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1 Introduction

In Section 2, we describe the graph-theoretic framework for the investigation of the algebraic
information contained in the topology of scalar Feynman diagrams. Perturbative quantum field
theories possess an inherent algebraic structure, which underlies the combinatorics of recursion
governing renormalisation theory, and are thus deeply connected to the theory of graphs.

In Section 3, we broadly review preliminary notions in algebraic geometry and algebraic
topology. An algebraic variety over Q gives rise to two distinct rational structures via alge-
braic de Rham cohomology and Betti cohomology, which are compatible with each other only
after complexification. The coexistence of these two cohomologies and their peculiar compat-
ibility are linked to a specific class of complex numbers, known as periods. The cohomology
of an algebraic variety is equipped with two filtrations, and the mixed Hodge structure arising
from their interaction constitutes the bridge between the theory of periods and the theory of
motives.

In Section 4, we introduce the set of periods, lying between Q̄ and C, among which are the
numbers that come from evaluating parametric Feynman integrals, and we briefly review their
remarkable properties. Suitable cohomological structures are exploited to derive non-trivial
information about these numbers.

In Section 5, we describe how Feynman integrals are promoted to periods of motives. Tech-
nical issues arising from the presence of singularities are tackled by blow up. We adopt the
category-theoretic Tannakian formalism where motivic periods, and motivic Feynman integrals
in particular, reveal their most intriguing properties. We present an overview of the current
progress of research towards the general understanding of the structure of scattering ampli-
tudes via the theory of motivic periods, giving particular attention to recent results in massless
scalar φ4 quantum field theory.

2 Scalar Feynman graphs

2.1 Perturbative quantum field theory

A quantum field theory encodes in its Lagrangian every admissible interaction among particles,
but it does it in a way that makes decoding this information a difficult task. The probability
amplitude associated to the interaction process between given initial and final states, called
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its Feynman amplitude, is determined by the set of kinematic and interaction terms in the
Lagrangian. However, individual Lagrangian terms correspond to propagators and interaction
vertices which can be linked together in infinitely many distinct ways to connect the same
pair of initial and final states. Each of these admissible realisations of the same interaction
process has to be accounted for in an infinite sum of contributions to the probability amplitude.
We associate to each of these possibilities a graphical representation, called its Feynman diagram,
whose individual contribution to the probability amplitude is explicitly written in the form
of a Feynman integral by applying the formal correspondence between Lagrangian terms and
graphical components, which is established by convention through the set of Feynman rules
of the theory. It is only the sum of the contributing Feynman integrals to a given process that
has a physical meaning and not the individual integrals, which are themselves interrelated by the
gauge symmetry of the Lagrangian.

In perturbative quantum field theory, the sum of individual Feynman integrals is a pertur-
bative expansion in some small parameter of the theory, typically a suitable coupling constant.
Thus, the Feynman amplitude can be expanded in a formal power series, which has been shown to
be divergent1 by Dyson [32]. The divergence does not, however, undermine the accuracy of pre-
dictions that can be made with the theory. Indeed, although a Feynman amplitude receives
contributions to any order in perturbation theory, practical calculations are made by truncat-
ing the sum at a certain order and directly evaluating only the remaining finitely many terms.
Moreover, the explicit calculation of a Feynman amplitude only includes those diagrams which
are one-particle irreducible, or 1PI, that is, diagrams which cannot be divided in two by cutting
through a single propagator. See Fig. 1. The contribution from a non-1PI diagram at some given
order can be expressed as a combination of lower-order 1PI contributions, which have already
been accounted for in the formal series.

(a) One-particle irreducible (b) One-particle reducible

Figure 1. Examples of 1PI and non-1PI diagrams.

The leading order terms in the perturbative expansion of a Feynman amplitude are called
tree-level contributions. Higher order diagrams are obtained from tree-level diagrams by adding
internal loops. Each independent loop in a diagram is associated to an unconstrained momen-
tum and integrals over unconstrained loop momenta are the origin of singularities in Feyn-
man integrals. We distinguish two classes of singularities. The ultraviolet (UV) divergences
arise in the limit of infinite loop momentum, a regime that is far beyond the energy scale
that we have currently experimental access to and where we expect new physical phenom-
ena to become relevant and corresponding new terms to enter the Lagrangian. Sensitivity to
the high loop momentum region is treated by means of renormalisation theory. For a renor-
malizable theory, a suitable adjustment of the Lagrangian parameters allows to systematically
re-express the predictions of the theory in terms of renormalized physical couplings, so that
they decouple from UV physics. Thus, the theory gives a finite and well-defined relation be-

1Serone et al [61] characterised the conditions under which some class of asymptotic perturbative series are
Borel resummable, leading to exact results without introducing non-perturbative effects in the form of trans-series.
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tween physical observables. The infrared (IR) divergences only arise in theories with mass-
less particles as they originate in the limit of infinitesimal loop momentum. They cannot
be removed by renormalisation and introduce numerous subtleties in the evaluation of Feyn-
man integrals which we are not dealing with in the present text. For a detailed and com-
prehensive presentation of perturbative quantum field theory we refer to Zee [73] and Sred-
nicki [65].

Evaluating Feynman integrals over loop momenta has been of fundamental concern since the
early days of perturbative quantum field theory. Since the first insights into the problem of UV
divergences in a quantum field theory presented by Dyson [31, 32], Salam [55, 56] and Wein-
berg [72] in the 1950s and 60s, our understanding has vastly improved. In 2004, Smirnov [64]
summarised more than fifty years of advancements in the field, providing an overview of the
most powerful, successful and well-established methods available at the time for evaluating
Feynman integrals in a systematic way, showing how the problem of evaluation had become
more and more critical. What could be easily evaluated had already been evaluated years
ago. Nowadays, new approaches, based on the symmetry properties of the loop integrands2

and the complementary perspective of differential equations,3 are available and vastly studied.
Despite progress, the mathematical understanding and the computation of Feynman integrals
are still far from being complete. Overlapping divergences can be treated iteratively, thus
revealing in the first place the recursive nature of renormalisation theory. However, this com-
binatorics of subdivergences is only the first hint to a more fundamental algebraic structure
inherent in all renormalizable quantum field theories and deeply connected to the theory of
graphs.4

2.2 Feynman parametrisation

We consider a scalar quantum field theory in an even number D of space-time dimensions
with Euclidean metric5 and allow different propagators to have different masses. A Feyn-
man diagram is a connected directed graph where each edge represents a propagator and is
assigned a momentum and a mass and each vertex stands for a tree-level interaction. Exter-
nal half-edges, also known as external legs, represent incoming or outgoing particles, while
internal edges are the internal propagators of the diagram. We define the loop number to be
the number of independent cycles of the graph. We adopt the convention for which all ex-
ternal legs have arrows pointing inwards, and consequently distinguish incoming and outgoing
particles depending on the momentum being positive or negative, respectively. Momentum is
positive when it points in the same direction of the arrow of the corresponding directed edge,
and it is negative otherwise. We fix momenta on external lines and for each internal loop
we choose an arbitrary orientation of the edges which is consistent with momentum conser-
vation at each vertex of the graph and globally. Momentum conservation leaves one uncon-
strained free momentum variable for each loop. Thus, the loop number is equal to the number
of independent loop momentum vectors. We only consider graphs that are one-particle irre-
ducible.

2We refer to Elvang and Huang [33] for a review of the subject, including unitarity methods, BCFW recursion
relations, and the methods of leading singularities and maximal cuts.

3Henn [39] gives an overview of the method of differential equations, using tools such as Chen iterated integrals,
multiple polylogarithms, and the Drinfeld associator.

4A first discussion about the appearance of transcendental numbers in Feynman integrals and its relation to
the topology of Feynman graphs is presented by Kreimer [48] in the framework of knot theory and link diagrams.
A recent review on the theory of numbers and single-valued functions on the complex plane which arise in quantum
field theory is presented by Schnetz [60] in the modern context of the theory of motivic periods.

5It is common practice to compute amplitudes in Euclidean space. Moving to Minkowski space involves
performing an extension by analytic continuation known as Wick rotation. See for example [64] and [65].
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Let G be such a Feynman graph with m external legs, n internal edges, and l independent
loops. Its Feynman integral, up to numerical prefactors, is

IG =
(
µ2
)n−lD/2 ∫ l∏

r=1

dDkr

iπD/2

n∏
j=1

1

−q2
j +m2

j − iε
, (2.1)

where ε is a small positive parameter,6 µ is a scale introduced to make the expression dimension-
less,7 k1, . . . , kl are the independent loop momenta, m1, . . . ,mn are the masses of the internal
lines, and q1, . . . , qn are the momenta flowing through them, which can be expressed as

qj =
l∑

i=1

λjiki +
m∑
i=1

σjipi,

where p1, . . . , pm are the external momenta and λji, σji ∈ {−1, 0, 1} are constants depending
on the particular graph structure.

Feynman [34] introduced the well-known manipulation consisting of defining a set of parame-
ters x1, . . . , xn, called Feynman parameters, one for each internal edge of the graph, and applying
the formula

n∏
j=1

1

Pj
= Γ(n)

∫
{xj≥0}

dnx δ

(
1−

n∑
j=1

xj

)
1(∑n

j=1 xjPj

)n
with the choice Pj = −q2

j + m2
j for j = 1, . . . , n. Here, Γ is the Euler gamma function and δ is

the Dirac delta distribution. Indeed, we can write

n∑
j=1

xj
(
−q2

j +m2
j

)
= −

l∑
r=1

l∑
s=1

kr · (Mrsks) +
l∑

r=1

2kr ·Qr + J,

where M is an l×l-matrix with scalar entries, Q is an l-vector with momentum vectors as entries
and J is a scalar. M , Q and J can be suitably expressed in terms of the graph parameters
{xj , qj ,mj}nj=1. Applying Feynman parametrisation to (2.1), the l-dimensional integral over the
loop momenta becomes an (n− 1)-dimensional integral over the Feynman parameters

IG = Γ

(
n− lD

2

)∫
{xj≥0}

dnx δ

(
1−

n∑
j=1

xj

)
Un−(l+1)D/2

Fn−lD/2
, (2.2)

which is characterised by the polynomials U = det(M) and F = det(M)
(
J + QM−1Q

)
, called

first and second Symanzik polynomials of the Feynman graph, respectively. Notice that the
dimension D of space-time, entering the exponents in the integrand of (2.2), acts as regularisa-
tion. We use dimensional regularisation8 with D = 4− 2ε and ε a small parameter. A detailed
description of Feynman parametrisation can be found in Srednicki [65].

Example 2.1. Consider a one-loop diagram withm = n external legs, as the one shown in Fig. 2.

6The −iε term is required by the choice of Feynman pole prescription for the computation of the propagators
and it allows to perform a Wick rotation to Minkowski space. In what follows, however, the −iε term does not
play a role. We set ε = 0 for simplicity of notation.

7In what follows, the scale µ remains factored out. We set µ2 = 1 for simplicity of notation.
8The dimensional regularisation procedure has been first introduced by ’t Hooft and Veltman [67].
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mn

m6

m5

m4

m3m2

m1

qn

q6

q5

q4

q3q2

q1

pn

pn−1 p5

p4

p3

p2

p1

Figure 2. Example of a one-loop Feynman diagram with m = n external legs.

Its Symanzik polynomials are

U1-loop =
n∑
j=1

xj ,

F1-loop = U1-loop

n∑
j=1

m2
jxj +

n∑
i,j=1
i<j

(qi − qj)2xixj ,

where the internal momenta are given by q1 = k, qi = k + p1 + · · · + pi−1 for 1 < i ≤ n.
Here, k is the unique loop momentum of the graph, and p1 + · · ·+ pm = 0 by global momentum
conservation.

2.3 Graph polynomials

Re-expression of Feynman integrals in parametric form shows that the correspondence bet-
ween scalar Feynman diagrams and Feynman integrals can be reformulated in different terms.
The information contained in a Feynman graph is shared out among its multiple components,
which can be identified as the underlying graph structure, the directionality of edges and the
various edge labels. If we destructure a Feynman graph in these layers and momentarily neglect
the extra information apart from the graph structure, we observe that its integral is insensitive
to changes of the graph which leave its topology unaltered. Focusing on the underlying graph
topology, the Symanzik polynomials can be suitably re-interpreted and they are commonly called
graph polynomials in this context.

Let G be a finite graph without isolated vertices. G is specified by the pair (VG, EG), where VG
is the collection of vertices and EG is the collection of edges. We choose an arbitrary orientation
of its edges and define the map

ZEG −→ ZVG ,
e 7−→ t(e)− s(e),

where e ∈ EG is an edge and s(e), t(e) ∈ VG are its source and target endpoints with respect to
the edge orientation. Let us extend this map to the exact sequence

0→ H1(G,Z)→ ZEG → ZVG → H0(G,Z)→ 0,
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where H0(G,Z) and H1(G,Z) are the zeroth and first homology groups of the graph. As a con-
sequence, the graph loop number lG is related to the number of edges nG, the number of
vertices vG, and the number of connected components cG by9

lG = rank(H1(G,Z)) = |EG| − |VG|+ rank(H0(G,Z)) = nG − vG + cG.

Assume G is a graph of Feynman type, that is, finite, connected and one-particle irreducible.
Let the valence of a vertex be the number of edges attached to it. Since they do not contribute
to the braid pattern of Feynman graphs, both vertices of valence one, corresponding to the
source endpoints of external legs, and vertices of valence two, corresponding to mass insertions,
do not play a role here. To such a graph G we wish to assign an integral IG which corresponds to
the one previously defined in (2.2) when the neglected extra information is re-inserted. We start
by associating a variable xe to every internal edge e ∈ EG of the graph. These variables are known
as Schwinger parameters and they are the graph-theoretic analogues of Feynman parameters.
Let T1 be the set of spanning trees10 of G. The first graph polynomial of G is defined as

ΨG =
∑
T∈T1

∏
e/∈ET

xe. (2.3)

It is a homogeneous polynomial of degree lG in the Schwinger parameters. Note that each
monomial of ΨG has coefficient one, and ΨG is linear in each Schwinger parameter.

Example 2.2. The first graph polynomial of the Feynman graph shown in Fig. 3 is ΨG =
x1 · · ·xn

(
1
x1

+ · · ·+ 1
xn

)
.

x1

x2

x3

xn

Figure 3. Example of a scalar Feynman graph with n internal propagators.

By construction, the first Symanzik polynomial U of a Feynman graph G does not depend
on momenta and masses involved in the diagram, but is only dependent on the graph topology.
Indeed, it explicitly identifies with the first graph polynomial ΨG of the corresponding pure
graph structure. The same is not true for the second Symanzik polynomial F , which is a function
of external momenta and internal masses. However, we can re-express F in a way that clearly
separates the contribution to F coming from the graph topology from its other dependences.
To this end, momenta and masses edge labels must re-enter our discussion. Let T2 be the set
of spanning 2-forests of G and PTi be the set of external momenta of G attached to its tree Ti.
The second graph polynomial of G is defined as

ΞG({pj ,me}) =

( ∑
e∈EG

m2
exe

)
ΨG −

∑
(T1,T2)∈T2

( ∏
e/∈ET1

∪ET2

xe

)( ∑
pj∈PT1
pk∈PT2

pj · pk

)
.

9The loop number is equivalently defined as the rank of the first homology group of the graph, while the
number of connected components corresponds to the rank of the zeroth homology group of the graph.

