Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 045, 32 pages      arXiv:2012.12371      https://doi.org/10.3842/SIGMA.2021.045

How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave

Iryna Egorova a and Johanna Michor b
a) B. Verkin Institute for Low Temperature Physics and Engineering, 47, Nauky Ave., 61103 Kharkiv, Ukraine
b) Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received January 21, 2021, in final form April 26, 2021; Published online May 01, 2021

Abstract
We rigorously derive the long-time asymptotics of the Toda shock wave in a middle region where the solution is asymptotically finite gap. In particular, we describe the influence of the discrete spectrum in the spectral gap on the shift of the phase in the theta-function representation for this solution. We also study the effect of possible resonances at the endpoints of the gap on this phase. This paper is a continuation of research started in [arXiv:2001.05184].

Key words: Toda equation; Riemann-Hilbert problem; steplike; shock.

pdf (809 kb)   tex (247 kb)  

References

  1. Andreiev K., Egorova I., Lange T.L., Teschl G., Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent, J. Differential Equations 261 (2016), 5371-5410, arXiv:1602.02427.
  2. Bilman D., Trogdon T., Numerical inverse scattering for the Toda lattice, Comm. Math. Phys. 352 (2017), 805-879, arXiv:1508.01788.
  3. Bleher P.M., Lectures on random matrix models: the Riemann-Hilbert approach, in Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 251-349, arXiv:0801.1858.
  4. Bloch A.M., Kodama Y., Dispersive regularization of the Whitham equation for the Toda lattice, SIAM J. Appl. Math. 52 (1992), 909-928.
  5. Bloch A.M., Kodama Y., The Whitham equation and shocks in the Toda lattice, in Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 320, Plenum, New York, 1994, 1-19.
  6. Deift P., Kamvissis S., Kriecherbauer T., Zhou X., The Toda rarefaction problem, Comm. Pure Appl. Math. 49 (1996), 35-83.
  7. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
  8. Deift P., Venakides S., Zhou X., The collisionless shock region for the long-time behavior of solutions of the KdV equation, Comm. Pure Appl. Math. 47 (1994), 199-206.
  9. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368, arXiv:math.AP/9201261.
  10. Egorova I., Gladka Z., Kotlyarov V., Teschl G., Long-time asymptotics for the Korteweg-de Vries equation with step-like initial data, Nonlinearity 26 (2013), 1839-1864, arXiv:1210.7434.
  11. Egorova I., Michor J., Pryimak A., Teschl G., Long-time asymptotics for Toda shock waves in the modulation region, arXiv:2001.05184.
  12. Egorova I., Michor J., Teschl G., Long-time asymptotics for the Toda shock problem: non-overlapping spectra, J. Math. Phys. Anal. Geom. 14 (2018), 406-451, arXiv:1406.0720.
  13. Egorova I., Piorkowski M., Teschl G., On vector and matrix Riemann-Hilbert problems for KdV shock waves, arXiv:1907.09792.
  14. Girotti M., Grava T., Jenkins R., McLaughlin K.D.T.-R., Numerical inverse scattering for the Toda lattice, Comm. Math. Phys., to appear, arXiv:1807.00608.
  15. Grunert K., Teschl G., Long-time asymptotics for the Korteweg-de Vries equation via nonlinear steepest descent, Math. Phys. Anal. Geom. 12 (2009), 287-324, arXiv:0807.5041.
  16. Its A.R., Large $N$ asymptotics in random matrices: the Riemann-Hilbert approach, in Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 351-413.
  17. Kamvissis S., On the Toda shock problem, Phys. D 65 (1993), 242-266.
  18. Krüger H., Teschl G., Long-time asymptotics for the Toda lattice in the soliton region, Math. Z. 262 (2009), 585-602, arXiv:0711.2793.
  19. Krüger H., Teschl G., Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys. 21 (2009), 61-109, arXiv:0804.4693.
  20. Michor J., Wave phenomena of the Toda lattice with steplike initial data, Phys. Lett. A 380 (2016), 1110-1116, arXiv:1510.03581.
  21. Muskhelishvili N.I., Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972.
  22. Piorkowski M., Parametrix problem for the Korteweg-de Vries equation with steplike initial data, arXiv:1908.11340.
  23. Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72, Amer. Math. Soc., Providence, RI, 2000.
  24. Toda M., Theory of nonlinear lattices, 2nd ed., Springer Series in Solid-State Sciences, Vol. 20, Springer-Verlag, Berlin, 1989.
  25. Venakides S., Deift P., Oba R., The Toda shock problem, Comm. Pure Appl. Math. 44 (1991), 1171-1242.

Previous article  Next article  Contents of Volume 17 (2021)