
all planar basis elements.

One can derive using the inversion formula from [21] the direct expression in terms of Man-
delstam invariants si1...ik . The point is given by

s12...k = s23...k+1 = · · · = sn1...k−1 = 1,

sn1...k−2,k = s12...k−1,k+1 = · · · = sn−1,n...k−3,k−1 = −1, (8.7)

where all other sJ are set to zero.
We have been able to compute all solutions to the scattering equations for (3, 6), (3, 7)

and (3, 8) and evaluate the corresponding amplitude to reproduce the expected results. The first
two cases are simple exercises while the third one is more challenging. We provide the explicit
solutions for (3, 8) in the subsection below.

Before presenting the example, let us summarize all results we have been able to obtain for the
CEGM biadjoint amplitudes either by evaluating the CHY integral or by explicitly evaluating
the contribution from each generalized Feynman diagram.
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k \ n 4 5 6 7 8

2 2 5 14 42 132

3 5 42 462 6 006

4 14 462 24 024

5 42 6 006

6 132

The entry Ek,n is the numerical value of the generalized biadjoint scalar amplitude m(k)(In, In),
evaluated on the planar basis kinematics from equations (8.7). Here In = (12 · · ·n) is the stan-
dard cyclic order, as usual. In particular, the numbers in the k = 2 row are the Catalan numbers
as explained above since they count the number of planar binary trees. Much more interesting is
the fact that the remaining rows coincide with the first few values of the k-dimensional Catalan
numbers,7 [39, OEIS A060854]. Since the Catalan numbers had an important meaning for k = 2
we expect that the same will be true for k > 2. This is why we include data from the evaluation
of the (3, 8) and (4, 8) planar arrays of Feynman diagrams in the appendix.

8.1 Example: CHY evaluation of (3, 8)

Consider the convenient gauge fixing1 0 0 1 z5,1 z6,1 z7,1 z8,1

0 1 0 −1 z5,2 z6,2 z7,2 z8,2

0 0 1 1 1 1 1 1

. (8.8)

There are six solutions that can be found in this patch and one more solution at infinity. Let us
present the six explicit solutions. In order to present them in compact form we only show the
values of the 2 × 4 matrix of variables in (8.8). As it turns out the solutions come in pairs as
they associated to three different quadratic number fields. We arrange the solutions in such
pairs and label them (1, 2), (3, 4), (5, 6) indicated in the subscript of the matrices(

z5,1 z6,1 z7,1 z8,1
z5,2 z6,2 z7,2 z8,2

)
1,2

=

(
1± 1√

2
1±

√
2 2±

√
2 3± 2

√
2

∓
√
2 −1∓ 1√

2
−2 −1∓

√
2

)
,

(
z5,1 z6,1 z7,1 z8,1
z5,2 z6,2 z7,2 z8,2

)
3,4

=

(
2± i√

2
1± i

√
2 1

3(4± i
√
2) 3

∓1
3 i(

√
2∓ 4i) ∓1

6 i(
√
2∓ 4i) ±2

9 i(
√
2± 5i) ±1

3 i(
√
2± 5i)

)
,

(
z5,1 z6,1 z7,1 z8,1
z5,2 z6,2 z7,2 z8,2

)
5,6

=

(
1
2 ± i

2 1 1± i 1

0 −1
2 ± i

2 0 ±i

)
.

Computing the contribution of these six solutions to the amplitude is straightforward. Below
we show the contribution of each pair of solutions in the corresponding order,{

47321

8
,
725

8
, 0

}
.

Adding up the individual contributions leads to 24 023/4.
Finally, the solution not captured in this patch is given by1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1

. (8.9)

7Recall that the multi-dimensional Catalan number of type (k, n) counts (for example) the number of rectan-
gular standard Young tableaux of shape k × n.
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The contribution to the amplitude is simply 1/4. Note that the reason this is not in the patch
covered by the coordinates in (8.8) is that the minors |125| and |126| vanish.

Adding all seven contributions one finds that on the planar-basis kinematics

m
(3)
8 (I, I) = 6 006

as expected.