10A graph of zero loop number with k connected components is called a k-forest. When k = 1, the forest is
called a tree. Given an arbitrary connected graph G, a spanning k-forest of G is a subgraph T ⊆ G such that
VT = VG and T is a k-forest. A spanning k-forest of G is usually denoted by the collection of its trees. A connected
graph has always at least one spanning tree.
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It is a homogeneous polynomial of degree lG + 1 in the Schwinger parameters. Note that, if all
internal masses are zero, then ΞG is linear in each Schwinger parameter. It follows from their
definitions that the second Symanzik polynomial and the second graph polynomial of a Feynman
graph are, indeed, the same. Moreover, having fixed the momenta of external particles and the
masses of internal propagators, we are left with the explicit dependence of F on the graph
structure given in terms of spanning 2-forests.

q3

q2 q4

q1

m3

m2 m4

m1

p3p2

p4p1

(a) Full Feynman diagram

x3

x2 x4

x1

(b) Underlying graph structure

Figure 4. Box diagram with four legs.

Example 2.3. To explicitly see how the individual terms in the graph polynomials arise from
the knot structure of the diagram, we look closer at the one-loop Feynman graph with m = 4
external legs, also called box diagram,11 which is shown in Fig. 4. Its Symanzik polynomials are

Ubox = x1 + x2 + x3 + x4,

Fbox =
[
(x1 + x2 + x3 + x4)

(
m2

1x1 +m2
2x2 +m2

3x3 +m2
4x4

)
+ x1x2p

2
1 + x2x3p

2
2 + x3x4p

2
3

+ x4x1p
2
4 + x1x3(p1 + p2)2 + x2x4(p2 + p3)2

]
.

Neglecting mass terms, the remaining monomials correspond to the spanning forests shown
in Figs. 5 and 6.

x3

x2 x4

(a) +x1

x3

x4

x1

(b) +x2

x2 x4

x1

(c) +x3

x3

x2

x1

(d) +x4

Figure 5. Spanning trees in the box diagram with four legs and corresponding terms in Ubox.

Thus, the Symanzik or graph polynomials capture the algebraic information contained in the
topology of a Feynman diagram and they prove to be the first tool to be used in the tentative
investigation of renormalisation theory via the algebraic manipulation of concatenated one-loop
integrals. For a more detailed overview of the properties of Feynman graph polynomials we refer
to Bogner and Weinzierl [8].

11This gives a next-to-leading order contribution to the two-to-two particle scattering process. Srednicki [65]
gives a detailed discussion of two particles elastic scattering at one-loop using standard methods in perturbative
quantum field theory.
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x4

x3

(a) +x1x2p
2
1

x4

x1

(b) +x2x3p
2
2

x2

x1

(c) +x3x4p
2
3

x3

x2

(d) +x4x1p
2
4

x4x2

(e) +x1x3(p1 + p2)2

x3

x1

(f) +x2x4(p2 + p3)2

Figure 6. Spanning 2-forests in the box diagram with four legs and corresponding terms
in Fbox.

2.4 Primitive log-divergent graphs

The parametric Feynman integral in (2.2) can be written in a slightly different notation, which
turns out to be particularly useful henceforth. Neglecting prefactors and assuming D = 4, it is
equivalent to the projective integral

IG({pj ,me}) =

∫
σ

Ω

Ψ2
G

(
ΨG

ΞG({pj ,me})

)nG−2lG

, (2.4)

where σ is the real projective simplex given by

σ =
{

[x1 : · · · : xnG ] ∈ PnG−1(R) |xe ≥ 0, e = 1, . . . , nG
}

and Ω is the top-degree differential form on PnG−1 expressed in local coordinates as

Ω =

nG∑
e=1

(−1)exe dx1 ∧ · · · ∧ d̂xe ∧ · · · ∧ dxnG .

One can check that the integrand is homogeneous of degree zero, so that the integral in projec-
tive space is well-defined and equivalent, under the affine constraint xnG = 1, to the previous
parametric integral in affine space. Integral (2.4) is in general divergent, as singularities may
arise if the zero sets of the graph polynomials ΨG and ΞG intersect the domain of integration.

Graphs satisfying the condition nG = 2lG are called logarithmically divergent and constitute
a particularly interesting class of graphs. In fact, their Feynman integral simplifies to

IG =

∫
σ

Ω

Ψ2
G

, (2.5)

where the dependence on the second Symanzik polynomial, and consequently on momenta and
masses, has vanished. Being uniquely sensitive to the graph topology, such a Feynman graph
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describes a so-called single-scale process.12 For a logarithmically divergent graph G, we define
the graph hypersurface as the zero set of its first Symanzik polynomial

XG =
{

[x1 : · · · : xnG ] ∈ PnG−1 |ΨG(x1, . . . , xnG) = 0
}

(2.6)

which describes the singularities of its Feynman integral IG. The following theorem on the
convergence of logarithmically divergent graphs is proven by Bloch, Esnault and Kreimer [5].

Theorem 2.4. Let G be logarithmically divergent. The integral IG converges if and only if every
proper subgraph ∅ 6= γ ⊂ G satisfies the condition nγ > 2lγ.

A logarithmically divergent graph G such that IG is convergent is called primitive log-
divergent, or simply primitive. We give particular attention to the class of primitive log-divergent
graphs in scalar massless φ4 quantum field theory. They are called φ4-graphs, and have vertices
with valence at most four. Feynman amplitudes in φ4 theory have been computed to much
higher loop orders than most other quantum field theories thanks to the work of Broadhurst
and Kreimer [11, 12], and Schnetz [58]. Some of the simplest φ4-graphs are shown in Fig. 7 along
with the values of the associated Feynman integrals. Here, ζ is the Riemann zeta function, and
P3,5 = −216

5 ζ(3, 5)− 81ζ(5)ζ(3) + 522
5 ζ(8).

(a) IG = 6ζ(3) (b) IG = 20ζ(5) (c) IG = 36ζ(3)2 (d) IG = 32P3,5

Figure 7. Examples of φ4-graphs with 3, 4, 5 and 6 loops.

2.5 Multiple zeta values

The Riemann zeta function is defined on the half-plane of complex numbers s ∈ C with Re(s) > 1
by the absolutely convergent series

ζ(s) =
∞∑
n=1

1

ns
(2.7)

and extended to a meromorphic function on the whole complex plane with a single pole at s = 1.
The first tentative attempts to find polynomial relations among zeta values by multiplying terms
of the form (2.7) have led to a generalisation of the notion of Riemann zeta value. Multiple zeta
values, or MZVs, are the real numbers

ζ(s1, . . . , sl) =
∑

n1>n2>···>nl≥1

1

ns11 · · ·n
sl
l

(2.8)

associated to tuples of integers s = (s1, . . . , sl), called multi-indices. To guarantee the conver-
gence of the infinite series, only multi-indices such that si ≥ 1 for i = 1, . . . , l and s1 ≥ 2 are

12Among other contexts, the feature of no-scaling also occurs in the evaluation of Feynman diagrams concerning
the anomalous magnetic moment of the electron, as presented by Laporta and Remiddi [50].
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considered. They are called admissible multi-indices. The integers wt(s) = s1 + · · · + sl and l
are called weight and length of the multi-index s, respectively.

Following the early observations that products of two zeta values are Q-linear combinations
of zeta and double zeta values, and that products of more than two zeta values are analogously
expressed in terms of multiple zeta values of higher length, linear relations among MZVs have
been the object of a more and more extensive investigation by many mathematicians, including
Brown, Cartier, Deligne, Drinfeld, Écalle, Goncharov, Hain, Hoffman, Kontsevich, Terasoma,
Zagier, Broadhurst and Kreimer. Indeed, the Q-linear relations among multiple zeta values
directly provide insights on the widely sought-after algebraic relations among Riemann zeta
values.

The Q-vector space spanned by multiple zeta values forms an algebra under the so-called
stuffle product. Analytic methods, like partial fraction expansions, provide only a few of the
known relations among MZVs. Many more are obtained, although conjecturally, by performing
extensive numerical experiments, as described by Blümlein et al [6]. However, enormous progress
followed the analytic discovery of a crucial feature of multiple zeta values, that is, beside their
representation as infinite series, they admit an alternative representation as iterated integrals
over simplices of weight-dimension. Let ∆p = {(t1, . . . , tp) ∈ Rp | 1 ≥ t1 ≥ t2 ≥ · · · ≥ tp ≥ 0}
and define the measures on the open interval (0, 1)

ω0(t) =
dt

t
, ω1(t) =

dt

1− t
.

If s is an admissible multi-index, write ri = s1 + · · · + si for each i = 1, . . . , l and set r0 = 0.
Define the measure ωs on the interior of the simplex ∆wt(s) by

ωs =
l∏

i=1

ω0(tri−1+1) · · · ω0(tri−1)︸ ︷︷ ︸
si−1 times

ω1(tri).

The following insight is due to Kontsevich.

Proposition 2.5. Let s = (s1, . . . , sl) be an admissible multi-index. The multiple zeta value ζ(s)
can be obtained by the convergent improper integral

ζ(s) = ζ(s1, . . . , sl) =

∫
∆wt(s)

ωs. (2.9)

This different way of writing multiple zeta values yields a new algebra structure associated
with the so-called shuffle product. Many other linear relations among MZVs are obtained sys-
tematically in this alternative framework. However, relations are also and most interestingly
derived by the comparison of the two representations given by (2.8) and (2.9). The coexis-
tence of the stuffle and shuffle algebra structures on the Q-vector space of MZVs proved to
be the most productive source of information about these numbers. For a more detailed dis-
cussion of the classical theory of multiple zeta values we refer to Fresán and Burgos Gil [35].
Making concrete use of the many Q-linear relations that MZVs are known to satisfy is not
an easy task, particularly at high weights. For example, there is no algorithm that leads to
the reduction of any given MZV into a chosen Q-basis. A boost in our understanding origi-
nated from the exact-numerical decomposition algorithm by Brown [13]. Developed from the
non-classical perspective of the theory of motives, it conjecturally provides a general strategy
to handle MZVs, and more generally polylogarithmic numbers, by converting them into the
so-called f-alphabet.13

13The elements of the shuffle algebra on the Q-vector space of MZVs are interpreted as words in letters of
certain weights. Precisely, there is one letter for each odd weight greater than 1. Words in these letters span
finite-dimensional subspaces of definite weight. Notice, however, that the conversion into the f -alphabet depends
on the choice of algebra basis.
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We observe the remarkable fact that Q-linear combinations of multiple zeta values are ubiq-
uitous in the evaluation of Feynman amplitudes in perturbative quantum field theories. It was
conjectured by Broadhurst and Kreimer [11] and then proved by Brown and Schnetz [20] that
Feynman integrals of the infinite family of zig-zag graphs in φ4 theory (see Fig. 8) are certain
known rational multiples of the odd values of the Riemann zeta function.

(a) l = 5 (b) l = 6

Figure 8. Examples of zig-zag graphs with 5 and 6 loops.

Theorem 2.6. Let Zl be the zig-zag graph with l loops. Its Feynman integral is

IZl = 4
(2l − 2)!

l!(l − 1)!

(
1− 1− (−1)l

22l−3

)
ζ(2l − 3).

Another example is given by the anomalous magnetic moment of the electron in quantum
electrodynamics. The tree level Feynman diagram representing a slow-moving electron emitting
a photon is depicted in Fig. 9 along with its one-loop correction. The two-loop correction
comes from the contributions of seven distinct two-loop diagrams. The total two-loop Feynman
amplitude has been evaluated by Petermann [53], giving 197

144 + 1
2ζ(2)−3ζ(2) log(2)+ 3

4ζ(3), which
involves the logarithm of 2 and again values of the Riemann zeta function.

(a) Tree-level contribution (b) One-loop contribution

Figure 9. Up to one-loop Feynman diagrams contributing to the anomalous magnetic moment
of the electron.

Many more examples are given by Broadhurst [10]. Due to a vast amount of evidence, it was
believed for a long time that all primitive amplitudes of the form (2.5) in massless φ4 theory
should be Q-linear combinations of MZVs. Only recently this conjectural statement was proved
false in the motivic setup14 by Brown and Schnetz [19]. Explicit examples of φ4-amplitudes at
high loop orders not expressible in terms of multiple zeta values have been found by Panzer and
Schnetz [52]. In the same work, explicit computation of all φ4-amplitudes with loop order up
to 7 suggests that not all MZVs appear among them. For example, no φ4-graph is known to
evaluate to ζ(2) or ζ(2)2. Remarkably, the integral representation of MZVs partially clarify the

14Outside of the motivic framework, the statement relies on transcendentality conjectures.



An Introduction to Motivic Feynman Integrals 13

presence of these numbers in perturbative calculations in quantum field theory. Indeed, both
expressions (2.5) and (2.9) are suitably interpreted as periods of algebraic varieties.

3 Cohomology theory of algebraic varieties

3.1 Singular homology

We follow the expositions by Weibel [71] and Hartshorne [38]. Let M be a topological space.
For each integer k ≥ 0, the standard k-simplex is

∆k
st =

{
(t0, . . . , tk) ∈ Rk+1

∣∣∣∣ k∑
i=0

ti = 1, ti ≥ 0, i = 0, . . . , k

}
.

For each i = 0, . . . , k, the face map δki : ∆k−1
st → ∆k

st is defined by

δki (t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti, . . . , tk−1).

A singular k-chain in M is a continuous15 map σ : ∆k
st →M . For each k ≥ 0, let

Ck(M) =
⊕
σ

Zσ

be the free abelian group generated by singular k-chains. Elements of Ck(M) are finite Z-
linear combinations of the continuous maps σ : ∆k

st → M . For each k ≥ 1, the boundary map
∂k : Ck(M)→ Ck−1(M) is defined by

∂k(σ) =
k∑
i=0

(−1)i
(
σ ◦ δki

)
,

where the alternating signs in the sum guarantee that boundary maps satisfy the condition
∂k−1 ◦ ∂k = 0. The pair (C•(M), ∂•) is called a homological chain complex and is graphically
represented as

. . .
∂k+1−−−→ Ck(M)

∂k−−→ Ck−1(M)
∂k−1−−−→ . . .

∂2−−→ C1(M)
∂1−−→ C0(M).

Definition 3.1. The singular homology of the topological space M is the homology of the
complex (C•(M), ∂•), that is

Hs
k(M,Z) =

{
C0(M)/=(∂1), k = 0,

Ker(∂k)/=(∂k+1), k ≥ 1.

In degree k, chains in the kernel of the boundary map ∂k are called (closed) cycles and chains
in the image of the boundary map ∂k+1 are called (exact) boundaries.

Example 3.2. Let M = C∗ be the punctured complex plane. The singular chains

γ0 : ∆0
st → C∗, 1 7→ 1,

γ2 : ∆1
st → C∗, (t, 1− t) 7→ e2πit

generate the singular homology groups Hs
0(C∗,Z) and Hs

1(C∗,Z), respectively. These are both
free groups of rank one. All the other homology groups vanish.

15If M is a differentiable manifold, we can assume the singular chains to be piecewise smooth, or smooth,
without altering the homology groups.
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For each k ≥ 0, the free abelian group of singular n-cochains is defined by

Ck(M) = Hom(Ck(M),Z).

Analogously, applying vector duality, we introduce the coboundary maps dk: Ck(M)→Ck+1(M),
which satisfy the condition dk+1 ◦ dk = 0. The corresponding cohomological chain complex
(C•(M), d•) is graphically represented as

· · · dk+1

←−−− Ck+1(M)
dk←−− Ck(M)

dk−1

←−−− · · · d1

←−− C1(M)
d0

←−− C0(M).

