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Abstract. We define a notion of connection in a fibre bundle that is compatible with
a singular foliation of the base. Fibre bundles equipped with such connections are in plen-
tiful supply, arising naturally for any Lie groupoid-equivariant bundle, and simultaneously
generalising regularly foliated bundles in the sense of Kamber–Tondeur and singular foli-
ations. We define hierarchies of diffeological holonomy groupoids associated to such bun-
dles, which arise from the parallel transport of jet/germinal conservation laws. We show
that the groupoids associated in this manner to trivial singularly foliated bundles are quo-
tients of Androulidakis–Skandalis holonomy groupoids, which coincide with Androulidakis–
Skandalis holonomy groupoids in the regular case. Finally we prove functoriality of all our
constructions under appropriate morphisms.
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1 Introduction

In this paper, we extend the notion of a partial connection in a fibre bundle to the singular
setting, obtaining singular partial connections. Fibre bundles with singular partial connections,
which we refer to as singularly foliated bundles, are induced by Lie groupoid actions on fib-
re bundles, and generalise singular foliations and regularly foliated bundles. We use certain
diffeological pseudo-bundles consisting of jets/germs of sections that are conserved by the folia-
tion’s flow to systematically construct hierarchies of holonomy groupoids for singularly foliated
bundles as diffeological quotients of path spaces, and show that our constructions are functo-
rial under suitably defined morphisms of singularly foliated bundles. For a trivial bundle over
a singular foliation, the associated holonomy groupoid is a quotient of the groupoid defined by
Androulidakis–Skandalis [2] by a relation which identifies groupoid elements if they act in the
same way on the germs of first integrals, and in particular coincides with the Winkelnkemper–
Phillips holonomy groupoid of a regular foliation.

Singular foliations are involutive, locally finitely generated families of vector fields on mani-
folds. As famously proved by Stefan [58] and Sussmann [59], such objects integrate to give
decompositions of their ambient manifolds into immersed submanifolds, possibly of differing
dimension, called leaves. Singular foliations are ubiquitous in mathematics and its applications.
For instance, every Poisson manifold has a singular foliation by symplectic leaves, and con-
versely a singular foliation of a manifold by symplectic leaves suffices to determine a Poisson
structure [26]. More generally, any integrable Dirac manifold admits a singular foliation by
presymplectic leaves [24]. Singular foliations also generalise regular foliations, which are among
the primary instances of Connes’ noncommutative geometries [17, 19].
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An essential construction for the noncommutative perspective is the holonomy groupoid
of a regular foliation, which was introduced by Winkelnkemper [61] as a model for the leaf
space. As described by Phillips [53], the holonomy groupoid is in a precise sense the small-
est desingularisation of the naive “space of leaves” obtained as the quotient by leaves that
admits a (locally Hausdorff) manifold structure. It is upon the locally Hausdorff holonomy
groupoid of a foliation (or étale versions thereof) that a great deal of progress has been made
in index theory [8, 9, 10, 11, 12, 13, 15, 23, 34, 39, 46, 48, 49] and equivariant/cyclic coho-
mology [18, 20, 21, 22, 27, 32, 33, 45, 50, 51]. An alternative toolbox for the study of regular
foliations that has been developing since the nineteen-nineties is diffeology [37, 38], which pro-
vides a way of doing differential topology on conventionally badly behaved spaces X by declaring
which maps from Euclidean domains into X are smooth. Recent progress by the author in this
area [47] shows that the holonomy groupoid of a regular foliation is just the largest of an infinite
family of diffeological holonomy groupoids constructed using solutions of parallel transport dif-
ferential equations in diffeological bundles. Thus, while the Winkelnkemper holonomy groupoid
is the smallest Lie groupoid that integrates a regular foliation, it is far from being the smallest
diffeological groupoid that does so.

Defining holonomy groupoids for singular foliations dates back to the mid nineteen-eighties
with work of Pradines and Bigonnet [54, 55]. Significant further progress was made by Debord
in [28, 29] in the study of holonomy groupoids for singular foliations arising from Lie algebroids
whose anchor maps are injective on a dense set (these types of foliations are now known as Debord
foliations [43, Definition 3.6]). Such foliations are special in that their holonomy groupoids are
Lie groupoids. At present, the most general family of singular foliations for which holonomy
groupoids can be defined are those associated to locally finitely generated, involutive families of
vector fields, in the spirit of those originally studied by Stefan and Sussmann. The holonomy
groupoids of such general foliations were formulated by Androulidakis and Skandalis in [2].
Holonomy groupoids at this level of generality are topologically pathological, but, as is evident
in the recent preprint [60] of Garmendia and Villatoro, are diffeologically quite well-behaved,
arising as spaces of classes of leafwise paths identified via their maps on transversal slices.
The years since the Androulidakis–Skandalis construction have seen a great deal of further
research conducted into singular foliations and their holonomy, see for instance [3, 4, 5, 6, 30,
31, 60].

The present paper constitutes a generalisation of the holonomy groupoid constructions in [47]
to singular foliations, and is inspired in part by the recent work of Garmendia and Villatoro [60],
who showed how to recover the Androulidakis–Skandalis holonomy groupoid as a quotient of
a diffeological path space. In the author’s view, the primary contribution of this paper is
a novel perspective on the holonomy of singular foliations which arises from parallel transport
of conservation laws. In particular, this places the holonomy of singular foliations in the same
realm of differential geometry that deals with symmetries and conservation laws of differential
equations in the sense of [1, 52]. In addition, the diffeological pseudo-bundles of germs that
we introduce in this paper are shown to be extensions of jet bundles, which are closely related
to (but topologically distinct from) étale spaces of sheaves. We believe that these pseudo-bundles
may be of independent interest and utility. Let us now outline the content of the paper in more
detail.

Section 2 consists of a recollection of the well-known definitions and results from singular
foliations, jet bundle theory and diffeology that will be required for our constructions later in the
paper. We remark here that our notation Γk for the kth order jet bundles differs from the Jk

that is usually seen in the literature – this is to ensure compatibility with the pseudo-bundles
of germs that we introduce in the following section.

Section 3 is where we introduce the key diffeological constructions with which the holonomy
groupoids of singularly foliated bundles can be systematically constructed. In particular, we asso-
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ciate to any sheaf S of smooth sections of a fibre bundle πB : B → M over a manifold M
a canonical diffeological pseudo-bundle Γg(S ) over M , whose fibre over x ∈ M consists of all
the germs [σ]gx at x of elements σ of S defined around x. When S is the sheaf of all sections
of πB, the “pseudo-bundle of germs” Γg(πB) ought to be thought of as a “completion” of the
usual tower of jet bundles Γk(πB) associated to πB, which is sufficiently rich to capture the
behaviour of non-analytic smooth sections. The concept of jet prolongation of a vector field to
a jet bundle is extended to germinal prolongation of a vector field to a bundle of germs, which
is a crucial component in the definition of our holonomy groupoids.

We include in Section 3 a discussion of the relationship between pseudo-bundles of germs
and classical sheaf theoretic concepts. In particular, we show in Proposition 3.10 that any suit-
ably smooth morphism of sheaves of sections induces a morphism of the corresponding pseudo-
bundles of germs, following which we give a counterexample to the converse being true. Finally,
Remark 3.13 shows that while the pseudo-bundle of germs of a sheaf is isomorphic as a set to
the well-known étale space associated to the sheaf, the topology it inherits from its diffeology
is (often strictly) contained in the usual étale topology. These considerations regarding the
topology of pseudo-bundles of germs are not required anywhere in our constructions, and are
included out of independent interest.

Section 3 concludes by recalling the diffeological path categories P(X ) of diffeological spaces X
introduced in [47], and generalises the leafwise path category of a regular foliation introduced
therein to the singular case. Elements of the leafwise path category P(F) of a singular foliation F
are triples

(
γ, [X]g, d

)
, where X is some locally-defined, time-dependent vector field in F , d > 0

a real number, and γ : R≥0 = [0,∞)→M an integral curve of X such that X vanishes in a neigh-
bourhood of γ(0) and of γ([d,∞)). This definition draws from the analogous definition used
by Garmendia and Villatoro in [60]. We also define an abstract notion of holonomy groupoid
associated to a lifting map into paths of a pseudo-bundle, which serves as the framework for the
constructions of Section 4.

In Section 4 we generalise the notion of a singular foliation to a singularly foliated bundle.
In the same way that regularly foliated bundles in the sense of Kamber and Tondeur [41] are
defined in terms of a partial connection on the total space of the bundle, our singularly foliated
bundles are defined in terms of what we call singular partial connections. Roughly speaking,
a singular partial connection ` in a fibre bundle over a singular foliation allows us to lift vector
fields from the foliation of the base to fields on the total space. We show that singularly foliated
bundles generalise singular foliations and regularly foliated bundles, and are associated to all
bundles that are equivariant under the action of a Lie groupoid. Associated to any singularly
foliated bundle πB : B →M with foliation F of the base are pseudo-bundles πk,FB : Γk(πB)F →M
of germs (if k = g) or jets (if k ≤ ∞) of sections which are invariant, to kth order, under
flows of F . These F-invariant jets/germs generalise the jets/germs of “distinguished sections”
considered in [47], and may be thought of as conservation laws for F . We prove the following.

Theorem 1.1 (see Theorem 4.10). Let πB : B → M be a singularly foliated bundle, and let
k denote any of the symbols 0, . . . ,∞, g. If πB admits local sections over each point which are
invariant to kth order, then there is a smooth lifting map L

(
πk,FB

)
: P(F) ×

s,πk,FB
Γk(πB)F →

P
(
Γk(πB)F

)
sending leafwise paths in M to the solutions of a parallel transport differential

equation in Γk(πB)F .

In particular, invariant jets/germs about a point can be extended to invariant jets/germs

along any path in F starting at that point. Each of the lifting maps L
(
πk,FB

)
of a singularly

foliated bundle πB : B → M induces a transport functor from the leafwise path category P(F)
to the diffeological groupoid of diffeomorphisms between the fibres of Γk(πB)F . The fibres of this
functor determine an equivalence relation on P(F), and the quotient of P(F) by this equivalence

relation is the holonomy groupoid H
(
πk,FB

)
. The arguments of [47, Theorem 5.15] then apply to
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show that if in particular πB admits invariant germs of sections about each point then we have
a hierarchy

H
(
πg,F
B

)

H
(
π∞,FB

)

· · · H
(
πk+1,F
B

)
H
(
πk,FB

)
· · · H

(
π0,F
B

)

Π∞,gB

Πk+1,∞
B Πk,∞B Π0,∞

B

Πk,k+1
B

(1.1)

of diffeological holonomy groupoids associated to the tower

Γg(πB)→ Γ∞(πB)→ · · · → Γ1(πB)→ B

of germ/jet bundles. Smaller hierarchies also exist when πB only admits invariant k-jets of sec-
tions about each point, with all singularly foliated bundles admitting invariant 0-jets of sections
about each point.

Following this, we prove in Theorem 4.15 that in the case of a singular foliation (M,F),
with M of dimension n, the holonomy groupoid H

(
πg,F
M×Rn

)
associated to the trivial singularly

foliated bundle M × Rn → M is the quotient of the Garmendia–Villatoro holonomy groupoid
by an equivalence relation which identifies groupoid elements if and only if they act identically
on first integrals. Thus, by [60, Theorem 5.5], our construction is a quotient of the well-known
Androulidakis–Skandalis holonomy groupoid [2] in such cases. We also show that our con-
struction agrees with that of Garmendia–Villatoro for regular foliations. Section 4 is concluded
by defining a class of morphisms of singularly foliated bundles, and we prove in Theorem 4.19
that the hierarchy (1.1) of holonomy groupoids is functorial under such morphisms. The paper
is concluded in Section 5 with a discussion of open questions.

2 Background and prerequisites

2.1 Notational conventions

All manifolds and fibre bundles are assumed to be smooth, Hausdorff, without boundary and
connected, and all maps thereof assumed to be smooth. Given any manifold M , we use XM
to denote the sheaf of smooth vector fields on M , and C∞M the sheaf of smooth, real-valued
functions on M . If πB : B → M is a fibre bundle, then we denote by ΓπB the sheaf of sections
of πB. Given a smooth map f : M → N of manifolds, and sheaves SM on M and SN on N ,
we denote by f!SM the pushforward of SM and by f !SN the pullback of SN [36, p. 65]. Given
a (possibly time-dependent) vector field X = X(t,−) on an open set O in a manifold M , we use
FlX to denote its flow. That is, for x ∈ O and t0 ∈ R, t 7→ FlXt,t0(x) is the unique solution to the
initial value problem

d

ds

∣∣∣∣
t

f(s;x) = X(t, f(t;x)), f(t0;x) = x

defined by the vector field X [44, p. 236]. For time-independent X, FlXt,t0 depends only on

t− t0 and will be denoted simply by FlXt−t0 . Vector fields are assumed time-independent unless
otherwise stated.
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2.2 Singular foliations

We begin by recalling the standard sheaf-theoretic definition of a singular foliation.

Definition 2.1. Let M be a smooth manifold. A singular foliation on M is a subsheaf F ⊂ XM
of C∞M -modules on M for which the following hold.

