Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 033, 25 pages      arXiv:2009.00670      https://doi.org/10.3842/SIGMA.2021.033

Invariants of Surfaces in Three-Dimensional Affine Geometry

Örn Arnaldsson a and Francis Valiquette b
a) Department of Mathematics, University of Iceland, Reykjavik, Ssn. 600169-2039, Iceland
b) Department of Mathematics, Monmouth University, West Long Branch, NJ 07764, USA

Received September 03, 2020, in final form March 21, 2021; Published online March 30, 2021

Abstract
Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants is non-trivial, then it is generically generated by a single invariant.

Key words: affine group; differential invariants; moving frames.

pdf (446 kb)   tex (29 kb)  

References

  1. Abdalla B.E., Dillen F., Vrancken L., Affine homogeneous surfaces in ${\mathbb R}^3$ with vanishing Pick invariant, Abh. Math. Sem. Univ. Hamburg 67 (1997), 105-115.
  2. Blaschke W., Vorlesungen über Geometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie, Verlag Von Julius Springer, Berlin, 1923.
  3. Chen Z., Merker J., On differential invariants of parabolic surfaces, arXiv:1908.07867.
  4. Dillen F., Martínez A., Milán F., Garcia Santos F., Vrancken L., On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces, Results Math. 20 (1991), 622-642.
  5. Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the three-dimensional affine geometry, in Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, 168-178.
  6. Doubrov B., Merker J., The D., Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv:2010.06334.
  7. Eastwood M., Ezhov V., On affine normal forms and a classification of homogeneous surfaces in affine three-space, Geom. Dedicata 77 (1999), 11-69.
  8. Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208.
  9. Griffiths P., On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
  10. Guggenheimer H.W., Differential geometry, McGraw-Hill Book Co., Inc., New York - San Francisco - Toronto - London, 1963.
  11. Hubert E., Olver P.J., Differential invariants of conformal and projective surfaces, SIGMA 3 (2007), 097, 15 pages, arXiv:0710.0519.
  12. Jensen G.R., Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Math., Vol. 610, Springer-Verlag, Berlin - New York, 1977.
  13. Kogan I.A., Olver P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.
  14. Kruglikov B., Lychagin V., Invariants of pseudogroup actions: homological methods and finiteness theorem, Int. J. Geom. Methods Mod. Phys. 3 (2006), 1131-1165, arXiv:math.DG/0511711.
  15. Kruglikov B., Lychagin V., Global Lie-Tresse theorem, Selecta Math. (N.S.) 22 (2016), 1357-1411, arXiv:1111.5480.
  16. Lie S., Scheffers G., Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893.
  17. Mansfield E.L., A practical guide to the invariant calculus, Cambridge Monographs on Applied and Computational Mathematics, Vol. 26, Cambridge University Press, Cambridge, 2010.
  18. Merker J., Affine rigidity without integration, arXiv:1903.00889.
  19. Nomizu K., Sasaki T., Affine differential geometry, Cambridge Tracts in Mathematics, Vol. 111, Cambridge University Press, Cambridge, 1994.
  20. Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.
  21. Olver P.J., Moving frames: a brief survey, in Symmetry and Perturbation Theory, Editors D. Bambusi, G. Gaeta, M. Cadoni, World Sci., Singapore, 2001, 143-150.
  22. Olver P.J., Generating differential invariants, J. Math. Anal. Appl. 333 (2007), 450-471.
  23. Olver P.J., Differential invariants of surfaces, Differential Geom. Appl. 27 (2009), 230-239.
  24. Olver P.J., Recursive moving frames, Results Math. 60 (2011), 423-452.
  25. Olver P.J., Equivariant moving frames for Euclidean surfaces, Preprint, University of Minnesota, 2016, available at https://www-users.math.umn.edu/~olver/mf_/eus.pdf.
  26. Olver P.J., Pohjanpelto J., Differential invariants for Lie pseudo-groups, in Gröbner bases in symbolic analysis, Radon Ser. Comput. Appl. Math., Vol. 2, Walter de Gruyter, Berlin, 2007, 217-243.
  27. Schirokow P.A., Schirokow A.P., Affine Differentialgeometrie, B.G. Teubner Verlagsgesellschaft, Leipzig, 1962.
  28. Seiler W.M., Involution: the formal theory of differential equations and its applications in computer algebra, Algorithms and Computation in Mathematics, Vol. 24, Springer-Verlag, Berlin, 2010.

Previous article  Next article  Contents of Volume 17 (2021)