Definition 3.3. The singular cohomology of the topological space M is the cohomology of the
complex (C•(M), d•), that is

Hk
s (M,Z) =

{
Ker

(
d0
)
, k = 0,

Ker
(
dk
)
/=(dk−1), k ≥ 1.

Definitions 3.1 and 3.3 of singular homology and cohomology of topological spaces, given
here with respect to Z, extend naturally to other coefficient rings. For our purposes, we assume
the ring of coefficients to be Q. This allows us to identify singular cohomology groups with the
vector duals of the corresponding singular homology groups16

Hk
s (M,Q) ' Hom(Hs

k(M,Q),Q),

that is, classes of a cohomology group can be interpreted as classes of linear functionals on the
corresponding homology group. The singular cohomology of the topological space underlying
a complex algebraic variety is of particular interest.

Definition 3.4. Let X be an algebraic variety over a subfield K of C. Its set of complex
points X(C) canonically carries the complex analytic topology, and the corresponding topolog-
ical space17 is written as Xan. The Betti cohomology of X is the singular cohomology of the
underlying topological space Xan, that is

Hk
B(X,Q) = Hk

s

(
Xan,Q

)
for k ≥ 0.

Example 3.5. Let Gm = SpecQ[x, 1/x] be the multiplicative group. Gm is an algebraic variety
over Q and its underlying topological space of complex points is Gan

m = C∗. For each k ≥ 0, the
k-th Betti cohomology group of Gm is Hk

B(Gm,Q) = Hk
s (C∗,Q).

3.1.1 Some properties of homology

We briefly recall some properties of singular homology and cohomology.

(a) Homotopy invariance. If M1 and M2 are homotopically equivalent topological spaces,
then Hs

k(M1,Q) ' Hs
k(M2,Q) for each k ≥ 0. An analogous statement holds for singular

cohomology.

16This isomorphism is true for real or complex coefficients as well, but it does not hold for integer coefficients.
17Equipped with the canonical structure sheaf, Xan is a complex analytic space, called the analytification of X.

The relationship between algebraic spaces over the complex numbers and complex analytic spaces is described by
a series of results, known as GAGA-type theorems. These developments followed the work by Serre [62] on the
existence and faithfulness of the analytification of a complex algebraic variety.
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(b) Mayer–Vietoris sequences. For any two open subspaces U, V ⊆ M of a given topological
space M , such that M = U ∪ V , there is a long exact sequence of the following form:

· · · Hs
k(U ∩ V,Q) Hs

k(U,Q)⊕Hs
k(V,Q)

Hs
k(M,Q) Hs

k−1(U ∩ V,Q) · · · .

An analogous statement holds for singular cohomology.

(c) Künneth formula. For any two topological spaces M1, M2, for each k ≥ 0, there is a
natural isomorphism

Hs
k(M1 ×M2,Q) '

⊕
i+j=k

Hs
i (M1,Q)⊗Hs

j (M2,Q).

An analogous statement holds for singular cohomology.

(d) Push-forward. Let f : M1 → M2 be a continuous map between two topological spa-
ces M1, M2. Then, f induces a morphism of chain complexes

f∗ : C•(M1)→ C•(M2)

called push-forward, sending σ1 ∈ Ck(M1) to σ2 = f ◦ σ1 ∈ Ck(M2). Equivalently, the
following diagram:

∆k
st M1

M2

σ1

σ2
f

commutes. Hence, f induces also a group homomorphism between the corresponding
singular homology groups

f∗ : Hs
k(M1,Q)→ Hs

k(M2,Q)

for each k ≥ 0.

(e) Pull-back. Let f : M1 →M2 be a continuous map between two topological spaces M1, M2.
Then, f induces a morphism of cochain complexes

f∗ : C•(M2)→ C•(M1)

called pull-back, sending ω2 ∈ Ck(M2) to ω1 = ω2 ◦ f∗ ∈ Ck(M1). Equivalently, the
following diagram:

Ck(M1) Q

Ck(M2)

ω1

f∗ ω2

commutes. Hence, f induces also a group homomorphism between the corresponding
singular cohomology groups

f∗ : Hk
s (M2,Q)→ Hk

s (M1,Q)

for each k ≥ 0.
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3.1.2 Relative singular homology

Let M be a topological space and ι : N ↪→ M the canonical inclusion of a topological subspace
N ⊆ M . Denote by (C•(N), ∂N• ) and (C•(M), ∂M• ) their homological chain complexes, and by
ι∗ : C•(N)→ C•(M) the corresponding injective morphism obtained via push-forward. For each
k ≥ 1, we define the total chain complex C•(M,N) to be the mapping cone18 of the morphism ι∗,
that is

Ck(M,N) = Ck−1(N)⊕ Ck(M),

and the differential ∂k : Ck(M,N)→ Ck−1(M,N) to act as

∂k(σN , σM ) =
(
−∂Nk−1(σN ),−ι∗(σN ) + ∂Mk (σM )

)
,

where (σN , σM ) ∈ Ck(M,N).

Definition 3.6. The relative homology of the pair of topological spaces (M,N) is the homology
of the total chain complex (C•(M,N), ∂•). For k ≥ 1, we denote the relative singular homology
groups as Hs

k(M,N,Q).

Relative homology fits into the following long exact sequence:

· · · Hs
k(M,Q) Hs

k(M,N,Q)

Hs
k−1(N,Q) Hs

k−1(M,Q) Hs
k−1(M,N,Q) · · · ,

(3.1)

where the connecting morphisms are the push-forward maps ι∗ : Hs
k(N,Q)→ Hs

k(M,Q) induced
by the inclusion ι : N ↪→M . Consider an element of the relative homology group Hs

k(M,N,Q).
This is represented by a pair (σN , σM ) of singular chains σN ∈ Ck−1(N) and σM ∈ Ck(M)
satisfying

∂Nk−1σN = 0, ∂Mk σM = ι∗σN .

Note that, since ι∗ is injective, the latter condition implies the former. Thus, relative homology
classes are represented by chains in M whose boundary is contained in N . Relative cohomology
groups Hk

s (M,N,Q) are defined similarly.

Example 3.7. Let M = C∗ be the punctured complex plane and N = {p, q} ⊂ M be the
subspace consisting of two points p, q ∈ C∗ with p 6= q. Let γ1 : ∆1

st → M be any continuous
map19 such that γ1(0, 1) = p, γ1(1, 0) = q, and it does not encircle the origin. Then

∂M1 γ1 = p− q ∈ C0(N).

Consequently, γ1 defines a relative chain. It follows from the long exact sequence (3.1) that the
only non-trivial relative homology group is Hs

1(M,N,Q). A basis of this group is given by the
chain γ1 and the chain γ2, introduced in Example 3.2, consisting of a counterclockwise circle
containing the origin. Such a basis is graphically represented in Fig. 10.

18Note that, for any morphism of chain complexes f∗ : C•(M1) → C•(M2), the mapping cone Ck(M2,M1) =
Ck−1(M1)⊕ Ck(M2) can be defined. However, injectivity of the morphism ι∗ implies that the cone C•(M,N) is
quasi-isomorphic to the quotient C•(M)/C•(N).

19When it does not pass through the origin, the oriented segment starting at p and ending at q is an example
of such a map.
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γ2

O p γ1 q

Figure 10. Basis of Hs
1(C∗, {p, q},Q).

3.2 De Rham cohomology

We start by reviewing a classical construction in differential geometry. Let M be a differentiable
manifold of dimension n. A differential p-form on M is written in local coordinates as∑

1≤i1<···<ip≤n
fi1,...,ip dxi1 ∧ · · · ∧ dxip ,

where fi1,...,ip are C∞-functions. Let Ωp(M) denote the R-vector space of differential p-forms
on M and define the space of differential forms on M as

Ω(M) =

n⊕
p=0

Ωp(M).

The exterior derivative d: Ω(M)→ Ω(M) is the unique R-linear map which sends p-forms into
(p+ 1)-forms and satisfies the following axioms:

(1) Let f be a smooth function. Then, df =
∑n

i=1
∂f
∂xi

dxi is the ordinary differential of f .

(2) d ◦ d = 0.

(3) Let α be a p-form on M and β any differential form in Ω(M). Denote by α ∧ β their
exterior product. Then, d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

The associated cochain complex is

0→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0

and its cohomology, denoted H•dR(M,R), is called the smooth de Rham cohomology of M . A dif-
ferential p-form ω is closed if dω = 0 and it is exact if there exists a differential (p− 1)-form η
such that ω = dη. A classical theorem20 by de Rham [24] asserts that the singular cohomology
H•s (M,R) can be computed using differential forms.21

Theorem 3.8. Let M be a differentiable manifold of dimension n. For 0 ≤ k ≤ n, the map

Hk
dR(M,R) −→ Hk

s (M,R) ' Hom
(
Hs
k(M,R),R

)
,

[ω] 7−→
∫
ω,

which sends the class of a differential form ω to the integration functional∫
ω : Hs

k(M,R) −→ R,

[γ] 7−→
∫
γ
ω,

is an isomorphism.
20De Rham’s theorem was first presented in his PhD thesis, published in 1931, when cohomology groups had

not been introduced yet. He did not state the theorem in the way it is described today, but gave an equivalent
version involving Betti numbers and integration of closed differential forms over cycles.

21We refer to Bott and Tu [9] for a comprehensive investigation of differential forms in algebraic topology.
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3.2.1 Algebraic de Rham cohomology

A notion of de Rham cohomology for general algebraic varieties over fields of characteristic zero
has been introduced by Grothendieck [37]. Let K be a subfield of C and let X be an algebraic
variety over K.

Definition 3.9. Consider U ⊆ X an open affine subset in the Zariski topology. The ring
of regular functions on U , denoted by O(U), is a finitely-generated K-algebra, and precisely
a quotient of a polynomial ring over K. We say that X is smooth or nonsingular of dimension n
if, for every closed point x ∈ X, the limit lim−−→

U3x
O(U), indexed over all Zariski open affine

subsets U ⊆ X containing x, and with ordering defined by reverse inclusion, is a regular local
ring of dimension n.

Let X be smooth of dimension n and affine. We can write X = SpecR, where R = O(X) is
the ring of regular functions on X. A K-linear algebraic p-form on X is a differential p-forms
on X with coefficients in R. In a local coordinate chart, it is given by an expression of the form∑

1≤i1<···<ip≤n
fi1,...,ip dxi1 ∧ · · · ∧ dxip , (3.2)

where fi1,...,ip are K-polynomial functions on X. We denote by Ωp(X) the K-vector space
of algebraic p-forms on X and we define the space of algebraic forms on X as

Ω(X) =

n⊕
p=0

Ωp(X).

A derivation d: Ω(X) → Ω(X), satisfying properties that are analogous to the ones described
in Section 3.2 for the exterior derivative, can be defined. It canonically yields a cochain complex

0→ R ' Ω0(X)
d−→ Ω1(X)

d−→ · · · d−→ Ωn(X)→ 0

called the algebraic de Rham complex of X. The associated cohomology, denoted H•dR(X,K), is
called the algebraic de Rham cohomology of X.

Remark 3.10. If X is smooth of dimension n, but not necessarily affine, at each closed point
x ∈ X, we can choose some Zariski open affine neighbourhood U of x and some regular functions
x1, . . . , xn ∈ O(U) in such a way to define a system of local parameters22 at x. Viewed as
a subvariety of the affine K-space An, U inherits its local coordinate structure. Intuitively,
by choosing a covering of X composed of Zariski open affine subsets, the algebraic variety is
charted with affine spaces. Observe that the morphism U → An defined by the local coordinates
x1, . . . , xn is always an étale map,23 but not generally an embedding.24 Conceptually, the K-
linear algebraic forms of degree p on X are obtained by suitably gluing25 the algebraic p-forms
defined locally, as in (3.2), on each subset U of an affine open covering of X. The notion of
algebraic de Rham cohomology thus Čeck-style generalises to arbitrary smooth algebraic K-
varieties. Such an intuition does not, however, capture the full picture. The algebraic substitute

22If we do not assume X to be smooth, then we can find local coordinates in an affine open neighbourhood U
of a closed point x ∈ X if and only if the rank of the Jacobian matrix at x is equal to the dimension of U .

23Étale maps can be interpreted as the algebraic analogue of local isomorphisms in the complex analytic
topology. However, open sets in the Zariski topology are not small enough for étale maps to be local isomorphisms.

24For complex neighbourhoods, local coordinates define local isomorphisms. Indeed, smooth algebraic varieties
over C can be locally embedded as submanifolds of the complex affine space.

25The assignment of algebraic forms to smooth affine varieties via local coordinates is well-behaved under gluing,
and hence it globalises.
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for the smooth differential form is rigorously defined through the notions of Kähler differential
and exterior power, while the rigorous construction of the algebraic de Rham cohomology of any
smooth algebraic K-variety requires the use of sheaf cohomology and hypercohomology. We do
not present these concepts here, since an intuitive understanding is sufficient to our purpose,
but we refer to Kashiwara and Schapira [44], and Hartshorne [38]. Moreover, we mention that
several constructions are available to adapt the definition of algebraic de Rham cohomology to
the case of singular varieties giving well-behaved theories. Details are reported by Huber and
Müller-Stach [43].

Example 3.11. Consider X = Gm = SpecQ[x, 1/x]. The only non-vanishing spaces of Q-linear
algebraic forms are

Ω0(Gm) = Q[x, 1/x],

Ω1(Gm) = Q[x, 1/x] · dx.

Consequently, the two groups

H0
dR(Gm,Q) = Q,

H1
dR(Gm,Q) =

Q[x, 1/x] · dx
dQ[x, 1/x]

= Q
[

dx

x

]
are the only non-trivial algebraic de Rham cohomology groups of X.

3.2.2 Relative de Rham cohomology

The definition of algebraic de Rham cohomology extends to the relative setting. Let K be
a subfield of C and let X be a smooth algebraic variety over K of dimension n. Recall the
following definition.

Definition 3.12. A codimension-1 closed subvariety D ⊂ X is called a divisor with normal
crossings if, for every point x ∈ D, there is an open affine neighbourhood U ⊆ X of x and some
local coordinates x1, . . . , xn on U such that:

(1) The morphism U → An defined by x1, . . . , xn is étale.

(2) The restriction D|U is locally described by an equation of the form x1 · x2 · · ·xr for some
1 ≤ r ≤ n.

Moreover, D is called a divisor with simple normal crossings26 if, in addition, its irreducible
components are smooth.

For simplicity,27 let X be affine and D ⊂ X a divisor with simple normal crossings. Denote
by Di, for i = 1, . . . , r, the smooth irreducible components of D. For I ⊆ {0, . . . , r}, we set

DI =
⋂
i∈I

Di, Dp =

{
X, p = 0,∐
|I|=pDI , p ≥ 1.