1. F is closed under Lie brackets in the sense that for every open set O of M , F(O) is closed
under the Lie bracket of vector fields.

2. F is locally finitely generated in the sense that for each x ∈ M , there exists an open
neighbourhood Ox of x and a finite family X1, . . . , Xk of elements of F(Ox) such that
F(Ox) is the C∞M (Ox)-span of the Xi.

One can alternatively describe a singular foliation of a manifold M as a locally finitely
generated submodule of the compactly supported vector fields on M which is closed under
Lie brackets, as in [2]. By [31, Remark 1.8] these definitions are equivalent. One of the most
important facts regarding singular foliations is the Stefan–Sussmann integration theorem [58, 59].

Theorem 2.2. Let M be a manifold with a singular foliation F . Then F integrates to give
a decomposition of M into smoothly immersed submanifolds called leaves.

The following important theorem, due to Androulidakis and Skandalis [2, Theorem 0.1], says
that the leaves of a singular foliation always arise as the orbits of a certain topological groupoid,
called the holonomy groupoid of the foliation.

Theorem 2.3. Let M be a manifold with a singular foliation F . Then there exists a topological
groupoid H(F) for which the following hold.

1. H(F) integrates the foliation F , in the sense that its orbits are the leaves of F .

2. H(F) is minimal in the sense that if G is any Lie groupoid which integrates F , there
is an open subgroupoid G0 of G and a surjective morphism G0 → H(F) of topological
groupoids.

The groupoid H(F) is called the holonomy groupoid of F .

Androulidakis and Skandalis built their groupoid using “bisubmersions” defined by iterated
flows of the vector fields defining the foliation. Recent work by Garmendia and Villatoro [60]
recovers the Androulidakis–Skandalis holonomy groupoid as a diffeological quotient of a cer-
tain path space. It is the Garmendia–Villatoro construction that most closely resembles the
construction we give in this article.

A very large family of examples of singular foliations is furnished by Lie algebroids as we now
describe.

Example 2.4. A Lie algebroid consists of a (finite rank) vector bundle πA : A → M over
a manifold M together with a Lie bracket on the space Γ(M ;A) of its smooth sections and
a morphism ρ : A → TM of vector bundles known as the anchor map which preserves Lie
brackets on sections. Then the image of the compactly supported smooth sections of A under ρ
is a singular foliation [2, Example 1.3]. Of particular importance are Lie algebroids that are
integrable in the sense that they integrate to Lie groupoids. The characterisation of which Lie
algebroids are integrable in this sense was solved by Crainic and Fernandes [25]. Lie algebroids
arise in many geometric situations.

1. Lie algebras, which are Lie algebroids over a point and are integrated by Lie groups by
Lie’s third theorem.
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2. Regular foliations, defined by Lie algebroids with injective anchor map. Such foliations
are integrated by their Winkelnkemper–Phillips holonomy groupoids [53, 61].

3. Debord foliations, associated to algebroids whose anchor maps are injective on a dense set.
The integration problem for these foliations was solved by Debord in [28, 29].

4. Poisson manifolds M , whose Lie algebroids T ∗M → M are equipped with a Lie bracket
arising from the Poisson structure. Poisson manifolds admit (and are characterised by)
singular foliations by symplectic leaves [25, p. 113].

We will not be making use of Lie algebroids in this article. Like the constructions of And-
roulidakis–Skandalis and Garmendia–Villatoro, our constructions will be founded on the more
general Definition 2.1.

2.3 Jet bundles and prolongation

We recall in this subsection some well-known theory of jet bundles, drawn primarily from [1, 56].
Although the reader is likely familiar with this theory already, we include the following outline
both to introduce our rather unconventional notation (which we choose for consistency with
the bundles of germs to be introduced in Section 3.1) and to point out the structures that will
be most relevant in our constructions.

Definition 2.5. Let πB : B → M be a fibre bundle, with fibre F , and let k ≥ 0. We say that
two local sections σ1 and σ2 of πB defined in a neighbourhood of x ∈M have the same k-jet at x
if σ1(x) = b = σ2(x), and for any local coordinate neighbourhood O ∼= OM ×OF of b, one has

∂|I|σi1
∂xI

(x) =
∂|I|σi2
∂xI

(x)

for all i = 1, . . . ,dim(F ), and all multi-indices I with |I| ≤ k. Having the same k-jet at a point x
is an equivalence relation on the set of local sections defined about x, and we denote the k-jet
equivalence class of any such local section by [σ]kx.

The k-jets of local sections fit into a fibre bundle in a natural way.

Definition 2.6. Let πB : B →M be a fibre bundle, and let k ≥ 0. For each x ∈M , denote the
set of all k-jets of local sections defined near x by Γk(πB)x, and define

Γk(πB) :=
⊔
x∈M

Γk(πB)x,

with πkB : Γk(πB)→M denoting the canonical projection. Define π0,k
B : Γk(πB)→ B by

π0,k
B

(
x, [σ]kx

)
:= σ(x),

and observe that any choice of local coordinate trivialisation (xi, fα) on O about a point b ∈ B
determines coordinates

(
xi, fα, fαi , . . . , f

α
I

)
:=

(
xi, fα,

∂fα

∂xi
, . . . ,

∂|I|fα

∂xI

)
on the set

(
π0,k
B

)−1
(O). These coordinates give the projection πk : Γk(πB) → M the structure

of a fibre bundle, called the kth order jet bundle of πB.
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The jet bundles of a fibre bundle πB : B → M admit projections πk,lB : Γl(πB) → Γk(πB)
defined by

πk,lB
(
[σ]lx

)
:= [σ]kx, [σ]lx ∈ Γl(πB)

for any l ≥ k, and these projections form a projective system. The projective limit of this
system, denoted Γ∞(πB), inherits a natural smooth structure as a projective limit of manifolds
[1, Chapter One, Section A] (equivalently via the projective limit diffeology [40, Section 1.39]).
The space Γ∞(πB) is usually identified with the set of∞-jets of local sections of πB, and admits
a canonical projection π∞B : Γ∞(πB)→M given by

π∞B
(
[σ]∞x

)
:= x, [σ]∞x ∈ Γ∞(πB).

One therefore obtains a hierarchy of jet bundles

Γ∞(πB)→ · · ·
πk,k+1
B−−−−→ Γk(πB)

πk−1,k
B−−−−→ · · ·

π1,2
B−−→ Γ1(πB)

π0,1
B−−→ B

πB−−→M.

Since we will be concerned primarily with singular foliations, which arise from families of vec-
tor fields, we will need to know about vector fields on jet bundles. A particularly important
class of vector fields on fibre bundles, in which we will be primarily interested, is those that are
projectable in the following sense.

Definition 2.7. Let πB : B → M be a fibre bundle. A vector field X on B is said to be
projectable if there is a vector field (πB)∗(X) on M for which

dπB ◦X = (πB)∗(X) ◦ πB (2.1)

on all of B. We denote by Xproj(B) the set of projectable vector fields on B.

Projectable vector fields on a bundle prolong in a natural way to vector fields on the associated
jet bundles.

Definition 2.8. Let πB : B →M be a fibre bundle, and let X ∈ Xproj(B) be a (possibly time-
dependent) projectable vector field. For 1 ≤ k < ∞, the k-jet prolongation of X is the vector
field pk(X) ∈ X(Γk(πB)) defined by

pk(X)
(
x, [σ]kx

)
:=

d

dt

∣∣∣∣
t=0

(
Fl

(πB)∗X
t,0 (x),

[
FlXt,0 ◦σ ◦ Fl

(πB)∗X
0,t

]k
Fl

(πB)∗X
t,0 (x)

)
for all [σ]kx ∈ Γk(πB). We denote by Xproj(Γk(πB)) the image of pk.

It will be useful later to note here that if X is a time-independent projectable vector field
on a bundle πB, it is given in coordinates by X = ai ∂

∂xi
+ bα ∂

∂fα , where ai are smooth functions

depending only on the xi while the bα depend on both the xi and the fα. Then for any 1 ≤
k <∞, the k-jet prolongation pk(X) of X is given in coordinates over a point (xi, fα, fαi , . . . ) ∈
Γk(πB) by the formula (cf. [52, Theorem 2.36])

pk(X) = aiD
(k)
i +

∑
|I|=k

(
D

(k)
I bα −

∑
J⊂I

(
D

(k)
I\Ja

i
)
fαJi

)
∂

∂fαI
+

k−1∑
|I|=0

D
(k)
I (bα − aifαi )

∂

∂fαI
, (2.2)

where the sum over J ⊂ I is a sum over all strict subsets of the multi-index J , and where we
have absorbed the constants arising from the symmetry of mixed partial derivatives into our

notation as in [1, equation (1.15)]. Here D
(k)
I = D

(k)
i1
· · ·D(k)

ik
, where D

(k)
i is the total derivative

operator defined by D
(k)
i = ∂

∂xi
+
∑k−1
|I|=0 f

α
Ii

∂
∂fαI

.

The argument of Proposition 3.6 can be used to deduce the following fact, which justifies our
choice of notation in denoting the image of pk in X(Γk(πB)) by Xproj(Γk(πB)).
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Proposition 2.9. Let πB : B → M be a fibre bundle, and let X be a projectable vector field
on B. Then the pk(X) are a projectable family, in the sense that

dπl,kB ◦ p
k(X) = pl(X) ◦ πl,kB

on Γk(πB) for all l ≤ k.

Projectability of the pk(X) guarantees (cf. [1, equation (1.11)]) that pointwise they admit
a projective limit, defining a section p∞(X) of the projective limit tangent bundle of Γ∞(πB)
(cf. [1, Chapter One, Section B]) for which the following holds.

Proposition 2.10. Let πB : B → M be a fibre bundle. Then for each l ≤ k ≤ ∞ there is
a bracket-preserving homomorphism

(
πl,kB
)
∗ : Xproj(Γk(πB))→ Xproj(Γl(πB)) and the diagram

Xproj(Γ∞(πB))

...

Xproj(Γ1(πB))

Xproj(B) Xproj(B)

(π1,2
B )∗

(π0,1
B )∗

p∞

p1

id

commutes.

2.4 Diffeology

We recall in this subsection some basic objects of study in diffeology that will be relevant for
our constructions. The most comprehensive reference on diffeology is the wonderful book [40]
by P. Iglesias-Zemmour.

Definition 2.11. A function ϕ : U → X from an open subset U of some finite-dimensional
Euclidean space to a set X is called a parametrisation. A diffeology on a set X is a family D
of parametrisations satisfying the following axioms.

1. The family D contains all constant parametrisations.

2. If ϕ : U → X is a parametrisation such that every point u ∈ U has an open neighbourhood
V ⊂ U for which ϕ|V is an element of D, then ϕ itself is an element of D.

3. For every element ϕ : U → X of D, every open set V of any finite-dimensional Euclidean
space, and for every smooth function f : V → U , the composite ϕ◦f : V → X is contained
in D.

A set with a diffeology is called a diffeological space, and the elements of the diffeology are called
its plots. If X and Y are two diffeological spaces, then a function f : X → Y is said to be smooth
if for every plot ϕ : U → X of X , the composite f ◦ϕ : U → Y is a plot of Y. A smooth bijection
of diffeological spaces is said to be a diffeomorphism if it is smooth with smooth inverse.

Every manifold is a diffeological space, with diffeology constituted by the set of all parametri-
sations that are smooth in the usual sense. Moreover a map between manifolds is smooth in the
manifold sense if and only if it is smooth in the diffeological sense. Thus the category of mani-
folds and smooth maps is a full and faithful subcategory of the category of diffeological spaces
and smooth maps.
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Diffeologies can be pushed forward and pulled back by functions of sets. This fact will be
invoked frequently for our constructions.

Definition 2.12. Let X and Y be sets, and let f : X → Y be a function.

1. If X has a diffeology, then the pushforward diffeology induced by f is defined by declaring
a parametrisation ϕ : U → Y to be a plot if and only if every u ∈ U has an open neigh-
bourhood V ⊂ U such that either ϕ|V is constant, or equal to the composite f ◦ψ for some
plot ψ : V → X of X . The map f is said to be a subduction if it is surjective and if Y is
equipped with the pushforward diffeology induced by f .

2. If Y has a diffeology, then the pullback diffeology induced by f is defined by declaring
a parametrisation ψ : U → X to be plot if and only if the composite f ◦ψ : U → Y is a plot
of Y. The map f is said to be an induction if it is injective and if X is equipped with the
pullback diffeology from Y.

The following special cases are of particular importance. Let X be a diffeological space.

1. If ∼ is any equivalence relation on X , then the quotient diffeology X/∼ is the pushfoward
diffeology arising from the quotient X → X/∼.

2. If S is any subset of X , then the subspace diffeology on S is the pullback diffeology arising
from the inclusion S ↪→ X .

3. If Y is any other diffeological space, then the product diffeology on X × Y is the smallest
diffeology for which the projections onto the factors are subductions.

Quotients, subspaces and products will always be assumed to be equipped with the respective
diffeologies defined above unless otherwise stated.

One of the features of the category of diffeological spaces is that the set of all morphisms
between any two objects in the category is itself an object.

