Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 035, 30 pages      arXiv:2005.10288      https://doi.org/10.3842/SIGMA.2021.035

Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation

Boris Bychkov ab, Anton Kazakov abc and Dmitry Talalaev abc
a) Faculty of Mathematics, National Research University Higher School of Economics, Usacheva 6, 119048, Moscow, Russia
b) Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Sovetskaya 14, 150003, Yaroslavl, Russia
c) Faculty of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia

Received July 06, 2020, in final form March 26, 2021; Published online April 07, 2021

Abstract
We explore several types of functional relations on the family of multivariate Tutte polynomials: the Biggs formula and the star-triangle ($Y-\Delta$) transformation at the critical point $n=2$. We deduce the theorem of Matiyasevich and its inverse from the Biggs formula, and we apply this relation to construct the recursion on the parameter $n$. We provide two different proofs of the Zamolodchikov tetrahedron equation satisfied by the star-triangle transformation in the case of $n=2$ multivariate Tutte polynomial, we extend the latter to the case of valency 2 points and show that the Biggs formula and the star-triangle transformation commute.

Key words: tetrahedron equation; local Yang-Baxter equation; Biggs formula; Potts model; Ising model.

pdf (1434 kb)   tex (1168 kb)  

References

  1. Atiyah M., Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186.
  2. Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982.
  3. Beaudin L., Ellis-Monaghan J., Pangborn G., Shrock R., A little statistical mechanics for the graph theorist, Discrete Math. 310 (2010), 2037-2053, arXiv:0804.2468.
  4. Berenstein A., Fomin S., Zelevinsky A., Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
  5. Biggs N., Interaction models, London Mathematical Society Lecture Note Series, Vol. 30, Cambridge University Press, Cambridge - New York - Melbourne, 1977.
  6. Bychkov B., Kazakov A., Talalaev D., Tutte polynomials of vertex-weighted graphs and cohomology of groups, Theoret. and Math. Phys., to appear.
  7. Cardy J.L., Critical percolation in finite geometries, J. Phys. A: Math. Gen. 25 (1992), L201-L206, arXiv:hep-th/9111026.
  8. El-Showk S., Paulos M.F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., Solving the 3d Ising model with the conformal bootstrap II. $c$-minimization and precise critical exponents, J. Stat. Phys. 157 (2014), 869-914, arXiv:1403.4545.
  9. Ellis-Monaghan J.A., Merino C., Graph polynomials and their applications I: The Tutte polynomial, in Structural Analysis of Complex Networks, Birkhäuser/Springer, New York, 2011, 219-255, arXiv:0803.3079.
  10. Ellis-Monaghan J.A., Moffatt I., The Tutte-Potts connection in the presence of an external magnetic field, Adv. in Appl. Math. 47 (2011), 772-782, arXiv:1005.5470.
  11. Galashin P., Pylyavskyy P., Ising model and the positive orthogonal Grassmannian, Duke Math. J. 169 (2020), 1877-1942, arXiv:1807.03282.
  12. Gorbounov V., Talalaev D., Electrical varieties as vertex integrable statistical models, J. Phys. A: Math. Theor. 53 (2020), 454001, 28 pages, arXiv:1905.03522.
  13. Grimmett G., Three theorems in discrete random geometry, Probab. Surv. 8 (2011), 403-441, arXiv:1110.2395.
  14. Huang Y.-T., Wen C., Xie D., The positive orthogonal Grassmannian and loop amplitudes of ABJM, J. Phys. A: Math. Theor. 47 (2014), 474008, 48 pages, arXiv:1402.1479.
  15. Kashaev R.M., On discrete three-dimensional equations associated with the local Yang-Baxter relation, Lett. Math. Phys. 38 (1996), 389-397, arXiv:solv-int/9512005.
  16. Kook W., Reiner V., Stanton D., A convolution formula for the Tutte polynomial, J. Combin. Theory Ser. B 76 (1999), 297-300, arXiv:math.CO/9712232.
  17. Korepanov I.G., Algebraic integrable dynamical systems, 2+1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics, arXiv:solv-int/9506003.
  18. Korepanov I.G., Sharygin G.I., Talalaev D.V., Cohomologies of $n$-simplex relations, Math. Proc. Cambridge Philos. Soc. 161 (2016), 203-222, arXiv:1409.3127.
  19. Lam T., Pylyavskyy P., Inverse problem in cylindrical electrical networks, SIAM J. Appl. Math. 72 (2012), 767-788, arXiv:1104.4998.
  20. Matiyasevich Yu.V., On a certain representation of the chromatic polynomial, arXiv:0903.1213.
  21. Sergeev S.M., Solutions of the functional tetrahedron equation connected with the local Yang-Baxter equation for the ferro-electric condition, Lett. Math. Phys. 45 (1998), 113-119, arXiv:solv-int/9709006.
  22. Sokal A.D., The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, in Surveys in Combinatorics 2005, London Math. Soc. Lecture Note Ser., Vol. 327, Cambridge University Press, Cambridge, 2005, 173-226, arXiv:math.CO/0503607.
  23. Tutte W.T., A ring in graph theory, in Classic Papers in Combinatorics, Modern Birkhäuser Classics, Birkhäuser, Boston, 2009, 124-138.
  24. Wu F.Y., Knot theory and statistical mechanics, Rev. Modern Phys. 64 (1992), 1099-1131.
  25. Zamolodchikov A.B., Tetrahedra equations and integrable systems in three-dimensional space, Soviet Phys. JETP 52 (1980), 325-336.

Previous article  Next article  Contents of Volume 17 (2021)