26D looks locally like a collection of coordinate hyperplanes.
27We illustrate here the construction of relative algebraic de Rham cohomology in a particularly simple frame-

work. The construction can, however, be adapted for the general case of a closed subvariety of a smooth algebraic
K-variety. For a general discussion, we refer to Huber and Müller-Stach [43].
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The associated double cochain complex of K-vector spaces Kp,q = Ωq(Dp) is graphically repre-
sented as

· · · · · · · · ·

Ω2(X)
⊕

i Ω2(Di)
⊕

i<j Ω2(Di ∩Dj) · · ·

Ω1(X)
⊕

i Ω1(Di)
⊕

i<j Ω1(Di ∩Dj) · · ·

Ω0(X)
⊕
i

Ω0(Di)︸ ︷︷ ︸
|I|=1

⊕
i<j

Ω0(Di ∩Dj)︸ ︷︷ ︸
|I|=2

· · · ,

d −d d

d −d d

d −d d

(3.3)

where the vertical differential dver : Kp,q → Kp,q+1 is given by

dver = (−1)pd

and the horizontal differential dhor : Kp,q → Kp+1,q is given by

dhor =
⊕
|I|=p
|J |=p+1
I⊂J

(−1)ldIJ ,

where J = {j0, . . . , jp} with j0 < · · · < jp, I =
{
j0, . . . , ĵl, . . . , jp

}
, and dIJ : Ωq(DI) → Ωq(DJ)

is the restriction map.28 Note that the sign factor (−1)p in the definition of dver implies that
the vertical and horizontal differentials anticommute. Moreover, since DI has dimension equal
to n − |I|, the double complex is trivial for p + q > n. We denote by (Ω•(X,D), δ) the total
cochain complex associated to Kp,q, that is

Ω•(X,D) =
⊕
p+q=•

Kp,q, δ = dver + dhor.

For each k ≥ 0, the space Ωk(X,D) corresponds to the direct sum of the spaces on the k-th
diagonal of the double cochain complex Kp,q represented in (3.3). The total complex is indeed
explicitly written as

Ω0(X,D) ' Ω0(X)
δ0

−−→ Ω1(X,D) ' Ω1(X)⊕
⊕
i

Ω0(Di)
δ1

−−→ · · · .

The relative algebraic de Rham cohomology H•dR(X,D,K) is the cohomology of the total cochain
complex Ω•(X,D), that is

Hk
dR(X,D,K) =

{
Ker

(
δ0
)
, k = 0,

Ker
(
δk
)
/=
(
δk−1

)
, k ≥ 1.

The following proposition is a consequence of the surjectivity of the restriction maps dIJ .

28We observe that the two-row sequence in (3.3) is exact. For the vertical lines Kp,q → Kp,q+1, it follows
from the property d ◦ d = 0 of the differential d. For the horizontal lines Kp,q → Kp+1,q, it follows from the
fact that the differential dhor : Kp,q → Kp+1,q is surjective for even values of p and trivial for odd values of p, as
a consequence of the surjectivity of the restriction maps dIJ .
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Proposition 3.13. Let X be a smooth affine variety over K of dimension n and D ⊂ X a divisor
with simple normal crossings. Each class in the top-degree cohomology group Hn

dR(X,D,K) has
a representative in Ωn(X).

Example 3.14. Let X = Gm = SpecQ[x, 1/x] and D = {1, z} with z ∈ Q, z 6= 1. The
corresponding double algebraic de Rham complex is

0

Q
[
x,

1

x

]
dx 0

Q
[
x,

1

x

]
Q⊕Q 0,

d

d −d

where the only non-trivial horizontal differential is the evaluation map

Q
[
x,

1

x

]
−→ Q⊕Q,

f 7−→ (f(1), f(z)).

The corresponding total complex is

Q
[
x,

1

x

]
δ0

−−→ Q
[
x,

1

x

]
dx⊕Q⊕Q,

f(x) 7−→ (f ′(x)dx, f(1), f(z)),

where the only non-trivial differential is explicitly written. The non-trivial relative algebraic de
Rham cohomology groups are

H0
dR(X,D,Q) = Ker

(
δ0
)

= 0,

H1
dR(X,D,Q) = coKer

(
δ0
)

=
Q
[
x, 1

x

]
dx⊕Q⊕Q
=(δ0)

and a basis of H1
dR(X,D) is given by the classes

[(
dx
x , 0, 0

)]
=
[

dx
x

]
and

[(
dx
z−1 , 0, 0

)]
=
[

dx
z−1

]
.

3.3 Comparison isomorphism

The following fundamental theorem is due to Grothendieck [37].

Theorem 3.15. Let K be a subfield of C and let X be a smooth algebraic variety over K. There
is a canonical isomorphism

comp: H•dR(X,K)⊗K C ∼−−→ H•B(X,Q)⊗Q C

known as comparison isomorphism. Moreover, if Y ⊂ X is closed subvariety, we have

comp: H•dR(X,Y,K)⊗K C ∼−−→ H•B(X,Y,Q)⊗Q C.

As mentioned in Definition 3.4, any algebraic K-variety X canonically yields an analytic
complex space Xan associated with the space of complex points X(C). If X is smooth, then Xan

is an analytic complex manifold. The classical theory of de Rham cohomology, discussed in
Section 3.2 for differentiable manifolds, extends to complex geometry as well.
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Definition 3.16. Let M be a complex manifold of dimension n. For p, q ≥ 0, a differential form
of holomorphic degree p and antiholomorphic degree q on M , also called a differential (p, q)-form,
is written in local analytic coordinates as∑

I,J

fIJ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (3.4)

where the sum runs over the index subsets I = {i1, . . . , ip}, J = {j1, . . . , jq} ⊆ {1, . . . , n} and fIJ
are C∞-functions. Let Ωp,q(M) denote the C-vector space of differential (p, q)-forms on M . The
standard de Rham differential splits as d = ∂+ ∂̄, where ∂ : Ωp,q → Ωp+1,q and ∂̄ : Ωp,q → Ωp,q+1.
The Dolbeault cohomology of M , denoted by H•,•D (M,C), is the cohomology of the double cochain
complex (Ω•,•(M), ∂̄), called the Dolbeault complex of M .

Definition 3.17. A holomorphic t-form on M is a finite sum of differential (p, q)-forms on M
with p + q = t that are locally expressed as in (3.4) with the coefficient functions fIJ being
holomorphic. The holomorphic de Rham cohomology29 of M , denoted by H•dR(M,C), is the
cohomology of the cochain complex associated with the graded C-vector space of holomorphic
forms on M and the holomorphic component ∂ of the de Rham differential.30

The following proposition is the complex analogue of Theorem 3.8 by de Rham.

Proposition 3.18. Let M be a complex manifold of dimension n. For 0 ≤ k ≤ n, there is an
isomorphism

Hk
dR(M,C)

∼−−→ Hk
s (M,Q)⊗Q C. (3.5)

In particular, if M = Xan, where X is a smooth algebraic K-variety of dimension n, we have

Hk
dR(Xan,C)

∼−−→ Hk
B(X,Q)⊗Q C (3.6)

for 0 ≤ k ≤ n.

Remark 3.19. The holomorphic de Rham complex of Xan is equivalently obtained by analytifi-
cation of the algebraic de Rham complex of X, and an equivalent notion of holomorphic de Rham
cohomology of Xan follows canonically. Thus, the procedure of analytification of an algebraic
variety and the properties of holomorphic de Rham cohomology provide the conceptual link
between algebraic de Rham cohomology and Betti cohomology, which underlies Grothendieck’s
comparison isomorphism.

Remark 3.20. An important observation follows from combining Grothendieck’s and de Rham’s
theorems. Given a smooth algebraic variety X over a subfield K of C, the holomorphic de Rham
cohomology of the underlying topological space Xan, equivalent to its singular cohomology, is
isomorphic to the algebraic de Rham cohomology of X after complexification, that is

Hk
dR(Xan,C) ' Hk

dR(X,K)⊗K C

for k ≥ 0. The holomorphic de Rham cohomology can therefore be computed considering
algebraic forms only. In this way, a purely algebraic definition of cohomology is obtained.

29A singular version of the holomorphic de Rham complex, called logarithmic de Rham complex, is obtained
by considering meromorphic forms which are holomorphic in the bulk, but admit logarithmic poles towards the
compactification boundaries of X.

30For a formally rigorous definition of holomorphic de Rham cohomology, using the tools of sheaf cohomology
and hypercohomology, see Voisin [69].
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3.4 Pure Hodge structures

As a consequence of Theorem 3.15, the Betti cohomology of an algebraic variety is endowed
with a richer structure than the singular cohomology of a generic topological space. Recall the
following definition.

Definition 3.21. Let H be a finite-dimensional Q-vector space and let HC = H ⊗Q C. Assume
that HC possesses a bigrading

HC =
⊕
p+q=k

Hp,q

for some integer k, satisfying the property Hp,q = Hq,p, called Hodge symmetry. H is called
a pure Hodge structure of weight k and the given direct sum decomposition of its complexifica-
tion HC is called a Hodge decomposition.

Remark 3.22. An equivalent definition of pure Hodge structure of weight k is obtained by ob-
serving that the data encoded in the Hodge decomposition is equivalent to a finite decreasing
filtration F • of HC, called Hodge filtration, such that

F pHC ⊕ F k−p+1HC = HC

for all integers p. The two equivalent descriptions are related by

Hp,q = F pHC ∩ F qHC, F pHC =
⊕
i≥p

H i,k−i

for p, q integers such that p+ q = k.

Let M be a compact Kähler31 manifold. For p, q ≥ 0, its Dolbeault cohomology classes
in bidegree (p, q) uniquely correspond32 to the harmonic (p, q)-forms on M , and there are
canonical maps

Hp,q
D (M,C)→ Hp+q

dR (M,C) ' Hp+q
s (M,C).

The following theorem by Hodge [42] marks the beginning of what is currently known as Hodge
theory.

Theorem 3.23. Let M be a compact Kähler manifold. The following direct sum decomposition

Hk
dR(M,C) =

⊕
p+q=k

Hp,q
D (M,C)

holds for k ≥ 0.

Remark 3.24. Note that the complex conjugate of Hp,q(M) is Hq,p(M). Following equa-
tion (3.5), the ordinary cohomology group Hk

s (M,Q) is a pure Hodge structure of weight k,
and Hodge’s theorem gives a decomposition33 of its complexification as a direct sum of C-vector
spaces.

31A Kähler manifold is a manifold with a complex structure, a Riemannian structure, and a symplectic structure
which are mutually compatible.

32This result, true for any compact hermitian complex manifold, is known as Hodge isomorphism.
33The Hodge decomposition of a compact Kähler manifold is independent of the choice of Kähler metric,

although there is no analogous decomposition for arbitrary compact complex manifolds.
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Let X be a smooth projective variety defined over a subfield K of C. Xan is a compact
Kähler manifold, and thus the Hodge decomposition and filtration are defined on Hk

dR(Xan,C)
for k ≥ 0. Following equation (3.6), the Betti cohomology groups of X are then pure Hodge
structures of weights equal to their degrees. Moreover, it can be proven34 that the Hodge
filtration F •, which makes the Betti cohomology group Hk

B(X,Q) into a pure Hodge structure
of weight k, directly acts on the algebraic de Rham cohomology groups of X over K. Precisely,
there is an integer n such that F • is a finite decreasing filtration on HK = Hk

dR(X,K) satisfying

F pHK ⊕ Fn−p+1HK = HK

for all integers p. To keep track of all these structures, we define the formal assignment X 7→
H•(X), where Hk(X) is the triple of data given by

Hk(X) =
((
Hk

dR(X,K), F •
)
, Hk

B(X,Q), comp
)

for k ≥ 0. We call Hk(X) a (pure) de Rham and Betti system of realisations, or shortly a (pure)
H-system, of weight n over K. Observe that the weight of Hk(X) is defined by the action of
the Hodge filtration on the algebraic de Rham cohomology, and it does not generally equal the
degree k.

Definition 3.25. Let X,X ′ be smooth projective K-varieties. Write H = Hk(X) and H ′ =
Hk′(X ′), where k, k′ ≥ 0. A morphism of pure H-systems f : H → H ′ is a pair f = (fdR, fB)
consisting of a K-linear map fdR : HdR → H ′dR and a Q-linear map fB : HB → H ′B such that:

(1) fdR is filtered35 with respect to the Hodge filtration, that is

fdR(F •HdR) ⊆ F •H ′dR.

(2) The following diagram commutes:

HdR ⊗K C HB ⊗Q C

H ′dR ⊗K C H ′B ⊗Q C.

comp

fdR⊗KIdC fB⊗QIdC

comp′

Observe that, if H and H ′ have different weights, then every morphism between them is zero.
The following variant of Theorem 3.23 implies that pure H-systems are functorial for morphisms
of smooth projective varieties.

Theorem 3.26. Let X, X ′ be smooth projective varieties over K. For any morphism f : X →
X ′, the induced map on cohomology f∗ : H•(X ′)→ H•(X) is a morphism of pure H-systems.

Example 3.27. For each n ∈ Z, we define

Q(n) = ((K, F •),Q, comp),

where the filtration yields K = F−nK ⊇ F−n+1K = 0 and the isomorphism comp: C → C is
given by multiplication by (2πi)−n. Q(n) is a one-dimensional pure H-system of weight −2n
over K and is called a Tate–Hodge system. As an example, Q(−1) is isomorphic to H1(Gm) =((
H1

dR(Gm), F •
)
, H1

B(Gm), comp
)
, where F • is the trivial filtration concentrated in degree 1.

Observe that Q(−1) is a pure H-system of weight 2, although H1(Gm) has degree 1.
34This result follows non-trivially from the interpretation of the Hodge filtration in terms of hypercohomology

with coefficients in the complex of holomorphic forms, and the GAGA theorem. We refer to Voisin [69].
35Let K be a subfield of C and (V, F ), (V ′, F ) be filtered K-vector spaces. A morphism f : V → V ′ is called

filtered if f(F pV ) ⊆ F pV ′ for each p ≥ 0.
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3.5 Mixed Hodge structures

The Betti cohomology in degree k of a smooth projective K-variety X carries canonically a pure
Hodge structure of weight k. However, this is no longer true when X fails to be smooth or pro-
jective. The generalisation of the notion of pure Hodge structure to the case of quasi-projective
varieties is due to Deligne [25, 26, 27], who proved that the Betti cohomology of a quasi-projective
variety over a subfield K of C is an iterated extension of pure Hodge structures. Recall the fol-
lowing definition.

Definition 3.28. Let H be a finite-dimensional Q-vector space and let HC = H ⊗Q C. Assume
that H possesses a finite increasing filtration W•, called weight filtration, and that HC possesses
a finite decreasing filtration F •, called Hodge filtration, such that, for all integers m, the m-th
graded quotient of H with respect to W•

GrWmH = Wm/Wm−1

together with the filtration induced by F • on its complexification

F •GrWmH = (F • ∩Wm ⊗ C +Wm−1 ⊗ C)/Wm−1 ⊗ C

is a pure Hodge structure of weight m. H is called a mixed Hodge structure.

Remark 3.29. Let H be a mixed Hodge structure. For all integers m, there is a short exact
sequence

0→Wm−1 →Wm → GrWmH → 0.

Take m = h to be the highest weight of H, defined by Wh = H. The short exact sequence above
gives H as an extension of the pure Hodge structure GrWh H by Wh−1. Analogously, taking
m = h− 1, Wh−1 is an extension of GrWh−1H by Wh−2, which in turn is an extension of GrWh−2H
by Wh−3, and so on. In this way, mixed Hodge structures are explicitly realised as iterated
extensions of pure ones.

Theorem 3.30. Let X be a quasi-projective variety over a subfield K of C.