Definition 2.13. Let X and Y be diffeological spaces, and denote by C∞(X ,Y) the set of all
smooth maps f : X → Y. The functional diffeology on C∞(X ,Y) is defined by declaring a para-
metrisation f̃ : U → C∞(X ,Y) to be a plot if and only if the associated map U ×X 3 (u, x) 7→
f̃(u)(x)→ Y is smooth.

The familiar notion of a fibre bundle over a manifold has a far reaching generalisation to
diffeological spaces. It is the flexibility afforded by this generalisation that permits most of the
constructions in this paper.

Definition 2.14. A diffeological pseudo-bundle is a subduction πB : B → X of diffeological
spaces. Such a pseudo-bundle is in particular called a diffeological vector pseudo-bundle if each
fibre of πB is a vector space for which the vector space operations are smooth with respect to
the subspace diffeology, and such that the zero section is smooth.

A diffeological pseudo-bundle need not have fibres that are all diffeomorphic, and of course
need not be locally trivial in any sense (see for instance Example 3.7). An important subclass
of diffeological pseudo-bundles are diffeological bundles, which have mutually diffeomorphic fibres
and which are locally trivial under pullbacks by plots. Diffeological bundles are distinguished
by the behaviour of their structure groupoids. Before we give the definition of this object, let us
record what we mean by diffeological categories and groupoids.

Definition 2.15. Let C be a small category, with object set identified as a subset of the mor-
phism set via the map which sends each object to its associated identity morphism. We say
that C is a diffeological category if its set of morphisms is equipped with a diffeology for which
the range, source, and composition are all smooth. If C is in addition a groupoid, whose inversion
map is smooth, we call C a diffeological groupoid.
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Let now πB : B → X be a smooth surjection of diffeological spaces. Denote by Aut(πB) the
groupoid with object set X , and with morphisms from x to y constituted by the set Diff(Bx,By)
of all diffeomorphisms from the fibre Bx over x to the fibre By over y, with the obvious range,
source, inversion and composition. The groupoid Aut(πB) admits a smallest diffeology, called the
functional diffeology, under which the evaluation map ev : Aut(πB)×s,πB B 3 (f, b) 7→ f(b) ∈ B
is smooth, and under which Aut(πB) is a diffeological groupoid (see [40, Section 8.7] for details).

Definition 2.16. Let πB : B → X be a surjection of diffeological spaces. Equipped with the
functional diffeology, we refer to Aut(πB) as the structure groupoid of the surjection πB. We say
that πB is a diffeological bundle if the characteristic map (r, s) : Aut(πB) → X × X is a sub-
duction.

Diffeological bundles, unlike general diffeological pseudo-bundles, have a typical fibre to which
all other fibres are diffeomorphic, and the pullback of a diffeological bundle along any plot is
locally trivial [40, p. 240].

By definition, singular foliations arise from certain families of sections of tangent bundles.
To use diffeology to study singular foliations, therefore, we need a notion of tangent bundle for
a diffeological space. A number of definitions have been proposed for this purpose, which, while
coincident for manifolds, do not coincide for general diffeological spaces (see [16] for a detailed
discussion). The point of view that we find useful here, as in [47], is that of internal tangent
spaces and bundles. The paper [16] provides a categorical definition of internal tangent spaces
based on work of Hector [37], which may be summarised as follows.

Definition 2.17. Let X be a diffeological space and let x ∈ X . Denote by px the set of all plots
centered at x, that is, plots ϕ : U → X such that 0 ∈ U and ϕ(0) = x. Denote by T0 dom(ϕ) the
tangent space at zero of the domain of any such plot, and by ~vϕ the image of ~v ∈ T0 dom(ϕ) in
the direct sum

⊕
ϕ∈px T0 dom(ϕ). The internal tangent space of X at x is the quotient space TxX

of the direct sum⊕
ϕ∈px

T0 dom(ϕ)

by the subspace generated by all vectors of the form f∗(~v)ϕ−~vϕ◦f , where ϕ ∈ px, f : dom(f)→
dom(ϕ) is any smooth map of open Euclidean domains with 0 ∈ dom(f) and f(0) = 0, and
with ~v ∈ T0 dom(f). The class of an element ~vϕ, ~v ∈ T0 dom(ϕ), will be denoted ϕ∗(~v). By [16,
Proposition 3.3], elements of TxX can always be written as linear combinations of ϕ∗(d/dt) for
1-plots ϕ : (−ε, ε)→ X , which we will usually write as d/dt|0ϕt.

Let X be a diffeological space, and consider the set TX :=
⊔
x∈X TxX . For any plot ϕ : U → X

and for any u ∈ U , denote by τu : v 7→ v + u the u-translation map, so that τ−1
u (U) contains 0

and ϕ ◦ τu : τ−1
u (U)→ X is a plot centered at ϕ(u). Define dϕ : TU → TX by the formula

dϕ(u,~v) := (ϕ(u), (ϕ ◦ τu)∗(~v)), (u,~v) ∈ TU.

These maps were first considered by Hector [37]. Then there exists a smallest diffeology on TX ,
called the dvs diffeology [16], for which the natural projection πTX : TX → X is a diffeological
vector pseudo-bundle, and which contains the parametrisations dϕ : TU → TX as plots.

Definition 2.18. Let X be a diffeological space. The diffeological vector pseudo-bundle πTX :
TX → X is called the internal tangent bundle of X .

The internal tangent bundle is functorial under smooth maps of diffeological spaces.
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Definition 2.19. Let f : X → Y be a smooth map of diffeological spaces. For any plot ϕ of X
centered at x, define

df(x, ϕ∗(~v)) := (f(x), (f ◦ ϕ)∗(~v)), x ∈ X

and extend by linearity to a map df : TX → TY. Then df is a smooth map [16, Proposition 4.8]
called the pushforward or differential of f .

Finally, we recall that every diffeological space admits a natural topology with respect to
which all plots are continuous.

Definition 2.20. Let X be a diffeological space. The D-topology on X is the topology whose
open sets are precisely those sets A ⊂ X for which ϕ−1(A) is open for all plots ϕ of X .

For manifolds, the D-topology coincides with the usual topology. Although the D-topology
will not play a central role in any of our constructions, we will see in Section 3.2 that it gives the
étale space of any sheaf of sections of a fibre bundle a natural topology which is distinct from
the usual étale topology.

3 Diffeological constructions

3.1 Pseudo-bundles of germs

In [47], we introduced “bundles of germs” of sections of certain fibre bundles. This construction
can be generalised easily as follows. Let πB : B → M be a smooth fibre bundle over a smooth
manifold M , and let S be a sheaf of smooth sections of πB. Assume that S is locally nonempty,
in the sense that for each x ∈ M , we can find an open neighbourhood O of x such that S (O)
is nonempty. Define the total space Sloc of the sheaf S as the union

Sloc :=
⋃
O

S (O)

over all open sets O in M of elements of S (O). Thus Sloc is the set of all locally defined sections
of πB that belong to some S (O). The arguments of [40, Section 1.63] can be used to show that
a diffeology may be defined on Sloc as follows.

Proposition 3.1. Let M be a manifold, and let S be a sheaf of smooth sections of some fibre
bundle B over M . Declare a parametrisation σ̃ : U → Sloc to have the property funct if for all
u0 ∈ U and x0 ∈ dom(σ̃(u0)), there exists an open neighbourhood V ⊂ U of u0 and an open
neighbourhood O ⊂ dom(σ̃(u0)) of x0 for which O ⊂ dom(σ̃(u)) for all u ∈ V and for which the
map V ×O 3 (u, x) 7→ σ̃(u)(x) ∈ B is smooth. Then the collection of parametrisations with the
property funct defines a diffeology on Sloc.

Proof. Observe first that if σ̃ : U 3 u 7→ σ ∈ S (O′) is a constant plot, then we can simply take
O := O′ and V = U to see that σ̃ has property funct. Therefore axiom 1 of Definition 2.11 is
satisfied. To see that axiom 2 is satisfied, suppose that σ̃ : U → Sloc is a parametrisation such
that for each u0 ∈ U , there exists an open neighbourhood V of u0 such that σ̃|V has property
funct. Then by definition σ̃ must itself have property funct, so that axiom 2 is satisfied. Finally,
to prove that axiom 3 is satisfied, suppose that σ̃ : U → Sloc has property funct and that U ′

is some open Euclidean domain with ϕ : U ′ → U a smooth function. Let u′0 ∈ U ′ and denote
u0 := ϕ(u′0) ∈ U . Let V be an open neighbourhood of u0 in U , and let O be an open subset of
dom(σ̃(u0)) for which O ⊂ dom(σ̃(u)) for all u ∈ V and for which V ×O 3 (u, x) 7→ σ̃(u)(x) ∈ B
is smooth. Then V ′ := ϕ−1(V ) is an open neighbourhood of u′0 in U ′, the open set O satisfies
O ⊂ dom(σ̃ ◦ ϕ(u)) for all u ∈ U and V ′ ×O 3 (u′, x) 7→ σ̃(ϕ(u′))(x) ∈ B is smooth. Therefore
axiom 3 is satisfied also. �
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Definition 3.2. Let M be a manifold, and S a sheaf of smooth sections of some fibre bundle
over M . Then the diffeology on Sloc given in Proposition 3.1 is called the functional diffeology
on Sloc.

Let us now consider the diffeological subspace

Γloc(S ) := {(x, σ) : x ∈ dom(σ)}

of the diffeological product M ×Sloc. There is then clearly a surjective, smooth map πΓloc(S ):
Γloc(S )→M defined by

πΓloc(S )(x, σ) := x, (x, σ) ∈ Γloc(S ),

which is moreover a subduction. Indeed, for any plot x̃ : U →M and for any u ∈ U we can always
find an open neighbourhood V of u in U such that x̃(V ) is contained in some open neighbour-
hood O of x̃(u) for which S (O) contains some element σ. Now defining ρ : V → Γloc(S )
by simply

ρ(v) := (x̃(v), σ), v ∈ V

we have that πΓloc(S ) ◦ ρ = x̃, making πΓloc(S ) a subduction as claimed. The fibre Γloc(S )x
over any x ∈ M is the nonempty space consisting of sections σ of S defined on some open
neighbourhood of x, equipped with the functional diffeology of Definition 3.2. The subduc-
tion πΓloc(S ) is the first step on the way to defining a genuinely useful object. Our next example
shows why πΓloc(S ) is too large to be of much use in its own right.

Example 3.3. Let F be a singular foliation of M , and denote the corresponding sheaf by the
same symbol. Each fibre Γloc(F)x is then almost a Lie algebra. Indeed, if X ∈ F(O1) and
Y ∈ F(O2) contain x in their domains of definition, then on the open neighbourhood O :=
O1∩O2 of x, the Lie bracket [X,Y ] ∈ F(O) is defined. There is, however, nothing special about
the choice O := O1∩O2, and indeed [X,Y ] also makes sense on any open neighbourhood O′ of x
withinO and technically defines a distinct element [X,Y ]|O′ ∈ F(O′). One encounters essentially
the same problem when trying to define vector space operations in Γloc(F)x. To rectify this sort
of problem we work instead with a quotient of Γloc(F).

Let us again return to a sheaf S of sections of a bundle πB : B → M . Let us denote
the germ at x of any local section σ of πB defined in an open neighbourhood of x by [σ]gx.
We define an equivalence relation ∼g on Γloc(S ) by declaring (x, σ) ∼g (y, η) if and only if
x = y and [σ]gx = [η]gx. We denote by Γg(S ) the diffeological quotient of Γ(S ) by the equivalence
relation ∼g, and denote by πg

S : Γg(S )→M the obvious surjection

πg
S

(
x, [σ]gx

)
:= x,

(
x, [σ]gx

)
∈ Γg(S ).

Since both the quotient map q : Γloc(S ) → Γg(S ) and the projection Γloc(S ) → M are sub-
ductions, so too is the projection πg

S : Γg(S ) → M . Thus πg
S : Γg(S ) → M is a diffeological

pseudo-bundle.

Definition 3.4. Let S be a sheaf of sections of a fibre bundle πB : B →M . Then the subduction
πg

S : Γg(S )→ M is called the pseudo-bundle of germs of S . If in particular S is the sheaf of
all sections of πB, then we denote the pseudo-bundle of germs of S by simply πg

B : Γg(πB)→M .

In fact the pseudo-bundle of germs of the full sheaf of sections of a fibre bundle πB : B →M
is a diffeological bundle, in the sense that all its fibres are isomorphic to the single diffeological
space C∞g,0

(
Rdim(M);F

)
of germs at zero of smooth functions from Rdim(M) into the typical
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fibre F of B. This can be seen, for instance, using an associated bundle construction in a similar
fashion to [47, Remark 5.7] – one need only replace the “distinguished functions” considered
therein with coordinate maps on M . Thus it is entirely reasonable to refer to Γg(πB) as the
bundle of germs of sections of πB. Let us now study its relationship with the jet bundles of πB.

For each k ≤ ∞ we have a canonical projection πk,gB : Γg(πB) → Γk(πB) onto the kth order
jet bundle of πB defined by

πk,gB
(
x, [σ]gx

)
:=
(
x, [σ]kx

)
,

(
x, [σ]gx

)
∈ Γg(πB).