The attentive reader might have noticed that the structure of the seventh solution is that of
two identical 3 × 4 matrices. In other words, points arrange themselves in pairs on the plane.
The pairs are (1, 5), (2, 6), (3, 7) and (4, 8). This configuration would normally be considered
singular since some minors of (8.9) vanish. However, all such minors are non-planar with respect
to the canonical order.

8.2 Infinite class of solutions

It turns out that the last solution found in the (3, 8) case is the first example of an infinite class
of solutions. Every time n is not prime, the solutions obtained for one of the factors induce
solutions for n by a simple replica procedure.

In order to be more explicit assume a decomposition of n = p q with p > k. A solution
for (k, p) induces a solution of (k, n) by taking q copies of the corresponding k× p matrix, Mk,p,
to create the k × p q matrix

Mk,n =
(
Mk,p | Mk,p| · · · | Mk,p

)
. (8.10)

The reason this is true is that the planar-basis kinematics is cyclically invariant and the scattering
equations obtained by differentiating the potential function and substituting (8.10) are clearly
identical to those of (k, p) and therefore vanish since Mk,p is assumed to be a solution to those
equations.

9 Planar basis evaluated on the minimal kinematics

In this section we conjecture a formula for the evaluation of the planar basis on the minimal
kinematics. For motivation and details we refer to [20].

Call a subset J = {j1, . . . , jk} of {1, . . . , n} nonfrozen if it is not a cyclic interval {j, j +
1, . . . , j + k − 1}. Then [20, Corollary 26] gave the following construction. Suppose J has the
following decomposition into ℓ cyclic intervals of lengths λ1, . . . , λℓ:

J = [j1, j1 + λ1 − 1] ∪ [j2, j2 + λ2 − 1] ∪ · · · ∪ [jℓ, jℓ + λℓ − 1].

Let (C1, . . . , Cℓ) be the interlaced complement to the intervals I, so that we have the concate-
nation

(1, 2, . . . , n) = (C1, I1, C2, I2, . . . , Cℓ, Iℓ).

Define an ordered ℓ-tuple (Ss) =
(
(S1)s1 , . . . , (Sℓ)sℓ

)
, where (Sj , sj) =

(
Ij ∪ Cj , |Ij |

)
.

The kth hypersimplex ∆k,n is the convex hull of the set of points eJ := ej1 + · · · + ejk as J
runs over all subsets of {1, . . . , n}. Denote by[

(Sj)sj , (Sj+1)sj+1 , . . . , (Sj−1)sj−1

]
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the subset8 of ∆k,n cut out by the following system of inequalities:∑
i∈Sj

yi ≥ sj ,∑
i∈Sj∪Sj+1

yi ≥ sj + sj+1,

· · · · · · · · · · · · · · · · · · · · · · · ·∑
i∈Sj∪Sj+1∪···∪Sj−2

yi ≥ sj + sj+1 + · · ·+ sj−2.

In order to state our conjecture for the values of the planar basis elements ηJ on minimal
kinematics, we single out two elements inside the polytope

ΠJ :=
[
(Sj)sj , (Sj+1)sj+1, . . . , (Sj−2)sj−2

]
,

where the block containing the index n, in this case n ∈ Sj−1, has been eliminated.
Note that the elements Sj ∪ · · · ∪ Sj−2 inherit a linear order from the cyclic order (12 · · ·n)

by simply removing from (12 · · ·n) the elements in the cyclic interval Sj−1 and rotating the
cyclically minimal element to the front.

If the cyclically smallest element of Sj is i0, say, then let Ia be the interval of length k−(sj−1)
starting at i0, that is

Ia =
{
i0, i0 + 1, . . . , k − (sj−1)

}
.

Now let Ib = J \ Sj−1.
For instance, with n = 9 and k = 4, then for J = {2, 4, 7, 8} we have 3 cyclic intervals: 2,

and 4, and 7, 8. Here 9 ∈ {1, 2, 9}, so

ΠJ = [34156782].

Consequently Ia = {3, 4, 5} and Ib = {4, 7, 8}.
With this construction we are ready to state in Conjecture 9.1 the evaluation of a planar

basis element ηJ on the minimal kinematics.