(1) For k ≥ 0, its Betti cohomology group Hk
B(X,Q) is a mixed Hodge structure with respect

to a weight filtration W• and a Hodge filtration F • which satisfy

W−1 = 0 ⊆W0 ⊆W1 ⊆ · · · ⊆W2k = Hk
B(X,Q),

F 0 = Hk
B(X,Q)⊗Q C ⊇ F 1 ⊇ · · · ⊇ F k ⊇ F k+1 = 0.

If X is smooth, then GrWmH
k
B(X,Q) = 0 for all m < k. If X is projective, then

GrWmH
k
B(X,Q) = 0 for all m > k.

(2) The Hodge filtration F • acts on the algebraic de Rham cohomology groups of X over K,
and the weight filtration WB

• = W• induces a corresponding weight filtration W dR
• on the

algebraic de Rham cohomology groups of X over K.

(3) The comparison isomorphism is filtered with respect to the weight filtration

comp(W dR
• ⊗K C) = WB

• ⊗Q C.

Again, to keep track of the several structures that we have introduced, we define a formal
assignment X 7→ H•(X), where Hk(X) is the triple of data given by

Hk(X) =
((
Hk

dR(X,K), F •,W dR
•
)
,
(
Hk

B(X,Q),WB
•
)
, comp

)
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for k ≥ 0. We call Hk(X) a (mixed) de Rham and Betti system of realisations, or shortly
a (mixed) H-system, over K. Observe that, for each integer m, the triple of data

GrWmH =
((

GrWmHdR, F
•),GrWmHB, comp

)
,

where H = Hk(X), is a pure H-system of weight m.

Definition 3.31. Let X, X ′ be quasi-projective K-varieties. Write H = Hk(X) and H ′ =
Hk′(X ′), where k, k′ ≥ 0. A morphism of mixed H-systems f : H → H ′ is a pair f = (fdR, fB)
consisting of a K-linear map fdR : HdR → H ′dR and a Q-linear map fB : HB → H ′B such that:

(1) fB is filtered with respect to the weight filtration, that is

fB(WB
• HB) ⊆WB

• H
′
B.

(2) fdR is filtered with respect to the weight and Hodge filtrations, that is

fdR

(
W dR
• HdR

)
⊆W dR

• H ′dR.

fdR

(
F •HdR

)
⊆ F •H ′dR,

(3) fB and fdR are compatible with the comparison isomorphism, that is

(fB ⊗Q IdC) ◦ comp = comp′ ◦(fdR ⊗K IdC).

The following analogue of Theorem 3.26 holds.

Theorem 3.32. Let X, X ′ be quasi-projective varieties over K. For any morphism f : X → X ′,
the induced map on cohomology f∗ : H•(X ′)→ H•(X) is a morphism of mixed H-systems.

We denote by MHSy(Q) the category36 of mixed H-systems over Q. Deligne [26] proved
that MHSy(Q) is an abelian category. Moreover, it is naturally endowed with two forgetful
functors

ωB : MHSy(Q)→ VecQ, ωdR : MHSy(Q)→ VecQ

called Betti and de Rham functors, sending the mixed system of realisations H ∈ MHSy(Q)
into the Q-vector spaces HB and HdR, respectively.

4 Periods of motives

4.1 Periods

The following elementary definition was introduced by Kontsevich and Zagier [47].

Definition 4.1. A period is a complex number whose real and imaginary parts are values of
absolutely convergent integrals of the form∫

σ
f(x1, . . . , xn) dx1 · · · dxn, (4.1)

where the integrand f is a rational function with rational coefficients and the domain of integra-
tion σ ⊆ Rn is defined by finite unions and intersections of domains of the form {g(x1, . . . , xn)
≥ 0} with g a rational function with rational coefficients.

36Further aspects of de Rham and Betti systems of realisations are discussed by Brown [15].
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If rational functions and coefficients are replaced in Definition 4.1 by algebraic functions and
coefficients, the same set of numbers is obtained. Indeed, algebraic functions in the integrand
can be substituted by rational functions by enlarging the set of variables. Note that, because
the integral of any real-valued function is equivalent to the volume subtended by its graph, any
period admits a representation as the volume of a domain defined by polynomial inequalities with
rational coefficients. Thus, the integrand can always be assumed to be the constant function 1.
However, this extremely simplified framework does not prove to be particularly useful. Quite
the opposite, in what follows, we mostly work with an even more general description of periods
than the one given in Definition 4.1. We denote by P the set of periods. Being Q̄ ⊂ P ⊂ C,
periods are generically transcendental numbers and nonetheless they contain only a finite amount
of information, which is captured by the integrand and domain of integration of its integral
representation as in (4.1). Indeed, just like Q̄, P is countable. Many famous numbers belong to
the class of periods. Here are some examples:

(a) Algebraic numbers are periods, e.g.,

√
2 =

∫
2x2≤1

dx.

(b) Logarithms of algebraic numbers are periods, e.g.,

log 2 =

∫ 2

1

dx

x
.

(c) The transcendental number π is a period, as given by

π =

∫ 1

−1

dx√
1− x2

=

+∞∫
−∞

dx

1 + x2
=

∫∫
x2+y2≤1

dxdy

and alternatively by

2πi =

∮
γ2

dz

z
,

where γ2 is a closed path encircling the origin in the complex plane.

(d) Values of the beta function at positive rational arguments are periods, as given by

B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt, Re(u), Re(v) > 0,

and values of the gamma function at positive rational arguments satisfy37

Γ

(
p

q

)q
∈ P, p, q ∈ N.

(e) The elliptic integral

2

∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx

representing the perimeter of an ellipse with radii a and b, is a period. Note that it is not
an algebraic function of π for a 6= b, a, b ∈ Q>0,

37The statement follows from the relation between the gamma and the beta functions Γ(a1) · · ·Γ(an) = Γ(a1 +
· · ·+ an)

∏n−1
i=1 B(a1 + · · ·+ ai−1, ai) with Re(ak) > 0, k = 1, . . . , n.
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(f) Values of the Riemann zeta function at integer arguments s ≥ 2 are periods, e.g.,

ζ(3) = 1 +
1

23
+

1

33
+ · · · =

∞∑
n=1

1

n3
=

∫∫∫
0<x<y<z<1

dxdydz

(1− x)yz
,

and more generally multiple zeta values are periods by means of their integral representa-
tion (2.9).

(g) Convergent Feynman integrals, as in (2.5), are periods. Moreover, removing the conver-
gence requirement, the statement suitably extends to a wider class of Feynman integrals.38

(h) Special values at algebraic arguments of hypergeometric functions, values of modular forms
at suitable arguments, and values of various kinds of L-functions are periods.

Because the integral representation of a period is not unique, it is possible that a certain
integral of a transcendental function admits a representation as a period as well. For example,
log(2) is a period, and yet it can be written as the following integral of a transcendental function

1∫
0

x

log 1
1−x

dx.

Indeed, there seems to be no general principle able to predict if a certain infinite sum or integral of
a transcendental function is a period according to Definition 4.1, or able to determine whether
two periods, given by explicit integrals, are equal or different. A number in Q̄ also admits
apparently different expressions, but those same techniques that work for checking the equality
of algebraic numbers do not in general work for periods. In fact, two different periods may
be numerically very close and yet be distinct.39 However, the following conjecture is presented
by Kontsevich and Zagier [47].

Conjecture 4.2. If a period has two different integral representations, then one expression can
be transformed into the other by application of the three integral transformation rules of additi-
vity, change of variables, and Stokes’ formula, in which all integrands and domains of integration
are algebraic with algebraic coefficients.

We note that even a proof of Conjecture 4.2 would not solve the additional problem of finding
an algorithm to determine whether or not two given numbers in P are equal, or whether or not
a given real number belongs to P. Another fundamental open problem in the theory of periods
is to explicitly exhibit one number which does not belong to P. Such numbers must exist,
because P is a countable subset of C, but the concrete identification of one of such numbers
has only been proposed conjecturally. Indeed, the basis of natural logarithms e and the Euler–
Mascheroni constant γ are conjecturally not periods. Several further questions on the arithmetic
nature and transcendence of periods are open or only conjecturally answered.40

Before moving to a more sophisticated definition of periods written in the language of alge-
braic geometry, which is essential to subsequent developments, we mention the fruitful interplay
between the theory of periods and the theory of linear differential equations. When the integ-
rands or the domains of integration depend on some set of parameters, the integrals, as functions
of these parameters, usually satisfy linear differential equations with algebraic coefficients. The

38Under some assumptions, Bogner and Weinzierl [7] showed that the coefficients appearing in the Laurent
series of any scalar multi-loop integral are periods.

39For example, the approximation π = 6√
3502

log(2u) + 7.37 × 10−82, where u is the product of four quartic

units, has been found by Shanks [63].
40See Waldschmidt [70] for an overview of the topic.
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solutions of these differential equations generate periods when evaluated at algebraic arguments.
The differential equations occurring in this way are called Picard–Fuchs differential equations.
The relation between periods and Picard–Fuchs equations has proved to be particularly produc-
tive in the case of elliptic curves, hypergeometric functions, modular forms and L-functions.

4.2 Algebra of motivic periods

The theory of periods is alternatively developed within the formalism of algebraic geometry.
We refer to Huber and Müller-Stach [43].

Definition 4.3. Let X be a smooth quasi-projective variety defined over Q̄, and Y ⊂ X a clo-
sed subvariety. A period is a complex number which can be expressed as an integral of the
form

∫
γ ω ∈ C, where ω is a closed algebraic differential k-form on X vanishing on Y , and γ

is a singular k-chain on the complex manifold Xan with boundary contained in Y an for some
integer k ≥ 0.

The equivalence of Definitions 4.3 and 4.1 follows from the observation that the algebraic
chain γ can be deformed to a semi-algebraic chain and then broken up into small pieces, which
can be bijectively projected onto open domains in Rn with algebraic boundary. Without loss
of generality, we work with coefficients in Q instead of Q̄. We note that, like Definition 4.1,
Definition 4.3 also contains redundancy. The integral

∫
γ ω can be formally decomposed into the

quadruple

(X,Y, ω, γ)

and different quadruples can give the same resulting number. To get rid of this redundancy, the
various forms of topological invariance of the integral must be suitably accounted for. Following
Stokes’ theorem, the integral is insensitive to the individual cycle and form, being instead deter-
mined by the homology and cohomology classes of these. Let us associate to ω its cohomology
class in the k-th algebraic de Rham cohomology group of X relative to Y , and to γ its homology
class in the k-th Betti homology group of X relative to Y . Then, the first step towards a unique
algebraic description of periods consists of the following substitutions

ω −→ [ω] ∈ Hk
dR(X,Y,Q),

γ −→ [γ] ∈ HB
k (X,Y,Q)

into the quadruple (X,Y, ω, γ). The problem of the coexistence of distinct, but similarly behaved,
cohomologies associated to the same variety, which seems to imply an arbitrary choice here and
in many other situations, has been tackled by Grothendieck41 [23] with the introduction of the
theory of motives. He suggested that there should exist a universal cohomology theory taking
values in a Q-category of motives. The notion of a motive is thus proposed to capture the
intrinsic cohomological essence of a variety. Without delving into the category-theoretic details
of the theory of motives42, we give here a conceptual introduction to its specific application
to the theory of periods. Further discussion on the fundamental features of motives, as they
appear in the study of periods, is presented in Section 5 in a more rigorous formalism. Recall
from Theorem 3.15 that there is a comparison isomorphism

comp: Hk
dR(X,Y,Q)⊗Q C ∼−−→ Hk

B(X,Y,Q)⊗Q C
41Grothendieck proposed the notion of a motive in a letter to Serre in 1964. He himself did not author any

publication on motives, although he mentioned them frequently in his correspondence. The first formal expositions
of the theory of motives are due to Demazure [30] and Kleiman [46], who based their work on Grothendieck’s
lectures on the topic.

42For a thorough introduction to the theory of motives, we refer to Voevodsky [68], André [4], Deligne and
Goncharov [28], and Murre et al [51].
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induced by the pairing

Hk
dR(X,Y,Q)×Hs

k

(
Xan, Y an,Q

)
−→ C,

([ω], [γ]) 7−→
∫
γ
ω.

Momentarily neglecting the presence of filtrations for simplicity, the de Rham and Betti system
of realisations of X relative to Y in degree k is

Hk(X,Y ) =
(
Hk

dR(X,Y,Q), Hk
B(X,Y,Q), comp

)
.

In the same way that the cohomology class of a differential form singles out its cohomological
behaviour, the H-system of an algebraic variety intuitively selects the content shared by its
coexisting algebraic de Rham and Betti cohomologies, and it filters out everything else. It is,
therefore, a first approximation towards the realisation of Grothendieck’s idea of a motive.
We define the motivic version of the period

∫
γ ω as the triple[

Hk(X,Y ), [ω], [γ]
]m
,

where m in the superscript stands for motivic. We call a period in this guise a motivic period.
This has proved to be the most profitable reformulation of the original notion of a period.
However, a second source of redundancy in the description of periods via the integral formulation
in Definition 4.3, corresponding to the same transformation rules in Conjecture 4.2, has yet to
be factored out.

Definition 4.4. The space Pm of motivic periods is defined as the Q-vector space43 generated
by the symbols [H•(X,Y ), [ω], [γ]]m after factorisation modulo the following three equivalence
relations:

(1) Bilinearity. [H•(X,Y ), [ω], [γ]]m is bilinear in [ω] and [γ].

(2) Change of variables. If f : (X1, Y1) → (X2, Y2) is a Q-morphism of pairs of algebraic
varieties, [γ1] ∈ HB

• (X1, Y1) and [ω2] ∈ H•dR(X2, Y2), then

[H•(X1, Y1), f∗[ω2], [γ1]]m = [H•(X2, Y2), [ω2], f∗[γ1]]m,

where f∗ and f∗ are the pull-back and the push-forward of f , respectively.

(3) Stokes’ formula. Assume for simplicity that X is a smooth affine algebraic variety over Q
of dimension d and D ⊂ X is a simple normal crossing divisor. The normalisation44 D̃
of D contains a simple normal crossing divisor D̃1 coming from double points in D. If [ω] ∈
Hd−1

dR

(
D̃, D̃1

)
and [γ] ∈ HB

d (X,D), then

[Hd(X,D), δ[ω], [γ]]m =
[
Hd−1(D̃, D̃1), [ω], ∂[γ]

]m
,

where δ : Hd−1
dR

(
D̃, D̃1

)
→ Hd

dR(X,D) is the coboundary operator acting on the algebraic

de Rham cohomology and ∂ : HB
d (X,D)→ HB

d−1

(
D̃, D̃1

)
is the boundary operator acting

on the Betti homology.

We observe that the space of motivic periods Pm is naturally endowed with an algebra
structure. Indeed, new periods are obtained by taking sums and products of known ones.

43In what follows, we no longer display the field Q among the arguments of the cohomology groups for simplicity
of notation.

44D̃ is the disjoint union of the irreducible components of D.
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4.3 Period map

We call period map the evaluation homomorphism

per : Pm −→ P,[
Hk(X,Y ), [ω], [γ]

]m 7−→ [γ] ◦ comp ◦[ω] =

∫
γ
ω.

Following the construction in Section 4.2, the period map is explicitly surjective. Its injectivity
is, on the other hand, not proven. Indeed, a period has a unique motivic realisation only
conjecturally. Conjecture 4.2 is equivalent to the period conjecture below.

Conjecture 4.5. The period map per : Pm → P is an isomorphism.