The arguments of [47, Proposition 5.14] show that these projections are smooth, and are com-

patible with the jet projections πl,kB : Γk(πB)→ Γl(πB) in the sense that πl,gB = πl,kB ◦ π
k,g
B for all

l ≤ k. We therefore have a tower

Γg(πB)

Γ∞(πB)

· · · Γk+1(πB) Γk(πB) · · · B

π∞,gB

πk+1,∞
B πk,∞B π0,∞

B

πk,k+1
B

of diffeological bundles which extends the usual well-known tower of jet bundles of πB.

Now there is not an easily identifiable Lie bracket on the space of vector fields (that is,
sections of the internal tangent bundle) on Γg(πB), however there does exist a certain diffeological
subspace of vector fields which carries a natural Lie bracket. These vector fields are those that
are contained in the image of a germinal prolongation operator from projectable vector fields
on B to vector fields on Γg(πB).

Definition 3.5. Let πB : B → M be a fibre bundle. For (possibly time-dependent) X ∈
Xproj(B), the vector field pg(X) on Γg(πB) defined by the formula

pg(X)
(
x, [σ]gx

)
:=

d

dt

∣∣∣∣
t=0

(
Fl

(πB)∗X
t,0 (x),

[
FlXt,0 ◦σ ◦ Fl

(πB)∗(X)
0,t

]g
Fl

(πB)∗(X)
t,0 (x)

)
is called the germinal prolongation of X. The associated linear map pg : Xproj(B)→ X(Γg(πB))
is called the germinal prolongation operator, and its image is denoted Xproj(Γg(πB)).

Our next result relates the germinal prolongation operator to the jet prolongations of pro-
jectable vector fields, and can be seen as a justification of the nomenclature “germinal prolon-
gation”.

Proposition 3.6. Let πB : B →M be a fibre bundle. Then for each k ≤ ∞, we have

dπk,gB ◦ p
g(X) = pk(X) ◦ πk,gB

for all (possibly time-dependent) X ∈ Xproj(B). Consequently the tower of prolongations of Pro-
position 2.10 completes to a tower
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Xproj(Γg(πB))

Xproj(Γ∞(πB))

...

Xproj(B) Xproj(B)

(π∞,gB )∗

(
π0,1
B

)
∗

pg

p∞

id

Proof. For any k <∞ and X ∈ Xproj(B), we have

dπk,gB ◦ p
g(X)

(
x, [σ]gx

)
=

d

dt

∣∣∣∣
t=0

πk,gB

(
Fl

(πB)∗X
t,0 (x),

[
FlXt,0 ◦σ ◦ Fl

(πB)∗(X)
0,t

]g
Fl

(πB)∗(X)
t,0 (x)

)
=

d

dt

∣∣∣∣
t=0

(
Fl

(πB)∗X
t,0 (x),

[
FlXt,0 ◦σ ◦ Fl

(πB)∗(X)
0,t

]k
Fl

(πB)∗(X)
t,0 (x)

)
= pk(X)

(
πk,gB

(
x, [σ]gx

))
for all

(
x, [σ]gx

)
∈ Γg(πB). For k = ∞ the result follows from the universal property of the

projective limit of the πkB. �

The injectivity of the jet prolongation operators, which is apparent from equation (2.2) toge-
ther with Proposition 3.6, implies that the germinal prolongation operator pg : Xproj(B) →
X(Γg(πB)) of a bundle πB : B → M is injective. Consequently, on Xproj(Γg(πB)) we have a Lie
bracket that is well-defined by the formula

[pg(X), pg(Y )] := pg([X,Y ]), X, Y ∈ Xproj(B),

with respect to which each
(
πk,gB

)
∗ is a homomorphism of Lie algebras. While we will not

be making use of this feature in this article, we remark that it distinguishes Xproj(Γg(πB)) as
a rather special subspace of X(Γg(πB)), which, like the vector fields of many other diffeological
spaces [16], does not carry a natural Lie bracket in general.

It is in examples arising from singular foliations that one sees the justification for the termi-
nology “pseudo-bundle” in that the fibres of a pseudo-bundle of germs need not be isomorphic
in general.

Example 3.7. Consider the foliation F of R generated by the vector field X := f ∂
∂x , where f

is any smooth function on R such that f(x) = 0 for all x ≤ 0 and such that f(x) 6= 0 for all
x > 0. Then for any x0 < 0, the fibre Γg(F)x0 consists of only a single point (every multiple
of X is equal to zero in a neighbourhood of x0), while the fibre Γg(F)y0 for any y0 > 0 is
the infinite-dimensional diffeological space consisting of all germs of smooth functions defined
near the point y0, and Γg(F)0 is the infinite-dimensional diffeological space consisting of germs
of smooth functions defined near zero that vanish at zero and below.

Remark 3.8. The pseudo-bundles of germs of singular foliations may be of particular interest –
as we alluded to in Example 3.3, they are canonically pseudo-bundles of diffeological Lie algebras.
To be more precise, let F be a singular foliation of a manifold M . For each x ∈M , let Γloc(F)x
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be the diffeological subspace of Γloc(F) consisting of those local sections whose domains con-
tain x, and let qx : Γloc(F)x → Γg(F)x be the quotient map. Then it is routine to show that the
formulae

[qx(X), qx(Y )] := qx([X,Y ]), qx(X) + qx(Y ) = qx(X + Y ), αqx(X) := qx(αX)

for X,Y ∈ Γ(F)x and α ∈ R define a Lie algebra structure on Γg(F)x which is smooth with
respect to subspace diffeology from Γg(F). Thus πg

F : Γg(F) → M is a diffeological vector
pseudo-bundle of Lie algebras.

The final result of this subsection elucidates the nature of the tangent spaces to bundles
of germs. We refer to Definition 2.17 for notation.

Proposition 3.9. Let πB : B → M be a fibre bundle, with vertical tangent bundle V B → B,
and let

(
x, [σ]gx

)
∈ Γg(πB). Let Γg(σ∗V B)x denote the vector space of germs at x of sections

of σ∗V B. Then the map

d

dt

∣∣∣∣
0

(
γ(t), [σt]

g
γ(t)

)
7→
(

d

dt

∣∣∣∣
0

γ(t),

[
d

dt

∣∣∣∣
0

σt

]
x

)
, (3.1)

defines a linear isomorphism from T(x,[σ]gx)Γg(πB) to the vector space TxM⊕Γg(σ∗V B)x. In par-

ticular, if d/dt|0
(
γ(t), [σt]

g
γ(t)

)
= 0, then there exists a neighbourhood O of x on which one has

d

dt

∣∣∣∣
0

σt(y) = 0

for all y ∈ O.

Proof. First note that by definition of the diffeology on Γg(πB), any 1-plot (−ε, ε) → Γg(πB)
can, for sufficiently small ε, be guaranteed to be of the form t 7→

(
γ(t), [σt]

g
γ(t)

)
for some plots

t 7→ σt of Γloc(πB) and t 7→ γ(t) of M . Now observe that any sum of the form

d

dt

∣∣∣∣
0

(
γ(t), [σt]

g
γ(t)

)
+

d

dt

∣∣∣∣
0

(
γ̃(t), [σ̃t]

g
γ̃(t)

)
in T(x,[σ]gx)Γg(πB) can be represented by a single time derivative. By the first remark of this

proof, to see this it suffices to work in Γloc(πB). Letting Õ be a small neighbourhood of σ(x)
covering a small neighbourhood O of x, let ϕ : Õ → O×Rm denote the composite of coordinates
on the fibre of B with a local trivialisation of B about x such that ϕ(σ(x)) = (x, 0). Then the
formula

ψ(r, s) := ϕ−1(ϕ ◦ σr + ϕ ◦ σ̃s)

defines a 2-parameter plot of Γloc(πB). Letting ι, ι̃ : R → R2 denote the maps t 7→ (t, 0) and
t 7→ (0, t) respectively, we have σ = ψ ◦ ι and σ̃ = ψ ◦ ι̃, and therefore

d

dt

∣∣∣∣
0

σt +
d

dt

∣∣∣∣
0

σ̃t = (ψ ◦ ι)∗
(

d

dt

)
+ (ψ ◦ ι̃)∗

(
d

dt

)
= ψ∗

(
ι∗

(
d

dt

)
+ ι̃∗

(
d

dt

))
= ψ∗

(
d

dr
,

d

ds

)
in TσΓg(πB). Now observe that if h : R → R2 denotes the map t 7→ (t, t), then, defining
κt := ψ(t, t), we have

d

dt

∣∣∣∣
0

κt = (ψ ◦ h)∗

(
d

dt

)
= ψ∗h∗

(
d

dt

)
= ψ∗

(
d

dr
,

d

ds

)
=

d

dt

∣∣∣∣
0

σt +
d

dt

∣∣∣∣
0

σ̃t.

Higher sums can be dealt with via a similar argument. Thus equation (3.1) does indeed suffice
to define a map T(x,[σ]gx)Γg(πB)→ TxM⊕Γg(σ∗V B)x, whose linearity is clear, and which admits

the obvious inverse(
d

dt

∣∣∣∣
0

γ(t),

[
d

dt

∣∣∣∣
0

σt

]g

x

)
7→ d

dt

∣∣∣∣
0

(
γ(t), [σ]gγ(t)

)
. �
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3.2 Relationship with sheaves

In this subsection we present some results and examples which relate our pseudo-bundles of germs
to more well-known objects arising in sheaf theory. The first such result, which is required to
define the correct notion of morphism between singularly foliated bundles, is that a smooth
morphism of sheaves gives rise to a morphism of the associated pseudo-bundles.

Proposition 3.10. Let M be a manifold and let S 1 and S 2 be sheaves of sections of fibre
bundles πB1 and πB2 over M respectively. Suppose that F̃ : S 1 → S 2 is a morphism of sheaves
for which the induced morphism S 1

loc → S 2
loc is smooth (see Proposition 3.1). Then the formula

F
(
x, [σ]gx

)
:=
(
x, [F̃ (σ)]gx

)
,

(
x, [σ]gx

)
∈ Γg

(
S 1
)

defines a morphism F : Γg

(
S 1
)
→ Γg

(
S 2
)

of diffeological pseudo-bundles.

Proof. It is clear that F preserves fibres, so we need only check smoothness. Since for each
i = 1, 2 the quotient diffeology on Γg

(
S i
)

is inherited from the functional diffeology on S i
loc,

smoothness of the map S 1
loc → S 2

loc associated to F̃ ensures smoothness of F . �

The converse of Proposition 3.10 is not true in general – namely, a smooth morphism of
pseudo-bundles of germs need not arise from any morphism (smooth or otherwise) of the un-
derlying sheaves. This can be seen in the simplest of examples.

Example 3.11. Consider M = R, and B = R × R with πB : B → M the projection onto the
first factor. Consider the map F : Γg(πB)→ Γg(πB) defined by

F
(
x, [f ]gx

)
:=
(
x, [mxf ]gx

)
,

(
x, [f ]gx

)
∈ Γg(πB),

where mxf denotes the function y 7→ xf(y). Then F is smooth – indeed, if U is any open subset
of Rn and x̃ : U → R and f̃ : U → C∞(R,R) are any two plots, then for each x ∈ R, smoothness
of

(u, y) 7→ xf̃(u)(y)

guarantees that F ◦
(
x̃, [f̃ ]gx̃

)
: Rn → Γg(πB) is smooth. Now suppose that F̃ : C∞R → C∞R is

a morphism of sheaves. Then for F to be induced by F̃ , we must in particular have[
F̃ (id)

]g
0

= [0 id]g0 = 0,

so that there must exist ε > 0 for which F̃ (id) vanishes identically on (−ε, ε). However, for
x ∈ (−ε, ε) \ 0, we have[

F̃ (id)
]g
x

= 0 6= [mx id]gx.

Thus F cannot arise from any morphism of sheaves.

Morphisms of pseudo-bundles of germs which arise from morphisms of sheaves in the sense
of Proposition 3.10 will play an important role in the correct notion of morphism between
singularly foliated bundles. We thus record the following definition.

Definition 3.12. Let M be a manifold and let S1 and S2 be sheaves of sections of fibre
bundles over M . We say that a morphism F : Γg(S1)→ Γg(S2) is sheaf-induced if it arises from
a smooth morphism of the sheaves S1 → S2 in the sense of Proposition 3.10.



The Holonomy Groupoids of Singularly Foliated Bundles 17

Remark 3.13. For a sheaf S of sections of a fibre bundle πB over a manifold M , we clearly
have that Γg(S ) is equal as a set to the étale space [36, p. 67]

E(S ) :=
⊔
x∈M

Sx = Γg(S )

of the sheaf S . The étale space E(S ) is usually equipped with the étale topology, whose
topology is generated by those sets of the form

U(σ,O) :=
{

[σ]gx : x ∈ O
}

defined for open sets O of M and σ ∈ S (O). The set Γg(S ) may also be thought of with the
D-topology (see Definition 2.20) arising from the diffeology on Γg(S ) described in Definition 3.2,
whose open sets are precisely those subsets A for which ρ−1(A) is open in dom(ρ) for all plots ρ
of Γg(S ).

