Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 072, 58 pages      arXiv:2001.05721      https://doi.org/10.3842/SIGMA.2021.072

A Framework for Geometric Field Theories and their Classification in Dimension One

Matthias Ludewig a and Augusto Stoffel b
a) Universität Regensburg, Germany
b) Universität Greifswald, Germany

Received June 15, 2020, in final form July 12, 2021; Published online July 25, 2021

Abstract
In this paper, we develop a general framework of geometric functorial field theories, meaning that all bordisms in question are endowed with geometric structures. We take particular care to establish a notion of smooth variation of such geometric structures, so that it makes sense to require the output of our field theory to depend smoothly on the input. We then test our framework on the case of $1$-dimensional field theories (with or without orientation) over a manifold $M$. Here the expectation is that such a field theory is equivalent to the data of a vector bundle over $M$ with connection and, in the nonoriented case, the additional data of a nondegenerate bilinear pairing; we prove that this is indeed the case in our framework.

Key words: field theory; vector bundles; bordism.

pdf (733 kb)   tex (74 kb)  

References

  1. Atiyah M., Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186.
  2. Berwick-Evans D., Pavlov D., Smooth one-dimensional topological field theories are vector bundles with connection, arXiv:1501.00967.
  3. Bunke U., Turner P., Willerton S., Gerbes and homotopy quantum field theories, Algebr. Geom. Topol. 4 (2004), 407-437, arXiv:math.AT/0201116.
  4. Freed D.S., Classical Chern-Simons theory. I, Adv. Math. 113 (1995), 237-303, arXiv:hep-th/9206021.
  5. Houzel C., Espaces analytiques relatifs et théorème de finitude, Math. Ann. 205 (1973), 13-54.
  6. Metzler D., Topological and smooth stacks, arXiv:math.DG/0306176.
  7. Meyer R., Bornological versus topological analysis in metrizable spaces, in Banach Algebras and their Applications, Contemp. Math., Vol. 363, Amer. Math. Soc., Providence, RI, 2004, 249-278, arXiv:math.FA/0310225.
  8. Meyer R., Local and analytic cyclic homology, EMS Tracts in Mathematics, Vol. 3, European Mathematical Society (EMS), Zürich, 2007.
  9. Rezk C., A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), 973-1007, arXiv:math.AT/9811037.
  10. Schreiber U., Waldorf K., Parallel transport and functors, J. Homotopy Relat. Struct. 4 (2009), 187-244, arXiv:0705.0452.
  11. Segal G., Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112.
  12. Segal G., The definition of conformal field theory, in Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., Vol. 308, Cambridge University Press, Cambridge, 2004, 421-577.
  13. Stolz S., Teichner P., Supersymmetric field theories and generalized cohomology, in Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., Vol. 83, Amer. Math. Soc., Providence, RI, 2011, 279-340, arXiv:1108.0189.
  14. Trèves F., Topological vector spaces, distributions and kernels, Academic Press, New York - London, 1967.
  15. Vistoli A., Grothendieck topologies, fibered categories and descent theory, in Fundamental Algebraic Geometry, Math. Surveys Monogr., Vol. 123, Amer. Math. Soc., Providence, RI, 2005, 1-104, arXiv:math.AG/0412512.
  16. Witten E., Topological quantum field theory, Comm. Math. Phys. 117 (1988), 353-386.

Previous article  Next article  Contents of Volume 17 (2021)