Let us briefly discuss the key idea underlying the period conjecture. A Q-morphism f :
(X1, Y1) → (X2, Y2) between two pairs of algebraic varieties induces a change of coordinates
between the corresponding algebraic de Rham cohomologies by pull-back, that is

(X1, Y1) H•dR(X1, Y1)

(X2, Y2) H•dR(X2, Y2).

f f∗

The same morphism f acts on the topological spaces of complex points underlying the given
algebraic varieties, and it induces a change of coordinates between the corresponding singular
homologies by push-forward, that is(

Xan
1 , Y an

1

)
Hs
•
(
Xan

1 , Y an
1

)
(
Xan

2 , Y an
2

)
Hs
•
(
Xan

2 , Y an
2

)
.

f f∗

By means of such changes of coordinates, one can easily derive two distinct integral represen-
tations of the same period. For example, taking [γ1] ∈ Hs

•
(
Xan

1 , Y an
1

)
and [ω2] ∈ H•dR(X2, Y2),

we have∫
[γ1]

f∗[ω2] =

∫
f∗[γ1]

[ω2].

The corresponding two motivic representations of the same period

[H•(X1, Y1), f∗[ω2], [γ1]]m, [H•(X2, Y2), [ω2], f∗[γ1]]m

could a priori be different motivic periods. However, they are identified with each other by
change of variables. Indeed, the period conjecture corresponds to the statement that, whenever
different motivic representations of the same period arise, they can always be interrelated by the
three equivalence relations in Definition 4.4.

Definition 4.6. Let X be a smooth quasi-projective Q-variety, Y ⊂ X a closed subvariety,
and H = H•(X,Y ) the H-system of X relative to Y . Assume that {[ωj ]}nj=1 is a basis of the
algebraic de Rham cohomology H•dR(X,Y ), and that {[γi]}ni=1 is a basis of the Betti homology
HB
• (X,Y ). We denote by per |H the period map restricted to the motivic periods in Pm that
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are built on the given Hodge structure H. Observe that per |H is fully determined by the values
that it takes when evaluated at [H, [ωj ], [γi]]

m, which are

per |H([H, [ωj ], [γi]]
m) =

∫
γi

ωj

for each pair of indices (i, j) with i, j = 1, . . . , n. We define the period matrix of H as the
n× n-matrix with complex entries (pij)i,j=1,...,n given by

pij =

∫
γi

ωj .

The period matrix expresses in a different guise the same information contained in the period
map, once it has been restricted to a specific H-system.

Remark 4.7. For a given mixed H-system H = (HdR, HB, comp), there is a canonical choice
of bases on HdR and HB which is compatible45 with the comparison isomorphism and with the
Hodge and weight filtrations in H. We often implicitly assume to work in the canonical bases
when writing the period matrix. Let us denote by {ei}ni=1 and {fi}ni=1 the canonical bases on the
de Rham and Betti realisations of H, respectively. For i = 1, . . . , n, the action of the comparison
isomorphism on the i-th element of the canonical basis of HdR is given by

comp: HdR ⊗Q C ∼−−→ HB ⊗Q C,
ei ⊗ 2πi 7−→ f∨i ⊗ 2πi,

where f∨i denotes the standard vector dual basis element of fi on HB. For i, j = 1, . . . , n, the
pairing map gives

HdR ×HB −→ C,

(ej , fi) 7−→
∫
fi

ej = pij .

For i = 1, . . . , n, we define the vector dual e∨i of the basis element ei to be e∨i = fi. Observe
that, since we cannot easily make sense of a notion of de Rham homology, the dual of a basis
of HdR is defined to be a basis of HB.

Example 4.8. Let H = H1(Gm, {1, z}) with z ∈ Q\{0, 1}. As shown in Examples 3.7 and 3.14,
a basis of the Betti homology group HB

1 (Gm, {1, z}) ' Hs
1(C∗, {1, z}) is given by [γ1], where γ1

is a continuous oriented map from 1 to z which does not encircle the origin, and [γ2], where γ2

is a counterclockwise cycle encircling the origin. A basis of the algebraic de Rham cohomology
group H1

dR(Gm, {1, z}) is given by [ω1] =
[

dx
z−1

]
and [ω2] =

[
dx
x

]
. Such a choice of bases is indeed

canonical, and the period matrix of H is(
1 log(z)
0 2πi

)
.

4.4 Examples

4.4.1 Motivic 2πi

The period 2πi is given by the contour integral

2πi =

∮
γ2

dx

x
,

45See Brown [15] for details.
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where γ2 is a counterclockwise cycle encircling the origin in the punctured complex plane C∗.
As observed in Example 3.5, the complex manifold C∗ is isomorphic to the topological space
of complex points Gan

m underlying the algebraic variety Gm over Q. As shown in Examples 3.2
and 3.11, we have that

HB
1 (Gm) = Q[γ2], H1

dR(Gm) = Q
[

dx

x

]
.

Recalling that H1(Gm) =
(
H1

dR(Gm), H1
B(Gm), comp

)
, a motivic version of 2πi is

(2πi)m =

[
H1(Gm),

[
dx

x

]
, [γ2]

]m

, (4.2)

which is alternatively represented by the pairing

H1
dR(Gm)×HB

1 (Gm) −→ C,([
dx

x

]
, [γ2]

)
7−→

∮
γ2

dx

x
= 2πi.

A second integral representation of 2πi is given by

2πi =

∫
P1(C)

dz ∧ dz̄

(1 + zz̄)2
, (4.3)

where dz∧dz̄
(1+zz̄)2 is a closed algebraic 2-form over the projective manifold P1,an. Because P1,an is

compact and Kähler, Theorem 3.23 applies, giving the Hodge decomposition

H2
dR(P1)⊗Q C =

⊕
p+q=2

Hp,q
D

(
P1,C

)
which implies that the pure H-system H2(P1) has weight 2. Recalling that the differential forms
in Hp,q

D contain p copies of the differential dz and q copies of the anti-holomorphic differential dz̄,

we have that
[

dz∧dz̄
(1+zz̄)2

]
∈ H1,1

D

(
P1,C

)
. Therefore, the integral (4.3) corresponds to the motivic

period46

(2πi)m =

[
H2(P1),

[
dz ∧ dz̄

(1 + zz̄)2

]
,
[
P1,an

] ]m

. (4.4)

Remark 4.9. The two apparently different motivic periods in (4.2) and (4.4) are the same,
thus preserving the period conjecture. To show this, define

A = P1,an\{∞} ∼= C ⊂ P1,an, B = P1,an\{0} ∼= C ⊂ P1,an

which satisfy the relations

A ∩B ' C∗ ' Gan
m , A ∪B = P1,an.

46Note that we are here using the intuitive definition of algebraic de Rham cohomology of non-affine varieties
given in Section 3.2.1. Although dz∧dz̄

(1+zz̄)2
is not a global algebraic 2-form on P1(C), and indeed there are no

non-zero global algebraic 2-forms on P1(C) for dimension reasons, one can still rigorously make sense of 2πi as
a period of H2(P1) via the Čeck construction mentioned in Section 3.2.1, that is, choosing a Zariski open affine
covering of P1 and computing the algebraic de Rham cohomology as a hypercohomology of sheaves.
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By the Mayer–Vietoris theorem applied to the singular homology groups, the following long
exact sequence holds

0 Hs
0(A ∪B) Hs

0(A)⊕Hs
0(B)

Hs
1(A)⊕Hs

1(B)︸ ︷︷ ︸
'0

Hs
1(A ∪B) Hs

0(A ∩B)

Hs
1(A ∩B) Hs

2(A ∪B) Hs
2(A)⊕Hs

2(B)︸ ︷︷ ︸
'0

.

Hence, the step Hs
1(A ∩B)→ Hs

2(A ∪B) is an isomorphism, giving

Hs
1(Gan

m ) ' Hs
2

(
P1,an

)
.

Similarly, one can prove that the whole H-systems H1(Gm) and H2(P1) are isomorphic and that
the change of coordinates occurring between them relates the cohomology classes

[
dz∧dz̄

(1+zz̄)2

]
and[

dx
x

]
and the homology classes [γ0] and

[
P1,an

]
via pull-back and push-forward maps, respectively.

4.4.2 Motivic log(z)

Recall the integral representation of log(z), z ∈ Q\{0, 1}, given by

log(z) =

∫ z

1

dx

x
. (4.5)

As in the case of 2πi, this is an integral over the punctured complex plane C∗ = Gan
m . However,

contrary to the case of 2πi, where the integration path γ2 is closed, integral (4.5) is performed
on an open path, precisely any continuous oriented path γ1 ⊂ C∗ starting at 1 and ending at z,
which does not encircle the origin. The integration path being open requires us to work in the
framework of relative homology. Let Gm be the ambient variety. Then, C∗ is the underlying
topological space, and {1, z} ⊂ C∗ with z ∈ Q\{0, 1} is a simple normal crossing divisor.
As shown in Examples 3.7 and 3.14, we have

HB
1 (Gm, {1, z}) = Q[γ1, γ2], H1

dR(Gm, {1, z}) = Q
[

dx

z − 1
,
dx

x

]
.

Observe that we can write
[(

dx
z−1 , 0, 0

)
,
(

dx
x , 0, 0

)]
=
[

dx
z−1 ,

dx
x

]
as a consequence of Proposi-

tion 3.13. Setting as usual H1(Gm, {1, z}) =
(
H1

dR(Gm, {1, z}), H1
B(Gm, {1, z}), comp

)
, a mo-

tivic version of log(z) is

log(z)m =

[
H1(Gm, {1, z}),

[
dx

x

]
, [γ1]

]m

which is alternatively represented by the pairing

H1
dR(Gm, {1, z})×HB

1 (Gm, {1, z}) −→ C,([
dx

x

]
, [γ1]

)
7−→

∫
γ1

dx

x
= log(z).
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4.4.3 Elementary relations

Elementary relations among periods are often simply recast in the formalism of motivic periods.
In fact, de Rham and Betti systems of realisations conjecturally capture all algebraic relations
among periods.

Example 4.10. For a, b ∈ Q\{0, 1}, such that ab 6= 1, consider the following injective morphisms
of pairs of Q-spaces:

(Gm, {1, a}) ↪→ (Gm, {b, ab}) ↪→ (Gm, {1, b, ab}),
(Gm, {1, b}) ↪→ (Gm, {1, b, ab}),
(Gm, {1, ab}) ↪→ (Gm, {1, b, ab}).

Since the differential form dx
x is invariant under rescaling of x, we have the motivic representa-

tions

log(a)m =

[
H1(Gm, {1, b, ab}),

[
dx

x

]
, [b, ab]

]m

,

log(b)m =

[
H1(Gm, {1, b, ab}),

[
dx

x

]
, [1, b]

]m

,

log(ab)m =

[
H1(Gm, {1, b, ab}),

[
dx

x

]
, [1, ab]

]m

,

where [z, w] denotes the class of a continuous oriented map in C∗ which goes from z to w and it
does not encircle the origin in the Betti homology group HB

1 (Gm, {1, b, ab}) for z, w ∈ {1, b, ab}.
Additivity of the Betti homology classes [b, ab] ∪ [1, b] = [1, ab] implies that motivic logarithms
satisfy the expected relation

log(ab)m = log(a)m + log(b)m.

Example 4.11. Consider H = H1(Gm, {1, z}) for z ∈ Q\{0, 1}. Let γ be the union of the
paths γ1 and γ2 in the punctured complex plane, as shown in Fig. 11.

γ

γ2

0 1

γ1

z

Figure 11. The paths γ1, γ2, and γ in C∗.

The period obtained by integrating ω2 along γ is∫
γ
ω2 =

∫
γ1∪γ2

ω2 =

∫
γ1

ω2 +

∫
γ2

ω2 = log(z) + 2πi,

which translates into the following relation among motivic periods

(log(z) + 2πi)m = [H, [ω2], [γ]]m = [H, [ω2], [γ1 ∪ γ2]]m

= [H, [ω2], [γ1]]m + [H, [ω2], [γ2]]m

= log(z)m + (2πi)m,
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where we have used the additivity of the Betti homology classes and the injective morphism
Gm ↪→ (Gm, {1, z}). Because (log(z) + 2πi)m ∈ per−1(log(z) + 2πi) and log(z)m + (2πi)m ∈
per−1(log(z)) + per−1(2πi), it follows that

per−1(log(z) + 2πi) ∩
(

per−1(log(z)) + per−1(2πi)
)
6= ∅.

Note that per−1(log(z) + 2πi) = per−1(log(z)) + per−1(2πi) only holds conjecturally.

Moreover, many new functional equations among motivic periods are found by means of the
more abstract, and yet more powerful formalism that we discuss in Section 5. By the period
conjecture, new relations among motivic periods automatically translates into new algebraic
relations among the corresponding numbers.

5 Feynman motives

5.1 Singularities and the blow up

Multiple zeta values and convergent Feynman integrals are periods by means of the integral
representations (2.9) and (2.5), respectively. In both cases, singularities of the integrand can
be contained in the domain of integration, a feature that does not occur in the examples of 2πi
and log(z). Whenever singularities are present, they have to be taken care of with particular
attention.

Example 5.1. The period ζ(2) is given by the integral

ζ(2) =

∫
1≥x1≥x2≥0

dx1

x1
∧ dx2

1− x2
(5.1)

over the complex manifold C2. The domain of integration is the simplex

σ = {(x1, x2) ∈ C2 | 1 ≥ x1 ≥ x2 ≥ 0}

and the integrand is the differential 2-form

ω =
dx1

x1
∧ dx2

1− x2
.

Observing that C2 is isomorphic to the topological space of complex points A2(C), underlying
the affine47 Q-algebraic variety A2 = SpecQ[x1, x2], we may try to build ζ(2)m as we did for
the examples in Section 4.4. Consider the lines l0 = {x1 = 0} and l1 = {x2 = 1} in the affine
plane A2. Since L = l0 ∪ l1 is the locus of singular points of ω, the latter is an algebraic 2-form
on X = A2\L. Thus, [ω] is a class in the second algebraic de Rham cohomology group of X
and, consequently, we may want to consider the integral (5.1) as a period of X relative to some
divisor containing the boundary of σ. In an attempt to do so, define the simple normal crossing
divisor

D = {x1 = x2} ∪ {x1 = 1} ∪ {x2 = 0} ⊂ A2

containing ∂σ. Note that D is not in X because D∩L 6= ∅. However, the divisor D\(D∩L) ⊂ X
does no longer contain ∂σ. The problem arises from the fact that σ itself is not contained in X,
intersecting the singular locus L in two points

p = (0, 0) = σ ∩ l0 = D ∩ l0, q = (1, 1) = σ ∩ l1 = D ∩ l1.
47For any positive integer n, the n-dimensional affine variety over Q is defined as An = SpecQ[x1, . . . , xn]. For

any field extension K ⊇ Q, the space of K-points of An is An(K) = Kn. The multiplicative group Gm = SpecQ[x, 1
x

]
satisfies Gm = SpecQ[x1, x2]/(1− x1x2) = A1\{0} ⊂ A2, that is, Gm is a hyperbola in A2.
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Removing the singular points p, q from D and considering the second relative H-system H2(X,D
\(D∩L)) does not solve the mentioned technical issue, because [σ] is not a class in HB

2 (X,D\(D∩
L)). See Fig. 12.

D

q

p

l0

l1

σ

Figure 12. Construction of ζ(2)m in the affine plane A2.