It is easy to see that the D-topology is contained in the étale topology. Suppose that a non-
empty subset A of Γg(S ) is open in the D-topology, and fix a point

(
x, [σ]gx

)
∈ A. Choose

a representative σ of [σ]gx. We find an open neighbourhood O of x in M such that U(σ,O) is
contained in A. Let U ⊂ Rn be an open set associated to a local coordinate system ϕ : U →M
with x ∈ range(ϕ), which we assume to be small enough that range(ϕ) ⊂ dom(σ). Then the
parametrisation ρ : U → Γg(S ) defined by

ρ(u) :=
(
ϕ(u), [σ]gϕ(u)

)
is a plot, and therefore

ρ−1(A) =
{
u ∈ U :

(
ϕ(u), [σ]gϕ(u)

)
∈ A

}
is an open subset of Rn. Defining O := ϕ

(
ρ−1(A)

)
, we see then that U(σ,O) ⊂ A

Curiously, the converse does not hold in general. That is, the D-topology is usually strictly
coarser than the étale topology. Consider M = R and B = R × R the trivial bundle with
πB : B → M the projection onto the first factor. Fix x0 ∈ R, and consider the plot ρ : R →
Γg(πB) defined by

ρ(t) :=
(
x0, [ft]

g
x0

)
,

where ft is the map x 7→ tx. Taking Γg(πB) with its étale topology, the set

U(id,R) :=
{(
x, [id]gx

)
: x ∈ R

}
is open in Γg(πB). However,

ρ−1(U(id,R)) = {t ∈ R : ρ(t) ∈ U(id,R)} = {1} ⊂ R

is not open. Therefore étale-open sets in Γg(πB) need not be open in the D-topology.

3.3 The leafwise path category

In [47], we introduced a diffeological version of the Moore path category for any regular folia-
tion (M,F). The objects of this category are simply points in M , while the morphisms are
smooth, leafwise paths which have sitting instants in that they are constant in small neighbour-
hoods of their endpoints. Composition of morphisms in this category is simply concatenation
of paths. In [60], the authors introduce an analogous diffeological space for singular foliations,
however concatenation of paths in this space no longer defines a category. In this section,
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we introduce a hybrid of these two approaches – a diffeological space of integral curves of vector
fields defining a singular foliation, for which concatenation of paths defines an associative and
smooth multiplication.

We begin by recalling the definition of the path category of a diffeological space from [47]
(cf. [57]).

Definition 3.14. Let X be a diffeological space. The path category of X is the diffeological
subspace P(X ) of the diffeological product C∞(R≥0,X )×R≥0 consisting of pairs (γ, d) for which
there exist neighbourhoods of 0 and of [d,∞) in R≥0 on which γ is constant. Path categories
are functorial – given any smooth map f : X → Y of diffeological spaces, the formula

P(f)(γ, d) := (f ◦ γ, d)

defines a smooth functor P(f) : P(X )→ P(Y) of diffeological categories.

Given any diffeological space X , range and source maps r and s mapping P(X ) → X are
defined respectively by (γ, d) 7→ γ(d) and (γ, d) 7→ γ(0), and whenever r(γ2, d2) = s(γ1, d1),
we define the product (γ1γ2, d1 + d2) of (γ1, d1) and (γ2, d2) by the formula

γ1γ2(t) :=

{
γ2(t), for 0 ≤ t ≤ d2,

γ1(t− d2), for d2 ≤ t <∞.

This product, together with the range and source maps, are smooth, so that P(X ) is a diffeologi-
cal category [47, Proposition 3.22]. Moreover [47, Proposition 3.23] there is a smooth involution
ι : P(X ) 3 (γ, d) 7→

(
γ−1, d

)
→ P(X ) defined by the formula

γ−1(t) :=

{
γ(d− t), if 0 ≤ t ≤ d,
γ(0), for t ≥ d.

Under favourable circumstances, which will be explicated in this section, the involution ι des-
cends to a genuine inversion on certain diffeological quotients of P(X ), giving such quotients the
structures of diffeological groupoids.

Suppose in particular that (M,F) is a singularly foliated manifold, and let Γg(F) be the
pseudo-bundle of germs of F . By connectedness of R≥0 := [0,∞), any smooth map γ̃ : [0,∞)→
Γg(F) has the form

γ̃(t) =
(
γ(t), [X(t)]gγ(t)

)
, t ∈ [0,∞), (3.2)

where γ : [0,∞)→M is a smooth curve, and where X : [0,∞)→ Γloc(F) is a smooth function.
We will implicitly use the notation of equation (3.2) in what follows.

Definition 3.15. Let (M,F) be a singularly foliated manifold. We define the leafwise or F-path
category P(F) to be the diffeological subspace of P(Γg(F)) consisting of triples

(
γ, [X]g, d

)
for

which X : [0,∞)→ Γloc(F) satisfies

(1) dom(X(t)) is equal to a fixed open neighbourhood of γ([0,∞)) = γ([0, d]) for all t,

(2) X(t)(γ(t)) = γ̇(t) for all t ∈ [0,∞), and

(3) [X(0)]gγ(0) = 0 and [X(t)]gγ(t) = 0 for all t ≥ d.

With range and source onto M given by r
(
γ, [X]g, d

)
:= γ(d) and s

(
γ, [X]g, d

)
:= γ(0) respec-

tively, by item 3, P(F) inherits composition from P(Γg(F)) to become a diffeological category
with object space M .
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Definition 3.15 is in practice the same as [60, Definition 3.1] given by Garmendia–Villatoro.
Note crucially that Definition 3.15 requires strictly more information than just the path in M -re-
quiring in addition a time-dependent extension of the tangent field of γ to an open neighbourhood
of γ. This is so that flows of elements of P(F) determine germs of diffeomorphisms defined
in open neighbourhoods of their sources. Thus Definition 3.15 may be contrasted with the
simpler [47, Definition 3.23] for regular foliations, where such an extension is not explicitly
required. In the regular case, the tangent field along a leafwise path can always be canonically
extended to a tangent field in a (transverse) open neighbourhood of the path in any foliated
chart. The same is not true in the singular setting.

We end the section by defining what we mean by a holonomy groupoid in the diffeological
context. The definition we give here is a mild generalisation of [47, Definition 3.26].

Definition 3.16. Let X be a diffeological space, and πB : B → X be a diffeological pseudo-
bundle. Let P be a diffeological category with object space X . A smooth functor T : P →
Aut(πB) (see Definition 2.16) is called a transport functor if there exists a smooth lifting map

L : P ×s,πB B → P(B)

such that T can be written as the composite

T (γ, d)(b) = r ◦ L((γ, d), b), ((γ, d), b) ∈ P ×s,πB B.

Note that smoothness of T follows from smoothness of L. If in particular P = P(F) is the
leafwise path category of some singularly foliated manifold (M,F), we refer to T as a leafwise
transport functor.

An important consequence of the existence of a transport functor is the existence of an asso-
ciated groupoid called the holonomy groupoid. This can be seen by the arguments of [47,
Proposition 3.27].

Definition 3.17. Let X be a diffeological space, πB : B → X a diffeological pseudo-bundle,
and P a diffeological category with object space X . If T : P → Aut(πB) is a transport functor,
then the quotient of P by the equivalence relation

γ1 ∼ γ2 ⇔ T (γ1) = T (γ2)

on its space of morphisms is a diffeological groupoid over X called the holonomy groupoid
associated to T .

4 Singularly foliated bundles and their holonomy groupoids

4.1 Singularly foliated bundles

Singular foliations are generalisations of regular foliations, and are naturally associated to Lie
groupoids more generally. In each of these special cases, one has a notion of fibre bundle which
is compatible with the additional structure – in the case of a Lie groupoid action, the correct
notion is that of an equivariant bundle, while for a regular foliation the correct notion is that
of a foliated bundle in the sense of Kamber and Tondeur [41]. We give in this section what
appears to be the first definition of a fibre bundle compatible with a singular foliation, which
simultaneously generalises equivariant and foliated bundles.

First, notice that projectable vector fields on a fibre bundle πB : B →M over a manifold M
do not generally form a sheaf of C∞B -modules over B. Indeed, if X is any projectable vector field
and f ∈ C∞(B) is any function which is non-constant along the fibres of πB, then equation (2.1)
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will in general no longer hold for the vector field fX. Projectable vector fields are, however,
closed under multiplication by functions of the form f ◦ πB, where f ∈ C∞(M). Since πB is
an open map, we can formulate the following definition, which will play a crucial role in our
definition of singularly foliated bundle.

Definition 4.1. Let πB : B →M be a fibre bundle. Denote by C∞proj,B the subsheaf

C∞proj,B(O) :=
{
f ◦ πB ∈ C∞B (O) : f ∈ C∞M (πB(O))

}
of C∞B , which we call the sheaf of projectable functions. We denote by Xproj,B the sheaf of
C∞proj,B-modules

Xproj,B(O) :=
{
X∈XB(O) : there is (πB)∗X∈XM (πB(O)) with dπB◦X=(πB)∗(X)◦πB

}
,

which we call the sheaf of projectable vector fields.

The pushforward of projectable vector fields can now be characterised in the following sheaf-
theoretic fashion. Recall that for a map f : X → Y of topological spaces and a sheaf S on X,
we use f!S to denote the pushforward of S on Y [36, p. 65].

Proposition 4.2. Let πB : B → M be a fibre bundle. The pushforward of projectable vector
fields induces a morphism (πB)∗ : (πB)!Xproj,B → XM of sheaves of C∞M -modules that preserves
the Lie bracket.

Proof. Notice first that we have a canonical isomorphism C∞M
∼= (πB)!C

∞
proj,B of sheaves of

rings, obtained simply by sending f ∈ C∞M (O) to f ◦ πB ∈ C∞proj,B(π−1
B (O)) for each open set O

in M . In this way the C∞proj,B-module structure of Xproj,B indeed defines a C∞M -module structure

on (πB)!Xproj,B. The pushforward (πB)∗ of X ∈ Xproj,B(π−1
B (O)) to (πB)∗(X) ∈ XM (O) then

clearly preserves the associated C∞M (O)-module structure for each open set O, and it is well-
known [42, Lemma 3.10] that it also preserves the Lie bracket of vector fields. �

Singularly foliated bundles are now defined by singular partial connections, which are partic-
ularly well-behaved partially-defined right-inverses of the pushforward morphism.

Definition 4.3. A singularly foliated bundle is a triple (πB,F , `), where πB : B →M is a fibre
bundle, F is a singular foliation of M , and ` : F → (πB)!Xproj,B is a morphism of sheaves of
C∞M -modules which preserves the Lie bracket, and for which the following hold.

1. The morphism ` is a partial right-inverse to (πB)∗ in the sense that

(πB)∗ ◦ ` = idF ,

on the sheaf F . In particular this implies that ` is injective.

2. The morphism ` is complete in the sense that for any open set O in M , any X ∈ F(O)
and any x ∈ O, if FlX(x) is defined on an interval I ⊂ R then so too is Fl`(X)(b) for any
b ∈ Bx.

3. The morphism ` is smooth in the sense that the induced morphism

Γloc(F)→ Γloc

(
(πB)!Xproj,B

)
of diffeological spaces is smooth with respect to the diffeology of Proposition 3.1.

We refer to such a morphism ` as a singular partial connection.
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We will usually denote a singularly foliated bundle (πB,F , `) by simply πB, with F and `
assumed unless otherwise stated. Before discussing some examples, let us mention that com-
pleteness of ` does not automatically follow from ` being a partial right inverse to (πB)∗. Indeed,
it is easy to verify that for any open set O ⊂M and for any X ∈ F(O), we have the relationship

FlXt (x) = πB
(

Fl
`(X)
t (b)

)
, x ∈ O, b ∈ Bx

between the flows of FlX(x) and Fl`(X)(b) wherever they are defined. In particular, that `
is a partial right-inverse to (πB)∗ implies that for any b ∈ Bx, the domain of Fl`(X)(b) is
contained in the domain of FlX(x). The converse, however, does not follow without completeness
of `, as is easily seen by considering the standard example of B = R2, M = R, and with
` : X(M)→ Xproj,B(B) defined by

`

(
f
∂

∂x

)
(x, y) := f(x)

(
∂

∂x
+ y2 ∂

∂y

)
for f ∈ C∞(M) and (x, y) ∈ B.

Example 4.4 (trivial bundles). If (M,F) is any singularly foliated manifold and Q is any other
manifold, then the trivial bundle π : M × Q → M is canonically a singularly foliated bundle.
Indeed, with respect to the decomposition T (M × Q) ∼= TM × TQ, one has the trivial lift
` : XM → π!Xproj,M×Q defined by the formula

`(X) := (π∗(X), 0) ∈ XM×Q
(
π−1(O)

)
= (π!XM×Q)(O)

for all open sets O in M and X ∈ XM (O). Restricting ` to the subsheaf F of XM one obtains
a singular partial connection, with both completeness and smoothness being trivial.

Example 4.5 (regularly foliated bundles). Suppose that πB : B → M is a regularly foliated
bundle, in the sense of Kamber–Tondeur [41, Definition 2.1] – that is, there exists an involutive
subbundle TFB ⊂ TB which is projected fibrewise-injectively to a subbundle TFM of TM .
Involutivity of TFB implies that both TFB and TFM integrate to regular foliations of B and
M respectively. Now if O is any open subset of M and X ∈ FM (O), then one obtains `(X) ∈
Xproj,B

(
π−1
B (O)

)
whose value at a point b ∈ B is the unique vector in TbFB that is mapped

by dπB to X(πB(b)). Clearly then the resulting morphism ` : FM → (πB)!Xproj,B is a singular
partial connection in the sense of Definition 4.3. Completeness and smoothness can both be seen
by choosing foliated coordinates, in which ` is simply given by a trivial lift as in Example 4.4.

