Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 052, 13 pages      arXiv:2101.01138      https://doi.org/10.3842/SIGMA.2021.052

Centralizers of Rank One in the First Weyl Algebra

Leonid Makar-Limanov ab
a) Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
b) Department of Mathematics & Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

Received January 07, 2021, in final form May 12, 2021; Published online May 19, 2021

Abstract
Centralizers of rank one in the first Weyl algebra have genus zero.

Key words: Weyl algebra; centralizers.

pdf (378 kb)   tex (23 kb)  

References

  1. Amitsur S.A., Commutative linear differential operators, Pacific J. Math. 8 (1958), 1-10.
  2. Burban I., Zheglov A., Fourier-Mukai transform on Weierstrass cubics and commuting differential operators, Internat. J. Math. 29 (2018), 1850064, 46 pages, arXiv:1602.08694.
  3. Burchnall J.L., Chaundy T.W., Commutative ordinary differential operators, Proc. London Math. Soc. 21 (1923), 420-440.
  4. Burchnall J.L., Chaundy T.W., Commutative ordinary differential operators, Proc. Roy. Soc. London A 118 (1928), 557-583.
  5. Burchnall J.L., Chaundy T.W., Commutative ordinary differential operators II. The identity $P^n = Q^m$, Proc. Roy. Soc. London A 134 (1931), 471-485.
  6. Davletshina V.N., Mironov A.E., On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two, Bull. Korean Math. Soc. 54 (2017), 1669-1675, arXiv:1606.01346.
  7. Dehornoy P., Opérateurs différentiels et courbes elliptiques, Compositio Math. 43 (1981), 71-99.
  8. Dixmier J., Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.
  9. Drinfel'd V.G., Commutative subrings of certain noncommutative rings, Funct. Anal. Appl. 11 (1977), 9-12.
  10. Floquet G., Sur la théorie des équations différentielles linéaires, Ann. Sci. École Norm. Sup. (2) 8 (1879), 3-132.
  11. Gelfand I.M., Kirillov A.A., Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. (1966), 5-19.
  12. Grinevich P.G., Rational solutions for the equation of commutation of differential operators, Funct. Anal. Appl. 16 (1982), 15-19.
  13. Grünbaum F.A., Commuting pairs of linear ordinary differential operators of orders four and six, Phys. D 31 (1988), 424-433.
  14. Krichever I.M., An algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solution, Sov. Math. Dokl. 17 (1976), 394-397.
  15. Krichever I.M., Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys 32 (1977), no. 6, 185-213.
  16. Krichever I.M., Commutative rings of ordinary linear differential operators, Funct. Anal. Appl. 12 (1978), 175-185.
  17. Makar-Limanov L., Centralizers in the quantum plane algebra, in Studies in Lie Theory, Progr. Math., Vol. 243, Birkhäuser Boston, Boston, MA, 2006, 411-416.
  18. Mironov A.E., A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2, Sb. Math. 195 (2004), 103-114.
  19. Mironov A.E., Commuting rank 2 differential operators corresponding to a curve of genus 2, Funct. Anal. Appl. 39 (2005), 240-243.
  20. Mironov A.E., On commuting differential operators of rank 2, Sib. Electr. Math. Rep. 6 (2009), 533-536.
  21. Mironov A.E., Commuting higher rank ordinary differential operators, in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, 459-473, arXiv:1204.2092.
  22. Mironov A.E., Self-adjoint commuting ordinary differential operators, Invent. Math. 197 (2014), 417-431.
  23. Mironov A.E., Self-adjoint commuting differential operators of rank two, Russian Math. Surveys 71 (2016), 751-779.
  24. Mironov A.E., Zheglov A.B., Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra, Int. Math. Res. Not. 2016 (2016), 2974-2993, arXiv:1503.00485.
  25. Mokhov O.I., Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve, Russian Math. Surveys 37 (1982), no. 4, 129-130.
  26. Mokhov O.I., Commuting differential operators of rank 3 and nonlinear equations, Math. USSR-Izv. 53 (1989), 629-655.
  27. Mokhov O.I., On commutative subalgebras of the Weyl algebra related to commuting operators of arbitrary rank and genus, Math. Notes 94 (2013), 298-300, arXiv:1201.5979.
  28. Mokhov O.I., Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients, in Topology, Geometry, Integrable Systems, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 234, Amer. Math. Soc., Providence, RI, 2014, 323-336, arXiv:1303.4263.
  29. Mulase M., Category of vector bundles on algebraic curves and infinite-dimensional Grassmannians, Internat. J. Math. 1 (1990), 293-342.
  30. Mumford D., An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equation, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115-153.
  31. Oganesyan V.S., Commuting differential operators of rank 2 and arbitrary genus $g$ with polynomial coefficients, Russian Math. Surveys 70 (2015), 165-167.
  32. Oganesyan V.S., Commuting differential operators of rank 2 with polynomial coefficients, Funct. Anal. Appl. 50 (2016), 54-61, arXiv:1409.4058.
  33. Oganesyan V.S., An alternative proof of Mironov's results on self-adjoint commuting operators of rank 2, Sib. Math. J. 59 (2018), 102-106.
  34. Oganesyan V.S., Commuting differential operators of rank 2 with rational coefficients, Funct. Anal. Appl. 52 (2018), 203-213, arXiv:1608.05146.
  35. Previato E., Seventy years of spectral curves: 1923-1993, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 419-481.
  36. Previato E., Rueda S.L., Zurro M.A., Commuting ordinary differential operators and the Dixmier test, SIGMA 15 (2019), 101, 23 pages, arXiv:1902.01361.
  37. Schur I., Über vertauschbare lineare Differentialausdrücke, Sitzungsber. Berl. Math. Ges. (1905), 2-8.
  38. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. (1985), 5-65.
  39. Verdier J.-L., Équations différentielles algébriques, in Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., Vol. 710, Springer, Berlin, 1979, Exp. No. 512, 101-122.
  40. Wallenberg G., Über die Vertauschbarkeit homogener linearer Differentialausdrücke, Arch. Math. Phys. 3 (1903), 252–268.
  41. Wilson G., Algebraic curves and soliton equations, in Geometry Today (Rome, 1984), Progr. Math., Vol. 60, Birkhäuser Boston, Boston, MA, 1985, 303-329.
  42. Wilson G., Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177-204.
  43. Wilson G., Collisions of Calogero-Moser particles and an adelic Grassmannian (with an appendix by I.G. Macdonald), Invent. Math. 133 (1998), 1-41.
  44. Zheglov A.B., Mironov A.E., On commuting differential operators with polynomial coefficients corresponding to spectral curves of genus one, Dokl. Math. 91 (2015), 281-282.
  45. Zheglov A.B., Mironov A.E., Saparbaeva B.T., Commuting Krichever-Novikov differential operators with polynomial coefficients, Sib. Math. J. 57 (2016), 819-823.

Previous article  Next article  Contents of Volume 17 (2021)