Conjecture 9.1. For any (nonfrozen) k-element subset J of {1, . . . , n} we have

(ηJ)
∣∣
MK

=
∑
i∈Ia

xi −
∑
i∈Ib

xi.

Moreover, the complements Ia\Ib and Ib\Ia are non-crossing; in fact i < j for all pairs i ∈ Ia\Ib
and j ∈ Ib \ Ia. When J is frozen, we have of course ηJ

∣∣
MK

= 0.

We illustrate the conjecture in several cases, first for k = 2.
Consider the case (k, n) = (2, 6) with J = {2, 5}. According to the conjecture we ignore

the last block of [34511261] and set Π25 = [3451], which is a triangle. Then Ia = {3, 4} and
Ib = {4, 5}, and the conjecture gives

η25|MK = x3 − x5.

In parallel, one can check directly that

t345
∣∣
MK

= η25
∣∣
MK

= (s34 + s45 + s35)
∣∣
MK

= x3 − x5.

8These are in fact the equations of a Schubert matroid polytope.
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Now consider the case (k, n) = (3, 6) with J1 = {1, 4, 5} and J2 = {2, 4, 6}. According to the
conjecture,

t2345
∣∣
MK

= η145
∣∣
MK

= (x2 + x3)− (x4 + x5).

Finally, a more nontrivial example, for (k, n) = (4, 9). Let us check what Conjecture 9.1
predicts for the planar pole η1368. Here we set

ΠJ = [2314561781],

and by explicit evaluation on the minimal kinematics equation (2.2) one can check that

η1368
∣∣
MK

= x2 + x4 − x6 − x8.

10 Discussions

In this work we studied several kinds of special subspaces of the space of (k, n) kinematic invari-
ants with the purpose of gaining more insight into the structure of the CEGM biadjoint ampli-
tudes as evaluated using their CHY formulation or their Trop+G(k, n) formulation. With the
techniques now available in the literature, both formulations are notoriously difficult to compute
even for modest values of k and n. The minimal kinematics offers us a n−1 dimensional window
into all values of k and n. While the CHY formulation is relatively easy to evaluate, we do not
have a similarly simple way to evaluate the arrays of Feynman diagrams that are present in
the Trop+G(k, n) formulation. The reason is that even on the minimal kinematics, the arrays
of Feynman diagrams have a rich structure. This is an exciting opportunity to gain some insight
into Trop+G(k, n).

We used the general algorithms presented in the CGUZ work to evaluate the known arrays
and found perfect agreement. The simplicity of the answer hints to the fact that there must be
a way of understanding how the full Trop+G(k, n) collapses to a much simpler object.

The planar-basis kinematics is actually a single point. This very special point first explored
in k = 2 by CHY has valuable information about Feynman diagrams. The biadjoint amplitude
evaluates to the number of planar binary trees. We expect that the higher k generalization also
has important information about generalized planar Feynman diagrams. The fact that for k = 2
one obtains the two dimensional Catalan numbers while for k > 2 our computations suggest
that the amplitudes evaluate to the k-dimensional Catalan numbers9

Ck(n) =
1!2! · · · (k − 1)!(k(n− k))!

(n− k)!(n− k + 1)! · · · (n− 1)!
,

which are known to count (for instance) certain restricted walks in a k-dimensional simplex,
is a strong indication that they must also have a combinatorial meaning in our context. Let
us simply summarize some basic facts for future work which were beyond the scope of this
paper. Via an explicit bijection with rectangular standard Young tableaux, the k-dimensional
Catalan numbers are known to enumerate the elements of the fiber over a generic point in
the image of the so-called Wronski map from the Grassmannian into a projective space of the
same dimension [23]; in turn the Wronski map plays a deep role in quantum integrable systems
and representation theory, for instance [31, 32, 37]. These numbers are also related to the h-
polynomial of the Grassmannian [6], and they count vertices of simple polytopes of dimensions
(k − 1)(n− k − 1) that generalize the usual k = 2 (dual) associahedron [33].