Conversely, suppose that F is a regular foliation of a manifold M , with leaf dimension p,
and that πB : B →M is a fibre bundle with a singular partial connection ` : F → (πB)!Xproj,B.
In a foliated chart O ∼= Rp × Rq of M , wherein F(O) is the C∞M (O)-span of vector fields
{e1, . . . , ep} that form the standard frame field of Rp, injectivity of ` implies that the vector
fields {`(e1), . . . , `(ep)} span a p-dimensional subspace of TbB at each point b ∈ π−1

B (O) which
intersects the vertical tangent space at b only through zero. One thus obtains a smooth p-
dimensional distribution TFB in B, and involutivity of F together with the fact that ` preserves
the Lie bracket implies that TFB is involutive. Thus πB : B → M is a foliated bundle in the
sense of Kamber–Tondeur.

Example 4.6 (equivariant bundles). Let G be a Lie groupoid with unit space M . Denote the
Lie algebroid of G by A := ker(ds)|M , with anchor map dr : A → TM , and let F denote the
associated sheaf of vector fields of the form dr◦σ, where σ is an element of the sheaf of sections A
of the Lie algebroid A. Let πB : B →M be a fibre bundle.

If G acts on B, then denote by B o G the associated action groupoid [7, Example 2.2], with
range and source denoted rB and sB respectively. Then the Lie algebroid AB := ker(dsB)|B
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associated with the action groupoid BoG is isomorphic to π∗B(A). For any open subset O of M ,
the formula

˜̀(dr ◦ σ) := drB ◦ π∗B(σ), σ ∈ A(O)

then defines a singular partial connection. Completeness and smoothness are consequences of the
fact that ˜̀ is defined in terms of a smooth action of the groupoid G.

4.2 The holonomy groupoids of singularly foliated bundles

One of the key objects in our construction of the holonomy groupoids of a singularly foliated
bundle are pseudo-bundles of invariant germs/jets. To define these pseudo-bundles, we need
vertical prolongations of projectable vector fields (cf. [1, Definition 1.15]).

Definition 4.7. Let πB : B → M be a fibre bundle, let X ∈ Xproj(B), and let k denote any
of the symbols 1, . . . ,∞, g. The vector field vpk(X) on Γk(πB) defined by

vpk(X)
(
x, [σ]kx

)
:=

d

dt

∣∣∣∣
t=0

(
x,
[

FlXt ◦σ ◦ Fl
(πB)∗(X)
−t

]k
x

)
is called the vertical k-prolongation of X. On Γ0(πB) = B, we set vp0(X) := 0.

For a projectable vector field X on a fibre bundle πB : B → M and k ≥ 1, the vertical k-
prolongation vpk(X) is the image of pk(X) under the canonical

(
πk−1,k
B

)∗(
V πk−1

B

)
-valued contact

form θ(k) [56, Chapter 6.3] on Γk(πB). In local coordinates (xi, fα, fαi , . . . ), the components
of θ(k) are given by(

θ(k)
)α
I

= dfαI − fαIidxi

for each |I| < k. Thus it is easily checked (cf. equation (2.2)) that in coordinates the vertical
prolongation of X = ai ∂

∂xi
+ bα ∂

∂fα is given by

vpk(X) =
k−1∑
|I|=0

D
(k)
I (bα − aifαi )

∂

∂fαI
.

The invariant pseudo-bundles of a singularly foliated bundle are now defined as follows.

Definition 4.8. Let πB : B → M be a singularly foliated bundle, and let k denote any of the
symbols 0, 1, . . . ,∞, g. An element

(
x, [σ]kx

)
of πB is said to be F-invariant to order k if

vpk
(
`(X)

)(
x, [σ]kx

)
= 0

for all X ∈ F defined in a neighbourhood x. We say that πB admits enough conservation laws to
order k if at each x ∈M there is

(
x, [σ]kx

)
which is F-invariant. This being the case, we call the

corresponding sub-pseudo-bundle Γk(πB)F ⊂ Γk(πB) consisting of invariant germs/jets the kth

order F-invariant pseudo-bundle of πB. We denote by πk,FB the restriction of πkB to Γk(πB)F .

Note that if a singularly foliated bundle admits enough conservation laws to order k > 0,
then it admits enough conservation laws to any l ≤ k. Moreover, by definition, every singularly
foliated bundle admits enough conservation laws to order 0.

Recall now [47, Definition 2.10] that if πB : B → M is a regularly foliated bundle, a locally-
defined section σ of πB is said to be distinguished if, about any point in its image, there exist
foliated coordinates (xα, yα, fα), with xα and yα denoting the leafwise and transverse coordi-
nates respectively in the base, and with fα denoting coordinates in the fibre, with respect to
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which σ = σ(yα) is independent of the leafwise coordinates. We denote by Dg(πB) the dif-
feological bundle of germs of the sheaf of distinguished sections, and by Dk(πB) the bundle
of jets of distinguished sections. The next proposition says that the F-invariant pseudo-bundles
of Definition 4.8 generalise the bundles of distinguished sections appearing in the regular case,
and that therefore our constructions recover those of [47] in the regular case. In particular, since
distinguished functions of this sort furnish the (local) degree 0 characteristic cohomology classes
of regular foliations [14, Example 1], we feel justified in referring to the F-invariant germs/jets
of a singularly foliated bundle as its conservation laws.

Proposition 4.9. Let πB : B → M be a regularly foliated bundle, and let k denote any of the
symbols 0, . . . ,∞, g. Then the diffeological subspace Γk(πB)F coincides with the space Dk(πB)
of classes of distinguished sections.

Proof. In foliated coordinates (xα, yα, fα) for B, corresponding to leafwise, transverse and fibre
coordinates respectively, any element X ∈ F is given by some C∞M -linear combination

X = ai
∂

∂xiα
,

while `(X) (see Example 4.5) is given by

`(X) = π∗B(ai)
∂

∂xiα
.

Thus, in our coordinates (xα, yα, fα) ∈ Rp × Rq × Rk, we have simply

Fl
`(X)
t (xα, yα, fα) =

(
FlXt (xα), yα, fα

)
for small t. It follows immediately that for any smooth function σ : Rp × Rq → Rk, the curve

t 7→
(

Fl
`(X)
t ◦(id×σ) ◦ FlX−t

)
(xα, yα) =

(
xα, yα, σ

(
FlXt (xα), yα

))
is constant in t for all X ∈ F if and only if σ is constant in the x coordinate. Thus Γg(πB)F =
Dg(πB). Since foliated coordinates can always be used to extend an invariant jet to an invariant
local section, one has Γk(πB)F = Dk(πB) for k ≤ ∞ also. �

Defining lifting maps and leafwise transport functors for a singularly foliated bundle is now
a simple matter of putting our definitions together.

Theorem 4.10. Let πB : B → M be a singularly foliated bundle. Let k denote any of the
symbols 0, . . . ,∞, g, and suppose that πB admits enough conservation laws to order k. Then for
each

(
γ, [X]g, d

)
∈ P(F), γ(0) = x, and for each

(
x, [σ]kx

)
∈ Γk(πB)Fx , the map

t 7→
(
γ(t),

[
Fl
`(X)
t,0 ◦σ ◦ FlX0,t

]k
γ(t)

)
(4.1)

is the unique solution to the initial value problem

d

ds

∣∣∣∣
t

f
(
s;x, [σ]kx

)
= pk

(
`(X(t))

)(
f
(
t;x, [σ]kx

))
, f

(
0;x, [σ]kx

)
=
(
x, [σ]kx

)
(4.2)

in the diffeological space Γk(πB)F for which πk,FB ◦ f
(
−;x, [σ]kx

)
= γ(−). Moreover, the lifting

map L
(
πk,FB

)
: P(F)×

s,πk,FB
Γk(πB)F → P

(
Γk(πB)F

)
defined by

L
(
πk,FB

)(
γ, [X]g, d;x, [σ]kx

)
(t) :=

(
γ(t),

[
Fl
`(X)
t,0 ◦σ ◦ FlX0,t

]k
γ(t)

)
, t ∈ [0,∞) (4.3)

is smooth.
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Note that the expression on the right hand side of equation (4.3) only makes sense by the
completeness assumption on the singular partial connection. To prove Theorem 4.10, we require
the following lemma.

Lemma 4.11. Let (M,F) be a singular foliation. Suppose that U is an open set in Euclidean
space and X : R≥0 × U → Γloc(F) and γ : R≥0 × U →M are smooth maps for which

(1) dom(X(t, u)) = dom(X(s, u)) for all s, t ∈ R≥0 and u ∈ U , and for which

(2) t 7→ γ(t, u) is an integral curve of X(t, u) for all (t, u) ∈ R≥0 × U . That is,

d

ds

∣∣∣∣
s=t

γ(s, u) = X(t, u)(γ(t, u))

for all (t, u) ∈ R≥0 × U .

Then for each t0 ∈ R≥0 and u0 ∈ U , there exist ε > 0 and open neighbourhoods U 3 u0 in U

and O 3 x0 := γ(0, u0) in M , such that O ⊂ dom
(

Fl
X(u)
t,0

)
for all (t, u) ∈ [0, t0 + ε) × U , and

for which the map

[0, t0 + ε)× U ×O 3 (t, u, x) 7→ Fl
X(u)
t,0 (x) ∈M

is smooth.

Proof. By the definition of the diffeology on Γloc(F) and hypothesis 1, we can find open sets
U ′ 3 u0 and O′ 3 x0 such that O′ ⊂ dom(X(t, u)) for all (t, u) ∈ R≥0 × U ′, and on which

R≥0 × U ′ ×O′ 3 (t, u, x) 7→ X(t, u)(x) ∈ TM

is smooth. By hypothesis 2 we can assume that O′ contains γ(R≥0 × {u0}). Now X may be
regarded as a time-dependent vector field on the manifold U ′ × O′, and then by standard the-
ory [44, Theorem 9.48], there exists some maximal open neighbourhood N ⊂ U ′×O′ of (u0, x0)

on which t 7→ Fl
X(u)
t,0 (x) is defined for all u ∈ U , x ∈ O and for small t. Since by hypothesis

t 7→ Fl
X(u0)
t,0 (x0) = γ(t, u0) is defined for all t ∈ R≥0 we can always choose ε > 0, U 3 u0 and

O 3 x0 small enough that (t, u, x) 7→ Fl
X(u)
t,0 (x) is well-defined and smooth on [0, t0 + ε)×U ×O

as claimed. �

Proof of Theorem 4.10. That equation (4.1) defines a curve in Γk(πB)F follows from the inva-
riance of F under its own (possibly time-dependent [60, Lemma 3.3]) flows [2, Proposition 1.6],
the F-invariance of σ, and that ` is bracket preserving. More precisely, given t ∈ [0,∞), an open
neighbourhood O of γ(t) and Y ∈ F(O), since ` is bracket preserving we have

`([X(t), Y ])
(

Fl
`(X)
t,0 (b)

)
= [`(X(t)), `(Y )]

(
Fl
`(X)
t,0 (b)

)
(4.4)

for all b ∈ Fl
`(X)
0,t (O). Now, for any such b, with πB(b) = x′, the right hand side of equation (4.4)

is the lift by ` of the tangent to the curve r 7→
(

FlX0,t+r
)
∗
(
Y
(

FlXt+r,0(x′)
))

at r = 0, while the left

hand side is the tangent to the curve r 7→
(

Fl
`(X)
0,t+r

)
∗
(
`(Y )

(
Fl
`(X)
t+r,0(b)

))
at r = 0. By uniqueness

of flows therefore, we have(
Fl
`(X)
0,t

)
∗(`(Y )) = `

((
FlX0,t

)
∗(Y )

)
. (4.5)
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For notational simplicity denote ϕ := FlXt,0 and `(ϕ) := Fl
`(X)
t,0 . Then we use equation (4.5) to

compute

vpk(`(Y ))
(
γ(t), [`(ϕ)◦σ◦ϕ−1]kγ(t)

)
=

d

ds

∣∣∣∣
s=0

(
γ(t),

[
Fl`(Y )
s ◦`(ϕ) ◦ σ ◦ ϕ−1 ◦ FlY−s

]k
γ(t)

)
=

d

ds

∣∣∣∣
s=0

(
γ(t),

[
`(ϕ)◦ Fl`(ϕ

−1
∗ (Y ))

s ◦σ ◦ Fl
ϕ−1
∗ (Y )
−s ◦ϕ−1

]k
γ(t)

)
= 0

by the F-invariance of σ and since ϕ−1
∗ (Y ) ∈ F . Therefore equation (4.1) does indeed de-

fine a curve in Γk(πB)F . That equation (4.1) defines a solution to the initial value problem
of equation (4.2) follows by definition of the prolongation.