The example of ζ(2) shows how direct removal of singular points explicitly fails and motivates
a more articulated geometric construction, called blow up, which proves to be successful in the
case of ζ(2) and many more examples. Graphically, we may illustrate the procedure as the
removal of a whole region of space centred at the singularity and the corresponding reshaping
of the integration domain. See Fig. 13 for a qualitative representation of how the blow up of the
two singular points p, q ∈ A2 acts on σ in the case of ζ(2).

(a) Before the blow up (b) After the blow up

Figure 13. Qualitative illustration of the blow up of the singular points of ζ(2).

5.2 Motivic multiple zeta values

Consider ζ(2) again. The blow up of the affine plane A2 along the singular points p, q is defined
as the closed subvariety

Y = Blow
p,q

(
A2
)
⊂ A2 × P1 × P1

given by the equations

x1α1 = x2β1, (x1 − 1)α2 = (x2 − 1)β2,
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where [αi : βi], i = 1, 2, are homogeneous coordinates on the two copies of P1. The projection
of Y onto the first factor in A2 × P1 × P1 is the proper surjective map

π : Y −→ A2,

(x1, x2)× [α1 : β1]× [α2 : β2] 7−→ (x1, x2).

Let us write π−1 to denote the inverse image operator48 under the projection π. The inverse
images of the singular points p, q ∈ A2 are the projective lines Ep, Eq ⊂ Y , called exceptional
divisors. Precisely, we have

π−1(p) = π−1(0, 0) = (0, 0)× P1 × [1 : 1] = Ep,

π−1(q) = π−1(1, 1) = (1, 1)× [1 : 1]× P1 = Eq.

Moreover, the restriction of π to the complement in Y of the exceptional divisors Ep, Eq

π|Y \(Ep∪Eq) : Y \(Ep ∪ Eq) −→ A2\{p, q},
(x1, x2)× [1 : 1]× [1 : 1] 7−→ (x1, x2)

is an isomorphism. For any closed subset C ⊂ A2, the inverse image π−1(C) is called total
transform of C. The strict transform of C, denoted Ĉ, is instead the closed subset of Y obtained
by first removing the points p, q if they belong to C, then taking the inverse image under π, and
finally taking the Zariski closure, that is

Ĉ = π−1(C\{p, q}) ⊆ π−1(C). (5.2)

It follows that the strict transforms of l0, l1 are the affine lines

L0 = l̂0 =
{

(0, x2)× [1 : 0]× [1− x2 : 1] |x2 ∈ A1
}
,

L1 = l̂1 =
{

(x1, 1)× [1 : x1]× [0 : 1] |x1 ∈ A1
}

and their total transforms are

π−1(l0) = L0 ∪ Ep, π−1(l1) = L1 ∪ Eq.

We observe that L0, Ep and L1, Eq intersect in only one point each. Precisely

L0 ∩ Ep = {(0, 0)× [1 : 0]× [1 : 1]},
L1 ∩ Eq = {(1, 1)× [1 : 1]× [0 : 1]}. (5.3)

Moreover, we have

L1 ∩ Ep = ∅ = L0 ∩ Eq,
L1 ∩ L0 = {(0, 1)× [1 : 0]× [0 : 1]}.

In a similar way to (5.2), but taking the closure in the analytic topology, we define the strict
transform σ̂ of the domain of integration. Observing that the closed points of Ep can be inter-
preted as lines passing through p, and analogously that the closed points of Eq can be interpreted
as lines passing through q, we obtain

σ̂ ∩ Ep = {(0, 0)× [t : 1]× [1 : 1] | 0 ≤ t ≤ 1},
σ̂ ∩ Eq = {(1, 1)× [1 : 1]× [1 : t] | 0 ≤ t ≤ 1}
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L0

L1

σ̂

Eq

Ep

Figure 14. The strict transform of σ in the blow up Y .

which, combined with (5.3), imply that

σ̂ ∩ L0 = ∅, σ̂ ∩ L1 = ∅. (5.4)

See Fig. 14 for a graphical representation of the blow up.
While the inverse image π−1 is applied to the ambient variety, giving the reshaped domain σ̂,

the differential form ω is replaced by its pull-back π∗(ω), denoted by ω̂. Let us now show that
the pull-back ω̂ is only singular49 on the strict transform L = L0 ∪L1. We use local coordinates
on the blow up Y . In particular, consider a patch of Y around the point L0 ∩ Ep as shown
in Fig. 15.

L0
Ep

Figure 15. Local patch of Y around the intersection of L0 and Ep.

Here, a local system of coordinates is explicitly given by

t =
x1

x2
=
β1

α1
, s = x2,

where L0 and Ep have equations t = 0 and s = 0, respectively. Applying this change of variables
to ω̂, we have

ω̂ =
d(st)

st
∧ ds

1− s
=

ds

s
∧ ds

1− s
+

dt

t
∧ ds

1− s
=

dt

t
∧ ds

1− s
.

It follows that ω̂ is singular along the strict transform L0, while it is smooth along the exceptional
divisor Ep, because it has no pole at s = 0. Analogously, we find that ω̂ is singular along L1,

48Observe that π−1 is not a map defined on the affine plane A2 because π is not invertible.
49In principle, ω̂ might have singularities along the total transform of l0 ∪ l1, i.e., L0 ∪ L1 ∪Ep ∪Eq. However,

in the case of ζ(2), it turns out that ω̂ has no singularities along the exceptional divisors. More generally, this
condition determines whether the blow up prescription turns out to be successful or not for a given period.
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but not along Eq. Then, the singular locus of ω̂ is L. Observe that the complement Y \L is the
closed affine subvariety of A2 × A1 × A1 given by the equations

x1t = x2, x1 − 1 = (x2 − 1)s,

where t, s are affine coordinates on the two copies of A1. Therefore, the differential form ω̂
determines a class in H2

dR(Y \L). Moreover, it follows from (5.4) that, moving from the original
affine plane A2 to the blow up Y , the singular locus of the differential form ω̂ and the domain
of integration σ̂ are disjoint. As usual, we may want to consider the integral (5.1) as a period
of Y \L relative to some divisor containing the boundary of σ̂. The blow up construction is thus
successful for the period ζ(2) if [σ̂] turns out to be a class in the given relative Betti homology
group. To see this, recall that ∂σ is contained in the union D of the affine lines

m1 = {x1 = x2}, m2 = {x1 = 1}, m3 = {x2 = 0}.

Thus, we naturally consider the normal crossing divisor M ⊂ Y defined by

M = π−1(D) = π−1(m1 ∪m2 ∪m3) = Ep ∪ Eq ∪M1 ∪M2 ∪M3,

where Mi = m̂i denotes the strict transform of mi for i = 1, 2, 3. Note that L ∩M is the union
of the points L0 ∩Ep and L1 ∩Eq expressed in (5.3). Therefore, σ̂ is contained in Y \L and ∂σ̂
is contained in M\(M ∩ L) ⊂ Y \L, implying

[σ̂] ∈ HB
2 (Y \L,M\(M ∩ L)).

Besides, the restriction of ω̂ to every irreducible component Mi, i = 1, 2, 3, of M gives zero,
implying

[ω̂] ∈ H2
dR(Y \L,M\(M ∩ L)).

Setting H = H2(Y \L,M\(M ∩ L)), the resulting motivic version of ζ(2) is

ζ(2)m = [H, [ω̂], [σ̂]]m .

Indeed, the pairing of [σ̂] and [ω̂] yields∫
σ̂
ω̂ =

∫
σ̂
π∗(ω) =

∫
π∗(σ̂)

ω =

∫
σ
ω = ζ(2)

by the equivalence relation under change of variables in Pm. Moreover, the whole canonical
period matrix of H is(

1 ζ(2)

0 (2πi)2

)
. (5.5)

5.3 Motivic Feynman integrals

In an attempt to overcome singularity issues, the blow up procedure can be similarly applied
to generic MZVs and other families of periods, such as convergent Feynman integrals. For
an exposition of the general computation of the H-system of a blow up we refer to Voisin [69].

Let G be a primitive log-divergent Feynman graph, EG the collection of its edges, and
nG = |EG|, as in Section 2.4. Recall that xe denotes the Schwinger parameter associated to
e ∈ EG, and ΨG, IG, and XG denote the first graph polynomial, the Feynman integral, and the
graph hypersurface, as given in (2.3), (2.5), and (2.6), respectively. Denote by ωG and σ the
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integrand and the domain of integration of IG. Since ωG is a top-degree algebraic differential
form on PnG−1\XG, and ∂σ is contained in the union D of the coordinate hyperplanes {xe = 0,
e ∈ EG}, we may intuitively try to build the motive Im

G on the relative H-system

HnG−1
(
PnG−1\XG, D\(D ∩XG)

)
.

However, this näıve attempt fails whenever the hypersurfaceXG intersects the integration cycle σ
non-trivially, implying the presence of non-negligible singularities. Whenever singularities are
present, σ does not define an element in the corresponding näıve relative Betti homology group.
To successfully build the motive Im

G in the presence of singularities, the blow up technique is
applied.

A linear subvariety L ⊂ PnG−1 defined by the vanishing of a subset of the set of Schwinger
parameters is called a coordinate linear space, while its subspace of real points with non-negative
coordinates is denoted by

L(R≥0) = {[xe]e∈EG ∈ L |xe ∈ R≥0}.

Since the coefficients of ΨG are positive, the locus of problematic singularities is

σ ∩XG(C) =
⋃

L⊂XG

L(R≥0),

where the union is taken over all coordinate linear spaces L ⊂ XG.

Remark 5.2. The coordinate linear spaces L ⊂ XG are in one-to-one correspondence with the
subgraphs γ ⊂ G such that lγ > 0. It follows that

σ ∩XG(C) =
⋃
γ⊂G

Lγ(R≥0),

where the union is taken over all subgraphs γ ⊂ G with lγ > 0, and Lγ is the linear subvariety
of PnG−1 defined by the equations {xe = 0, e ∈ Eγ}.

The following theorem is proven, and an explicit algorithmic construction of the blow ups is
given, by Bloch, Esnault and Kreimer [5].

Theorem 5.3. Let G be a primitive log-divergent Feynman graph. There exists a tower

π : P = Pr → Pr−1 → · · · → P1 → P0 = PnG−1

such that, for each i = 1, . . . , r, Pi is obtained by blowing up Pi−1 along the strict transform of
a coordinate linear space Li ⊂ XG, and the following conditions hold:

(1) The pulled-back differential ω̂G = π∗ωG has no poles along the exceptional divisors associ-
ated to the blow ups.

(2) Let B be the total transform of D in P , that is

B = π−1(D) = π−1

( ⋃
e∈EG

{xe = 0}
)
.

Then, B ⊂ P is a normal crossing divisor such that none of the non-empty intersections
of its irreducible components is contained in the strict transform YG of XG in P .

(3) The strict transform of σ in P does not meet YG, that is

σ̂ ∩ YG(C) = ∅.
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As a consequence of Theorem 5.3, the motive Im
G associated to any primitive log-divergent

Feynman graph G can be written explicitly. Being ∂σ̂ ⊂ B\(B ∩YG), the domain of integration
defines the class

[σ̂] ∈ HB
nG−1(P\YG, B\(B ∩ YG))

called Betti framing, while the integrand defines the class

[ω̂G] ∈ HnG−1
dR (P\YG, B\(B ∩ YG))

called de Rham framing. Brown and Doryn [16] present a method for explicit computation of
the framings on the cohomology of Feynman graph hypersurfaces. Then, the de Rham and Betti
system of realisations HG = HnG−1(P\YG, B\(B ∩YG)) is called the graph H-system,50 and the
motivic Feynman integral Im

G is given by

Im
G =

[
HG, [ω̂G], [σ̂]

]m
.

Indeed, the pairing of the classes [ω̂G] and [σ̂] yields the period∫
σ̂
ω̂G =

∫
σ̂
π∗(ωG) =

∫
π∗(σ̂)

ωG =

∫
σ
ωG = IG

by the equivalence relation under change of variables in Pm.

Example 5.4. Adopting the notation

Plog = Q〈IG |G is a primitive log-divergent Feynman graph〉,
Pφ4 = Q

〈
IG |G is a primitive log-divergent Feynman graph in φ4 theory

〉
,

we observe that the sequence of inclusions Pφ4 ⊂ Plog ⊂ P is preserved after promoting periods
to periods of motives, that is Pm

φ4 ⊂ Pm
log ⊂ Pm.

Many concrete results on the structure of Plog follow from the study of the correspond-
ing motivic space Pm

log. For example, the following proposition on graph H-systems is proven
by Brown [14] within the formalism of motivic Feynman integrals.

Proposition 5.5. Let G be a primitive log-divergent Feynman graph. If G has a single vertex,
that is vG = 1, or if G has a single loop, that is lG = 1, then its H-system HG is isomorphic to
the pure Hodge–Tate system Q(0).

We observe that Proposition 5.5 makes no restriction on the physicality of the graph G, which
can have arbitrary vertex-degrees, so that IG belongs to Plog, but not necessarily to Pφ4 .

5.4 Tannakian formalism

We briefly introduce the fundamentals of the theory of Tannakian categories, following the
more detailed and comprehensive exposition by Deligne et al [29]. The concept of a Tannakian
category was first introduced by Saavedra Rivano [54] to encode the properties of the category
RepK(G) of the finite-dimensional K-linear representations of an affine group scheme G over
a field K. Let us recall some preliminary notions in category theory. Let K be a subfield of C.

50The graph H-system is also explicitly known in the general case of renormalised amplitudes of single-scale
graphs due to the work of Brown and Kreimer [18], who paved the way for the rigorous investigation of divergent
Feynman graphs and their renormalised amplitudes from an algebro-geometric perspective.
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Definition 5.6. A K-linear category C is an additive category such that, for each pair of
objects X,Y ∈ Ob(C), the group HomC(X,Y ) is a K-vector space and the composition maps
are K-bilinear.

Definition 5.7. Let C be a K-linear category endowed with a K-bilinear functor ⊗ : C ×C → C.

(a) An associativity constraint for (C,⊗) is a natural transformation

φ = φ·,·,· : · ⊗(· ⊗ ·) −→ (· ⊗ ·)⊗ ·

such that the following two conditions hold:

(a.1) For all X,Y, Z ∈ Ob(C), the map φX,Y,Z is an isomorphism.

(a.2) For all X,Y, Z, T ∈ Ob(C), the following diagram commutes:

X ⊗ (Y ⊗ (Z ⊗ T ))

X ⊗ ((Y ⊗ Z)⊗ T ) (X ⊗ Y )⊗ (Z ⊗ T )

(X ⊗ (Y ⊗ Z))⊗ T ((X ⊗ Y )⊗ Z)⊗ T.

Id⊗φY,Z,T φX,Y,Z⊗T

φX,Y⊗Z,T φX⊗Y,Z,T

φX,Y,Z⊗Id

(b) A commutativity constraint for (C,⊗) is a natural transformation

ψ = ψ·,∗ : · ⊗∗ −→ ∗ ⊗ ·

such that the following two conditions hold:

(b.1) For all X,Y ∈ Ob(C), the map ψX,Y is an isomorphism.

(b.2) For all X,Y ∈ Ob(C), the following composition is the identity:

ψY,X ◦ ψX,Y : X ⊗ Y −→ X ⊗ Y.

(c) An associativity constraint and a commutativity constraint are compatible if, for all X,Y,
Z ∈ Ob(C), the following diagram commutes:

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z

X ⊗ (Z ⊗ Y ) Z ⊗ (X ⊗ Y )

(X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y.