The CEGM biadjoint amplitudes, higher k scattering equations, and Trop+G(k, n) are also
deeply connected to recent studies of cluster algebras and their applications to N = 4 super

9See for instance [38].
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Yang–Mills [1, 2, 3, 16, 18, 26, 27]. It would be very interesting to explore possible applications
of our all k and n results in that context. In particular, the all n and k = 4 answer might have
information about the loop expansion in N = 4 super Yang–Mills.

A Numerical evaluations

In this appendix we collect the results of evaluating the (3, 8) and (4, 8) CEGM biadjoint ampli-
tudes on the planar-basis kinematics defined in Section 8. As mentioned in Section 8, when k = 2

each planar Feynman diagram contributes 1 to the biadjoint amplitude and therefore m
(2)
n (I, I)

counts the number of such diagrams. When k > 2 each planar array of Feynman diagrams does
not necessarily contribute 1. The reason for this is that for k > 2 there are more planar poles

than those in the planar-basis. This has two consequences, the first is that m
(k>2)
n (I, I) does not

count the number of planar arrays of Feynman diagrams. The second is that by evaluating each
array of Feynman diagrams and grouping them by their value one can hope to learn about the
structure of Trop+G(k, n). It is the latter that motivated us to include here the data analysis
for (3, 8) and (4, 8).

A.1 (3, 8) planar collections

There are 13 612 planar collections of Feynman diagrams that contribute to m
(3)
8 (I, I). We have

evaluated all of them on the planar-basis kinematics using the code provided in [8] and found
that out of the 13 612 values there are only 104 distinct ones. Organized in ascending order
they are:{
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. (A.1)

The frequencies with which each of the values above appears is:

{8, 24, 8, 136, 8, 16, 80, 8, 8, 328, 8, 16, 8, 480, 24, 8, 432, 8, 40, 16, 72, 8, 32, 16, 1616,
16, 32, 8, 32, 8, 16, 224, 24, 32, 160, 8, 8, 128, 16, 24, 8, 16, 24, 2716, 16, 8, 8, 112, 8, 8,

16, 72, 8, 16, 24, 8, 360, 8, 8, 8, 56, 8, 48, 16, 32, 24, 8, 16, 2632, 16, 8, 8, 16, 8, 8, 144, 8,

8, 40, 8, 8, 32, 8, 256, 24, 8, 16, 16, 40, 8, 8, 1972, 8, 104, 8, 8, 8, 24, 208, 8, 8, 104, 8, 12}. (A.2)

Multiplying each value in (A.1) with its corresponding frequency in (A.2) and totaling gives rise
to the final result

m
(3)
8 (I, I) = 6 006,

which perfectly agrees with the CHY computation presented in Section 8.



20 F. Cachazo and N. Early

A.2 (4, 8) planar matrices

There are 90 608 planar arrays of Feynman diagrams that contribute to m
(4)
8 (I, I). We have

evaluated all of them on the planar-basis kinematics using the code provided in [8] and found
that out of the 90 608 values there are only 535 distinct ones. Even though the number is small
compared to the number of planar matrices, it is too large to be included here. Instead we
present two plots. The first one shown in Figure 2 corresponds to the 535 values organized in
ascending order. The second one given in Figure 3 is that of frequencies. Since frequencies vary
over a large range, the plot depicts the logarithm of the corresponding frequencies.

1.2
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0.8

0.6

0.4

0.2

100 200 300 400 500

Figure 2. Distinct values of planar matrices of Feynman diagrams of Trop+G(4, 8) evaluated on the

planar-basis kinematics. The 535 values are sorted by ascending order.

8

6

4

2

100 200 300 400 500

Figure 3. Logarithm of frequencies of values of planar matrices of Feynman diagrams of Trop+G(4, 8)

evaluated on the planar-basis kinematics. The horizontal axis coincides with the ascending order chosen

in Figure 2 to present the 535 distinct values.
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Once again, multiplying each value shown in Figure 2 with its corresponding frequency in
Figure 3 and totaling gives rise to the final result

m
(4)
8 (I, I) = 24 024.

We have not been able to solve the scattering equations in this case so this value is a prediction
for the CHY computation.
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