Uniqueness for k finite follows from uniqueness of the flow in a manifold (since each Γk(πB)F

is a subset of the jet manifold Γk(πB)), while for k = ∞ any solution to equation (4.2) is the
projective limit of the solutions for finite k, so uniqueness in this case follows from uniqueness
for each finite k. Since Γg(πB) is neither a manifold nor a projective limit of manifolds, the
argument is more subtle in the k = g case. Suppose that ρ : [0, d] → Γg(πB)F is some other
solution to the initial value problem given in equation (4.2); thus in particular ρ(0) =

(
x, [σ]gx

)
.

Let us consider ε > 0 sufficiently small that for all t ∈ [0, ε) we can write ρ(t) =
(
γ(t), [σt]

g
γ(t)

)
for

some F-invariant family t 7→ σt in Γloc(πB). By definition of the diffeology on Γloc(πB) we may
assume that ε is sufficiently small that there is some open neighbourhood O of γ(0) containing
γ([0, ε)) and on which σt is defined for all t ∈ [0, ε). Let us also assume that there are fibre
bundle coordinates

(
x1, . . . , xn; b1, . . . , bm

)
on B about σ(x), the projection of whose domain

to M contains O. By hypothesis we have
d

ds

∣∣∣∣
t

[σs]
g
γ(s) =

d

ds

∣∣∣∣
t

[
Fl
`(X)
s,0 ◦σ ◦ FlX0,s

]
γ(s)

for all t ∈ [0, ε), which by Proposition 3.9 implies the coordinate expression
d

ds

∣∣∣∣
t

(
σis(x

1, . . . , xn)−
(

Fl
`(X)
s,0 ◦σ ◦ FlX0,s

)i(
x1, . . . , xn

))
= 0.

for i = 1, . . . ,m and for
(
x1, . . . , xn

)
∈ O. This being true for all t ∈ [0, ε), it follows that the

difference σit −
(

Fl
`(X)
t,0 ◦σ ◦ FlX0,t

)i
is constant in t on O for all i, and since σi0 = σi on O we

obtain [σt]
g
γ(t) =

[
Fl
`(X)
t,0 ◦σ ◦ FlX0,t

]g
γ(t)

for all t ∈ [0, ε). Uniqueness on [0, d] now follows from

the compactness of [0, d].

It remains only to show smoothness of L
(
πk,FB

)
. Let ϕP :=

(
γ̃, [X̃]g, d̃

)
: U → P(F) and ϕΓ :=(

x̃, [σ̃]kx̃
)

: V → Γk(πB)F be plots. We need to show that the map from W := U ×
s◦ϕP ,πk,FB ◦ϕΓ

V × R≥0 to Γk(πB)F defined by

(u, v, t) 7→
(
γ̃(u)(t),

[
Fl
`(X̃(u))
t,0 ◦σ̃(v) ◦ Fl

X̃(u)
0,t

]k
γ̃(u)(t)

)
is smooth. The map γ̃ is already a plot of P(M) by definition. Recalling that (ΓπB )loc denotes
the space of all locally defined sections of πB equipped with the diffeology of Proposition 3.1,
it suffices to show that the map

(u, v, t) 7→ κ(u, v, t) :=
(

Fl
`(X̃(u))
t,0 ◦σ̃(v) ◦ Fl

X̃(u)
0,t

)
∈ (ΓπB )loc

is smooth. That is, fixing (u0, v0, t0) ∈ W and x0 ∈ dom(κ(u0, v0, t0)), we must find an open
neighbourhood W of (u0, v0, t0) in W and an open neighbourhood O of x0 in M such that
O ⊂ dom(κ(u, v, t)) for all (u, v, t) ∈ W and for which the map

W ×O 3 (u, v, t, x) 7→ κ(u, v, t)(x) ∈ B

is smooth in the usual sense. Setting d0 := d(u0), we have the following.
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1. Using Lemma 4.11 together with the smoothness of ` as a map Γloc(F) → (πB)∗(XB)loc,

we can find open neighbourhoods OB 3 σ̃(v0)
(

Fl
X̃(u0)
0,t0

(x0)
)

in B, U1 3 u0 in U and

I1 ⊃ [0, t0] in R≥0 for which OB ⊂ dom
(

Fl
`(X̃(u))
t,0

)
for all (u, t) ∈ U1 × I1, and such that

I1 × U1 ×OB 3 (t, u, b) 7→ Fl
`(X̃(u))
t,0 (b) ∈ B is smooth.

2. By definition of the diffeology on (ΓπB )loc, we can find open neighbourhoods OM 3
Fl
X̃(u0)
0,t0

(x0) in M and V 3 v0 in V such that OM ⊂ dom(σ̃(v)) and σ̃(v)(OM ) ⊂ OB

for all v ∈ V, and for which V ×OM 3 (v, x) 7→ σ̃(v)(x) ∈ B is smooth.

3. Again by Lemma 4.11, we can find open neighbourhoods U2 3 u0, I2 ⊃ [0, t0] in R≥0 and

O 3 x0 in M such that O ⊂ dom
(

Fl
X̃(u)
0,t

)
and Fl

X̃(u)
0,t (O) ⊂ OM for all u ∈ U2 and t ∈ I2,

and such that I2 × U2 ×O 3 (t, u, x) 7→ Fl
X̃(u)
0,t (x) ∈M is smooth.

Finally, therefore, setting U := U1 ∩ U2, I := I1 ∩ I2 and

W := U ×
s◦ϕP ,πk,FB ◦ϕΓ

V × I ⊂W,

we have O ⊂ dom(κ(u, v, t)) for all (u, v, t) ∈ W and W ×O 3 (u, v, t, x) 7→ κ(u, v, t)(x) ∈ B is
smooth. �

Definition 4.12. Let πB : B → M be a singularly foliated bundle. Let k denote any of the
symbols 0, . . . ,∞, g, and suppose that πB admits enough conservation laws to order k. Then
the map T

(
πk,FB

)
: P(F)→ Aut

(
πk,FB

)
defined by

T
(
πk,FB

)(
γ, [X]g, d

)(
x, [σ]kx

)
:= L

(
πk,FB

)(
γ, [X], d;x, [σ]kx

)
(d)

is a transport functor called the k-transport functor for πB. The associated holonomy groupoid
(see Definition 3.17) is called the k-holonomy groupoid of πB and denoted H

(
πk,FB

)
.

Note that since each holonomy groupoid of Definition 4.12 arises as a quotient of the leafwise
path category, every one of them integrates the foliation of the base in the sense of Theorem 2.3.
Finally, we have the following analogue of [47, Theorem 5.15] which relates all of the holonomy
groupoids of a singularly foliated bundle.

In what follows we will assume the set {0, 1, . . . ,∞, g} to be equipped with the total order
which coincides with the usual one on N, and for which k <∞ < g for all k ∈ N.

Theorem 4.13. Let πB : B → M be a singularly foliated bundle, and suppose that πB admits
enough conservation laws to order k. Then for each l ≤ k, there is a subductive groupoid
morphism Πl,k

B : H
(
πk,FB

)
→ H(πl,FB ) such that Πm,k

B = Πm,l
B ◦Π

l,k
B for all m ≤ l ≤ k. In particular,

if πB admits enough conservation laws to order g, we have a commuting diagram

H
(
πg,F
B

)

H
(
π∞,FB

)

· · · H
(
πk+1,F
B

)
H
(
πk,FB

)
· · · H

(
π0,F
B

)

Π∞,gB

Πk+1,∞
B Πk,∞B Π0,∞

B

Πk,k+1
B

of diffeological groupoids, which we refer to as the hierarchy of holonomy groupoids for the
singularly foliated bundle πB.

Proof. The proof is similar to that of [47, Theorem 5.15]. �
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4.3 Agreement with the Garmendia–Villatoro construction

We show in this subsection that for trivial singularly foliated bundles, the germinal holonomy
groupoid of Definition 4.12 (all trivial singularly foliated bundles admit enough conservation laws
to order g – one need only take the constant functions) is a quotient of the holonomy groupoid
constructed by Garmendia–Villatoro in [60], hence [60, Theorem 5.5] is also a quotient of the
Androulidakis–Skandalis holonomy groupoid [2]. A key feature of the Garmendia–Villatoro
construction is the use of slices.

Definition 4.14. Let (M,F) be a singularly foliated manifold. A slice through a point x ∈M is
an embedded submanifold Sx ↪→M such that TxS∩TxLx = 0, and such that TyM = TyS+TyLy
for all y ∈ S.

Given a singularly foliated manifold (M,F), Garmendia and Villatoro attach to each point
x ∈M a slice Sx, and denote by g DiffF (Sx, Sy) the set of germs of foliation-preserving diffeomor-
phisms from Sx to Sy. Letting Ix denote the ideal of smooth functions vanishing at x, the group
g DiffF (Sx, Sx) admits a subgroup exp(IxF|Sx) consisting of flows of (possibly time-dependent)
elements of IxF|Sx . Garmendia and Villatoro then define the groupoid

HT :=
⊔

x,y∈M
g DiffF (Sx, Sy)/ exp

(
IyF|Sy

)
of holonomy transformations. Any element (γ, [X]g, d) ∈ P(F) defines an element Hol(γ, [X]g, d)
of HT by choosing [6, Lemma A.8] Z ∈ Iγ(d)F such that FlZ1 ◦FlXd maps a neighbourhood of γ(0)
in Sγ(0) onto a neighbourhood of γ(d) in Sγ(d). Then the class of

Hol(γ, [X]g, d) :=
[

FlZ1,0 ◦FlXd,0
]g
γ(0)

in HT is independent of the choice of Z, and one thereby obtains a map Hol : P(F) → HT.
The Garmendia–Villatoro holonomy groupoid is now the diffeological quotient of P(F) by the
fibres of Hol.

Theorem 4.15. Let (M,F) be a singularly foliated manifold of dimension n. Then the holonomy
groupoid H

(
πg,F
M×Rn

)
associated to the trivial singularly foliated bundle πM×Rn : M × Rn →M

(see Example 4.4) is the quotient of the Garmendia–Villatoro holonomy groupoid by the equiv-
alence relation which identifies groupoid elements if and only if they induce the same parallel
transport map on n-tuples of first integrals. In particular, if F is regular of codimension q ≤ n,
then H

(
πg,F
M×Rn

)
coincides with the Garmendia–Villatoro holonomy groupoid.

In order to prove Theorem 4.15, we need to show that if two elements of the leafwise path
space P(F) of such a foliation are mapped to the same germ under Hol then they are mapped
to the same diffeomorphism in Aut

(
πg,F
M×Rn

)
under the transport functor T of Definition 4.12,

and conversely for F regular. To show that this is true let us discuss the relationship between
slices in (M,F) and F-invariant local sections of M × Rn.

Slices are always found inside certain foliated charts. We recall [6, Proposition 1.3] that if
the dimension of the leaf Lx through x is p, and if Sx is a slice through x, then there exists an
open neighbourhood O of x in M and a diffeomorphism of foliated manifolds(

O,F|O
) ∼= (Rp,XRp

)
× (Sx,F|Sx). (4.6)

In these coordinates, every F-invariant section of M × Rn →M takes the form

σ(a, b) = (a, b, f(b)), (a, b) ∈ Rp × Sx, (4.7)

where f : Sx → Rn is an F-invariant function.
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Proof of Theorem 4.15. Denote the transport functor T
(
πg,F
M×Rn

)
by simply T . Given ele-

ments
(
γi, [Xi]

g, di
)
∈ P(F), i = 1, 2, for item 1 we must show that Hol

(
γ1, [X1]g, d1

)
=

Hol
(
γ2, [X2]g, d2

)
implies T

(
γ1, [X1]g, d1

)
= T

(
γ2, [X2]g, d2

)
, and conversely for item 2 sub-

ject to the additional hypothesis. Clearly in either case γ1 and γ2 must have the same source
and range, which we denote by x and y respectively, and each Xi defines a diffeomorphism
ϕi := FlXidi,0 of some open neighbourhood Ox of x onto an open neighbourhood Oy of y. We may
assume that Ox and Oy are of the form given in equation (4.6) for the slices Sx and Sy about x

and y respectively that are used to define HT. Let us fix Zi, i = 1, 2, such that FlZi1,0 ◦FlXidi,0 maps
a neighbourhood of x in Sx onto a neighbourhood of y in Sy.

First suppose that Hol
(
γ1, [X1]g, d1

)
= Hol

(
γ2, [X2]g, d2

)
. Then there exists a possibly time-

dependent element W of IxF|Sx such that[
FlZ1

1,0 ◦FlX1
d1,0

∣∣
Sx

]g
x

=
[

FlW1,0 ◦FlZ2
1,0 ◦FlX2

d2,0

∣∣
Sx

]g
x

as germs of maps Sx → Sy at x. Now for any F-invariant section σ defined in an open neigh-
bourhood y of M , we have

Fl
`(X1)
0,d1

◦σ ◦ FlX1
d1,0

= Fl
`(X1)
0,d1

◦Fl
`(Z1)
0,1 ◦σ ◦ FlZ1

1,0 ◦FlX1
d1,0

on an open neighbourhood of x. Choosing coordinates about x and y defined respectively
by Sx and Sy as in equation (4.6), with σ given by an F-invariant function f : Sy → Rn as in
equation (4.7), we then have

Fl
`(X1)
0,d1

◦Fl
`(Z1)
0,1 ◦σ ◦ FlZ1

1,0 ◦FlX1
d1,0

(a, b) =
(
a, b,

(
f ◦ FlZ1

1,0 ◦FlX1
d1,0

)
(b)
)

=
(
a, b,

(
f ◦ FlW1,0 ◦FlZ2

1,0 ◦FlX2
d2,0

)
(b)
)

=
(
a, b,

(
f ◦ FlZ2

1,0 ◦FlX2
d2,0

)
(b)
)

= Fl
`(X2)
0,d2

◦Fl
`(Z2)
0,1 ◦σ ◦ FlZ2

1,0 ◦FlX2
d2,0

(a, b)

= Fl
`(X2)
0,d2

◦σ ◦ FlX2
d2,0

(a, b)

for (a, b) close to (0, x) in Rk × Sx, giving T
(
(γ1, [X1]g, d1)−1

)
= T

(
(γ2, [X2]g, d2)−1

)
and hence

T
(
γ1, [X1]g, d1

)
= T

(
γ2, [X2]g, d2

)
.

Now suppose that F is regular of codimension q ≤ n and that
(
γi, [Xi]

g, di
)

define the same

element in H
(
πg,F
M×Rn

)
. Then for all F-invariant sections σ defined in a neighbourhood of y,

we have

Fl
`(X1)
0,d1

◦Fl
`(Z1)
0,1 ◦σ ◦ FlZ1

1,0 ◦FlX1
d1,0

= Fl
`(X1)
0,d1

◦σ ◦ FlX1
d1,0

= Fl
`(X2)
0,d2

◦σ ◦ FlX2
d2,0

= Fl
`(X2)
0,d2

◦Fl
`(Z2)
0,1 ◦σ ◦ FlZ2

1,0 ◦FlX2
d2,0

on some open neighbourhood of x in M . Writing σ in terms of an F-invariant function f on Sy
as in equation (4.7), we then have

f ◦ FlZ1
1,0 ◦FlX1

d1,0

∣∣
Sx

= f ◦ FlZ2
1,0 ◦FlX2

d2,0

∣∣
Sx

on some open neighbourhood of x in Sx. Since slices in a regular foliation carry trivial foliations
by points, taking f to be the restriction to Sy of any function U → Rq ↪→ Rn defining F on
an open set U containing y we then have

FlZ1
1,0 ◦FlX1

d1,0

∣∣
Sx

= FlZ2
1,0 ◦FlX2

d2,0

∣∣
Sx

on some neighbourhood of x in Sx, hence Hol
(
γ1, [X1]g, d1

)
= Hol

(
γ2, [X2]g, d2

)
. �
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The proof of the second part of Theorem 4.15 might seem to suggest that if F is given by
a smooth, possibly singular, codimension q ≤ n Haefliger structure [35] (i.e., the leaves are
locally the level sets of families of first integrals), then the holonomy groupoid H

(
πg,F
M×Rq

)
will

coincide with the Garmendia–Villatoro groupoid. Somewhat surprisingly this is not true, as can
be seen in even the simplest of examples.

Example 4.16. The Androulidakis–Skandalis holonomy groupoid (and therefore the Garmen-
dia–Villatoro groupoid) of the foliation F of R2 by concentric circles is the action groupoid
S1 nR2 [28, Example 2, p. 496]. On the other hand, since all F-invariant functions in a neigh-
bourhood of the origin are (germinally) fixed by flows of F-fields, the holonomy groupoid of the
trivial singularly foliated bundle R× R2 → R2 is, as a set, equal to S1 ×

(
R2 \ {0R2}

)
∪ {0R2}.

Example 4.16 motivates the following conjecture, a proof of which would definitively say
that conservation laws are never sufficient to capture all the holonomy of genuinely singular
foliations.

Conjecture 4.17. Suppose that a foliation F of a manifold M is defined by a codimension q
Haefliger structure H. Then the holonomy groupoid H

(
πg,F
M×Rq

)
is equal to the Garmendia–

Villatoro groupoid if and only if H is a regular Haefliger structure.

It is expected that Conjecture 4.17 will require a study of the relationship between slices and
the critical points of first integrals. We comment on the potential for generalisation of the ideas
in this paper to recover the Androulidakis–Skandalis groupoid in full generality in the outlook
section at the end of the paper.

4.4 Functoriality

In this final section, we show that all of our constructions are functorial for a class of morphisms
of singularly foliated bundles over the same base foliation. It is conceivable that these results can
be extended to morphisms between singularly foliated bundles over different foliations (cf. [60,
Theorem 6.21]), however this would likely involve an analogue of the homotopy groupoid of [60],
which is beyond the scope of this paper. We leave this question open to future research.

Definition 4.18. Let (M,F) be a singular foliation, let k denote any of the symbols 0, 1, . . . ,
∞, g, and let πB1 : B1 →M and πB2 : B2 →M be singularly foliated bundles that admit enough
conservation laws to order k. A morphism of order k from πB1 to πB2 consists of a surjective
bundle morphism f : B1 → B2 with the properties that:

(1) the range of `1 consists of vector fields which are projectable via f and one has

f∗ ◦ `1 = `2,

(2) f admits enough conservation laws to order k. That is, for every b ∈ B2 there is an open
neighbourhood O of b in B2 and a local section κ : O → B2 of f for which

d

dt

∣∣∣∣
0

[
Fl
`2(X)
t ◦κ ◦ Fl

`1(X)
−t

]k
b

= 0

for all X ∈ F defined in a neighbourhood of πB2(b).

Observe, in the notation of Definition 4.18, that if σ is any F-invariant section of πB1 , then
f ◦ σ is an F-invariant section of πB2 : for X ∈ F defined in a neighbourhood of x ∈ dom(σ),
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we have

d

dt

∣∣∣∣
0

[
Fl
`2(X)
t ◦(f ◦ σ) ◦ FlX−t

]k
x

=
d

dt

∣∣∣∣
0

[
f ◦ Fl

`1(X)
t ◦σ ◦ FlX−t

]k
x

= d[f ]k
d

dt

∣∣∣∣
0

[
Fl
`1(X)
t ◦σ ◦ FlX−t

]k
x

= 0,

where [f ]k : Γk(πB1) → Γk(πB2) is the smooth map
(
x, [σ]kx

)
7→ (x, [f ◦ σ]kx) induced by f and

d[f ]k its differential (Definition 2.19). Thus f induces a morphism fF : Γk(πB1)F → Γk(πB2)F

of diffeological pseudo-bundles, which is surjective since f admits enough conservation laws to
order k.

Theorem 4.19. Let k denote any of the symbols 0, 1, . . . ,∞, g, let πB1 : B1 → M and πB2 :
B2 →M be singularly foliated bundles admitting enough conservation laws to order k, and let
f : πB1 → πB2 be a morphism of order k in the sense of Definition 4.18. Then the identity

map id : P(F) → P(F) descends, for each l ≤ k, to a morphism φl : H
(
πl,FB1

)
→ H

(
πl,FB2

)
of

diffeological groupoids for which the diagrams

H
(
πl,FB1

)
H
(
πl,FB2

)

H
(
πm,FB1

)
H
(
πm,FB2

)
φl

Πm,lB1
Πm,lB2

φm

(4.8)

commute for all m ≤ l ≤ k. In particular if πB1 and πB2 admit enough conservation laws to
order g and f is a morphism of order g, the diagram

H
(
πg,F
B1

)

H
(
πg,F
B2

)

H
(
π∞,FB1

)

H
(
π∞,FB2

)

· · · H
(
πk+1,F
B1

)
H
(
πk,FB1

)
· · · H

(
π0,F
B1

)

· · · H
(
πk+1,F
B2

)
H
(
πk,FB2

)
· · · H

(
π0,F
B2

)

φg

φ∞

φk+1 φk φ0

commutes. Here the unlabelled arrows are as in Theorem 4.13. That is, the hierarchy of holo-
nomy groupoids is functorial.

Proof. Our first task is to show that the map id: P(F)→ P(F) does indeed descend to a well-
defined morphism of each quotient. Suppose then that

(
γ1, [X1]g, d1

)
and

(
γ2, [X2]g, d2

)
in P(F)

satisfy

T
(
πk,FB1

)
(γ1, X1, d1)

(
x, [σ]kx

)
= T

(
πk,FB1

)
(γ2, X2, d2)

(
x, [σ]kx

)
(4.9)

for all
(
x, [σ]kx

)
in Γk(πB1)F . Then since f is a morphism, the diagram



The Holonomy Groupoids of Singularly Foliated Bundles 31

P(F)×
s,πk,FB1

Γk(πB1)F P
(
Γk(πB1)F

)

P(F)×
s,πk,FB2

Γk(πB2)F P
(
Γk(πB2)F

)
L1
k

id×fF P(fF )

L2
k

commutes. Therefore, for each i = 1, 2, we have

T
(
πk,FB2

)(
γi, [Xi]

g, di
)(
fF
(
x, [σ]kx

))
= L2

k

((
γi, [Xi]

g, di
)
; fF

(
x, [σ]kx

))
(di)

= P(fF )
(
L1
k

(
γi, [Xi]

g, di;x, [σ]kx
))

(di)

= fF
(
T
(
πk,FB1

)(
γi, [Xi]

g, di
)(
x, [σ]kx

))
for all

(
x, [σ]kx

)
∈ Γk(πB1)F , so surjectivity of fF together with the hypothesis (4.9) tells us

that T
(
πk,FB2

)(
γ1, [X1]g, d1

)
= T

(
πk,FB2

)(
γ2, [X2]g, d2

)
. Therefore id : P(F) → P(F) does indeed

descend to a map φk : H
(
πk,FB1

)
→ H

(
πk,FB2

)
, whose smoothness follows from that of id, and which

is a homomorphism by functoriality of id.
We have thus proved that each of the diagrams

P(F) P(F)

H
(
πk,FB1

)
H
(
πk,FB2

)
id

ΠkB1
ΠkB2

φk

commutes, where Πk
Bi

is the quotient of P(F) onto H
(
πk,FBi

)
. It follows then that for l ≤ k, the

diagram

P(F) P(F)

H
(
πk,FB1

)
H
(
πk,FB2

)

H
(
πl,FB1

)
H
(
πl,FB2

)

id

ΠkB1
ΠkB2

φk

Πl,kB1
Πl,kB2

φl

commutes, and then the result follows by Theorem 4.13. �

5 Outlook

In the author’s estimation, there are three primary questions arising from this work that have
yet to be answered.

Firstly, an assumption that we have had to impose in Definition 4.3 is that morphisms
of sheaves of smooth sections are smooth with respect to the diffeology of Proposition 3.1. It is
far from clear that this assumption is really necessary. That is, it appears possible that any
morphism of sheaves of smooth sections is automatically smooth with respect to this diffeology.
Indeed, the domain considerations present in Proposition 3.1 are automatically satisfied by maps
arising from morphisms of sheaves, and attempts thus far to construct a morphism of sheaves
which is not smooth with respect to this diffeology have proved unsuccessful. A proof that any
morphism of sheaves of smooth sections is itself diffeologically smooth would allow us to remove
these seemingly extraneous assumptions.

Secondly, it is clear from Examples 4.4, 4.5 and 4.6 that in many situations, a singular partial
connection on a fibre bundle induces a singular foliation of its total space by projectable vector
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fields. This foliation cannot, however, be expected to meet the requirements of Definition 2.1
(nor the equivalent definitions using compactly supported vector fields, for instance the one used
in [2]), since projectable vector fields are not closed under multiplication by arbitrary smooth
functions on the total space. This suggests that Definition 2.1 might to be relaxed to allow for
closure of vector fields under the sheaf of projectable functions. Such a modification will have
no effect on the integration theorem (see [59, Theorem 4.2(e)]). Having relaxed Definition 2.1,
a proof that singularly foliated bundles admit foliations of their total spaces will require a proof
that a presheaf of Lie–Rinehart algebras (such as the image of a singular partial connection)
becomes a sheaf of Lie–Rinehart algebras under sheafification. This question does not appear
to have been studied in the literature.

Finally, and most importantly, it would be interesting to prove Conjecture 4.17 and to deter-
mine whether the techniques of this paper can be generalised to recover the Androulidakis–
Skandalis holonomy groupoid in generality. That is, for any foliation (M,F), one seeks a pseudo-
bundle πB : B →M and a lifting map P(F)×s,πB B → P(B), for which quotient of P(F) by the
fibres of the associated transport functor is isomorphic to the Androulidakis–Skandalis groupoid.
We have two suggestions in this direction.

1. It may be possible define a diffeological pseudo-bundle of germs of slices, whose fibre
over x ∈M consists of all germs of slices through x, using a diffeology similar to that of the
pseudo-bundles of germs given in this paper. Since flows of elements of P(F) send slices to
slices, one would obtain the sought-after lifting map using flows. The results of Garmendia–
Villatoro [60] suggest that the resulting holonomy groupoid would be isomorphic to the
Androulidakis–Skandalis groupoid.

2. As suggested by one of the referees, one could alternatively attempt to equip the space
NF := tx∈MNxL of normal fibres of (M,F) considered in [6] with a diffeology with respect
to which it is a pseudo-bundle over M . This pseudo-bundle would admit a (leafwise) Bott
connection [6, p. 374], which could be used to lift elements of P(F) to NF .
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