φX,Y,Z

Id⊗ψY,Z ψX⊗Y,Z

φX,Z,Y φX,Z,Y

ψX,Z⊗Id

(d) A pair (U, u) consisting of an object U ∈ Ob(C) and an isomorphism u : U → U ⊗ U is an
identity object if the functor X 7→ U ⊗X is an equivalence of categories.

Definition 5.8. A K-linear tensor category is a tuple (C,⊗, φ, ψ) consisting of a K-linear cate-
gory C, a K-bilinear functor ⊗ : C × C → C, and compatible associativity and commutativity
constraints φ, ψ such that C contains an identity object.
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Definition 5.9. An object L ∈ Ob(C) is invertible if the functor X 7→ L⊗X is an equivalence
of categories. Equivalently, L is invertible if and only if there exists an object L′ ∈ Ob(C) such
that L⊗ L′ ' 1. Then, L′ is also invertible.

Definition 5.10. Let (C,⊗) be a K-linear tensor category, where we omit the constraints φ, ψ
for simplicity, and let X,Y ∈ Ob(C). Assume that there exists an object Z ∈ Ob(C) such that,
for all T ∈ Ob(C), the functors T 7→ Hom(T,Z) and T 7→ Hom(T ⊗ X,Y ) admit a functorial
isomorphism

Hom(T,Z)
∼−−→ Hom(T ⊗X,Y ).

In this case, the functor T 7→ Hom(T ⊗ X,Y ) is said to be representable and the object Z is
called the internal Hom between the objects X and Y . It is alternatively written as Hom(X,Y )
and it is unique up to isomorphism.

Definition 5.11. The dual of an object X ∈ Ob(C) is defined as X∨ = Hom(X,1). If X∨

and (X∨)∨ exist, then there is a natural morphism X 7→
(
X∨
)∨

and the object X is reflexive if
such a morphism is an isomorphism.

Definition 5.12. A K-linear tensor category (C,⊗) is rigid if the following conditions hold:

(1) For all X,Y ∈ Ob(C), Hom(X,Y ) exists.

(2) For all X1, X2, Y1, Y2 ∈ Ob(C), the natural morphism

Hom(X1, Y1)⊗Hom(X2, Y2) −→ Hom(X1 ⊗X2, Y1 ⊗ Y2)

is an isomorphism.

(3) All objects are reflexive.

Definition 5.13. A Tannakian category over the field K is a rigid abelian K-linear tensor
category T such that End(1) = K, and there exists an exact faithful K-linear tensor functor
ω : T → VecK, where VecK is the category of finite-dimensional vector spaces over K. Any such
functor is called a fibre functor.

Example 5.14. The category VecK of finite-dimensional K-vector spaces, together with the
identity functor, is a Tannakian category over K.

Example 5.15. The category GrVecK of finite-dimensional graded K-vector spaces, together
with the forgetful functor ω : GrVecK → VecK, sending (V, (Vn)n∈Z) to V , is a Tannakian cate-
gory over K.

Example 5.16. The category RepK(G) of finite-dimensional K-linear representations of an abst-
ract group G, together with the functor ω : RepK(G) → VecK that forgets the action of G,
is a Tannakian category over K.

Let us fix a Tannakian category T over K and a fibre functor ω of T . Let R be a K-algebra.
We denote by Aut⊗(ω)(R) the collection of families (λX)X∈Ob(T ) of R-linear automorphisms

λX : ω(X)⊗K R −→ ω(X)⊗K R

which are compatible with the tensor structure and functorial. Here, compatibility with the
tensor structure and functoriality mean51 that:

51In the given diagrams, all unlabelled tensor products are over K and all unlabelled arrows are the natural
isomorphisms.
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(1) For all X1, X2 ∈ Ob(T ), the following diagram commutes:

ω(X1 ⊗X2)⊗R ω(X1 ⊗X2)⊗R

ω(X1)⊗ ω(X2)⊗R ω(X1)⊗ ω(X2)⊗R

(ω(X1)⊗R)⊗R (ω(X2)⊗R) (ω(X1)⊗R)⊗R (ω(X2)⊗R).

λX1⊗X2

λX1
⊗RλX2

(2) The following diagram commutes:

ω(1)⊗R ω(1)⊗R

R R.

λ1

Id

(3) For all X,Y ∈ Ob(T ) and for every morphism α ∈ Hom(X,Y ), the following diagram
commutes:

ω(X)⊗R ω(X)⊗R

ω(Y )⊗R ω(Y )⊗R.

λX

ω(α)⊗Id ω(α)⊗Id

λY

Deligne et al [29] proved that all Tannakian categories are categories of finite-dimensional linear
representations of a pro-algebraic group.

Theorem 5.17. Let T be a Tannakian category over K with a fibre functor ω.

(1) The functor R 7→ Aut⊗(ω)(R) is representable by an affine group scheme over K, which
is denoted as Aut⊗(ω) or Gω, and is called the Tannaka group of the pair (T , ω).

(2) For every X ∈ Ob(T ), the group Aut⊗(ω) acts naturally on ω(X) and the functor

T RepK(Gω),

X ω(X) Gω

sending X to the vector space ω(X) with this action of Aut⊗(ω), is an equivalence of cate-
gories.

Given a second fibre functor ω′, we analogously define Isom⊗(ω, ω′)(R) to be the collection
of families (τX)X∈Ob(T ) of R-linear isomorphisms

τX : ω(X)⊗K R −→ ω′(X)⊗K R

which are compatible with the tensor structure and functorial. Deligne et al [29] proved the
following result.

Theorem 5.18. Let T be a Tannakian category over K with two fibre functors ω and ω′.
The functor R 7→ Isom⊗(ω, ω′)(R) is representable by an affine scheme over K, which is denoted
as Isom⊗(ω, ω′), and is a right torsor under Aut⊗(ω) and a left torsor under Aut⊗(ω′).

Remark 5.19. In what follows, we denote Aut⊗(ω) = Aut⊗(ω)(C) the group of C-linear auto-
morphisms of the fibre functor ω, and analogously Isom⊗(ω, ω′) = Isom⊗(ω, ω′)(C) the group
of C-linear isomorphisms between the fibre functors ω and ω′.
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5.5 Motivic Galois theory

Recall the notions of pure and mixed H-systems associated with algebraic varieties over Q given
in Sections 3.4 and 3.5. On the one hand, the algebraic de Rham and Betti cohomologies of
a smooth projective Q-variety are fundamentally described by a pure H-system. On the other
hand, applying the resolution of singularities by Hironaka [40, 41], the algebraic de Rham and
Betti cohomologies of an arbitrary quasi-projective Q-variety can be expressed in terms of the
cohomologies of smooth projective varieties, and since pure H-systems of different weights get
mixed in this expression, they are fundamentally described by a mixed system of realisations.
Because we specifically look at the application of the theory of motives to the theory of periods,
it is sufficient to our purpose to work with the partial realisation of Grothendieck’s notion of
motives provided by H-systems52. However, it turns out to be necessary and fruitful to enhance
the näıve construction given in Section 4.2 to its rigorous category-theoretic formulation.

Recall that MHSy(Q) is the category of mixed H-systems over Q, and ωB, ωdR are its
two forgetful functors arising from the Betti and de Rham realisations, respectively. All the
defining properties of a Tannakian category, encoded in Definition 5.13, apply to MHSy(Q),
thus justifying the use of the Tannakian machinery in the study of motivic periods.

Proposition 5.20. MHSy(Q) is a Tannakian category over Q and the functors ωB, ωdR are
fibre functors.

In what follows, we write H = MHSy(Q). The pro-algebraic group Aut⊗(ωdR) is denoted
by GdR and called the motivic Galois group. Observe that GdR(H) is a group in GL(ωdR(H))
for every object H ∈ Ob(H). Following Theorem 5.17, the category of mixed H-systems is
equivalent to the category of finite-dimensional Q-linear representations of the motivic Galois
group, that is

H ' RepQ
(
GdR

)
.

Remark 5.21. We observe that the motivic Galois group can alternatively be realised via Betti
cohomology as GB = Aut⊗(ωB) and the corresponding category of finite-dimensional Q-linear
representations is still the same category of mixed H-systems H.

In Tannakian formalism, the space of motivic periods Pm is expressed as

Pm = Q
〈
[H,ω, σ]m |H ∈ Ob(H), ω ∈ ωdR(H), σ ∈ ωB(H)∨

〉
with implicit factorisation modulo bilinearity and functoriality. Recall that

H = (HdR, HB, compH : HdR ⊗Q C ∼−→ HB ⊗Q C),

where HdR = ωdR(H), HB = ωB(H) are finite-dimensional Q-vector spaces and comp ∈
Isom⊗(ωdR, ωB) is a C-linear isomorphism. In this framework, an alternative but equivalent
description of motivic periods follows.

Proposition 5.22. Pm is isomorphic to the space of regular functions on the affine Q-scheme
Isom⊗(ωdR, ωB).

We observe that such an isomorphism is explicitly written as

Pm ∼−−→ O
(

Isom⊗(ωdR, ωB)
)
,

[H,ω, σ]m 7−→
[
(λX)X∈Ob(H) 7→ (σ ⊗Q IdC) ◦ λH ◦ (ω ⊗ 2πi)

]
,

52In the literature on motivic periods, mixed de Rham and Betti systems of realisations are sometimes called
motives themselves.
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where we have

ωdR(H)⊗Q C λH−−→ ωB(H)⊗Q C
σ⊗QIdC−−−−−→ C,

ω 7−→ λH(ω) 7−→ σ(λH(ω)).

Following Theorem 5.17, the motivic Galois group GdR has a natural action on Isom⊗(ωdR, ωB)
which is written as

GdR ⊗ Isom⊗(ωdR, ωB) −→ Isom⊗(ωdR, ωB)

and which induces a dual coaction on the corresponding space of regular functions Pm, that is

∆: Pm −→ O
(
GdR

)
⊗ Pm, (5.6)

[H,ω, σ]m 7−→
n∑
i=1

[
H,ω, e∨i

]dR ⊗ [H, ei, σ]m,

where {ei}i=1,...,n is a basis of ωdR(H), and
{
e∨i
}
i=1,...,n

denotes the associated vector dual basis

of ωB(H)∨, as introduced in Section 4.3. Here, [H, ei, σ]m ∈ Pm is called a Galois conjugate

of the motivic period [H,ω, σ]m, while
[
H,ω, e∨i

]dR ∈ O
(
GdR

)
is called a de Rham period.

We denote by PdR = O
(
GdR

)
the space of regular functions on the motivic Galois group, and

we call it the space of de Rham periods. The coaction ∆ is known as the Galois coaction.

Remark 5.23. Note that the space of de Rham periods is naturally a Hopf algebra, while the
space of motivic periods is not, thus making the coaction intrinsically asymmetric. Indeed, the
Galois coaction turns the finite-dimensional Q-vector space Pm into a comodule over the Hopf
algebra PdR. Moreover, there is a canonical single-valued map that associates a number to each
de Rham period, thus representing the de Rham analogue of the period map. For a detailed
discussion we refer to Brown [14, 15].

Example 5.24. Consider the motivic logarithm log(z)m for z ∈ Q\{0, 1}. Following Sec-
tion 4.4.2, we have

log(z)m =

[
H1(Gm, {1, z}),

[
dx

x

]
, [γ1]

]m

.

Let us denote H = H1(Gm, {1, z}) for simplicity. Adopting the canonical choice of bases, as in
Example 4.8, the period matrix of H is(

1 log(z)
0 2πi

)
.

Direct application of the prescription in (5.6) gives the explicit decomposition

∆

[
H,

[
dx

x

]
, [γ1]

]m

=

[
H,

[
dx

x

]
,

[
dx

z − 1

]∨]dR

⊗
[
H,

[
dx

z − 1

]
, [γ1]

]m

+

[
H,

[
dx

x

]
,

[
dx

x

]∨]dR

⊗
[
H,

[
dx

x

]
, [γ1]

]m

. (5.7)

Observing that
[

dx
z−1

]∨
= [γ1] and

[
dx
x

]∨
= [γ2], and identifying the de Rham periods[

H,

[
dx

x

]
,

[
dx

z − 1

]∨]dR

= log(z)dR,

[
H,

[
dx

x

]
,

[
dx

x

]∨]dR

= (2πi)dR,

we find that the expression (5.7) is equivalent to

∆ log(z)m = log(z)dR ⊗ 1m + (2πi)dR ⊗ log(z)m, (5.8)

where 1m and log(z)m are the Galois conjugates of log(z)m.
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Example 5.25. As for log(z)m, the Galois coaction of the motivic multiple zeta value ζ(s)m

can be computed explicitly. For example, from the period matrix (5.5), we have that

∆ζ(2)m = ζ(2)dR ⊗ 1m +
(
(2πi)dR

)2 ⊗ ζ(2)m.

As powers of (2πi)dR naturally appear among de Rham conjugates, the Galois coaction is often
intended with an implicit factorisation53 of PdR modulo the ideal generated by (2πi)dR. Let us
assume so. For n ≥ 1, we have that

∆ζ(2)m = ζ(2)dR ⊗ 1m + 1dR ⊗ ζ(2)m, (5.9)

∆ζ(2n+ 1)m = ζ(2n+ 1)dR ⊗ 1m + 1dR ⊗ ζ(2n+ 1)m,

∆(ζ(2)mζ(2n+ 1)m) = ζ(2n+ 1)dR ⊗ ζ(2)m + 1dR ⊗ ζ(2)mζ(2n+ 1)m.

5.6 Coaction conjecture

Let us look at the example of scalar massless φ4 quantum field theory and consider the Galois
coaction restricted to Pm

φ4 . This is a priori valued in the whole space PdR ⊗ Pm. However,

after computing every known φ4-period with loop orders at most 7 and several φ4-periods with
higher loop orders, and explicitly verifying that in each case the Galois coaction preserves the
space Pm

φ4 , Panzer and Schnetz54 [52] proposed the following conjecture, known as the coaction
conjecture.

Conjecture 5.26. The Galois coaction closes on φ4-periods. In other words, the Galois conju-
gates of a φ4-period are also φ4-periods, that is

∆
(
Pm
φ4

)
⊆ PdR ⊗ Pm

φ4 .

Such a conjecture implies the existence of a fundamental hidden symmetry underlying the
class of φ4-periods that we do not yet properly understand. Indeed, the unexpected observations
by Panzer and Schnetz, and the resulting conjecture, have greatly stimulated research, motiva-
ting the search for a mathematical mechanism able to distinguish φ4-periods from periods of all
graphs, and thus explain this surprising evidence.

Some advancements in this direction have already been made. Conjecture 5.26 is the strongest
among several reformulations of its statement obtained by suitably enlarging the space of
amplitudes under consideration. A weaker version of the coaction conjecture has been proven
by Brown [14]. To a scalar Feynman graph G, we associate the finite-dimensional Q-vector
space Pm

a (G) consisting of the motivic realisations of all affine integrals of globally-defined alge-
braic differential forms on the usual integration domain σ, called the affine periods of G. They
include convergent affine integrals of the form∫ ∞

0
· · ·
∫ ∞

0

q

Ψk
G

∣∣∣∣
xnG=1

dnG−1x,

where k ≥ 1 is an integer, and q is a polynomial in Q[x1, . . . , xnG−1]. However, the denominator
of the integrand of an affine period of G can also possibly involve linear factors of the form∑

e∈Eγ xe, where γ is a subgraph of G.

Theorem 5.27. The Galois group acts on Pm
a (G), that is ∆(Pm

a (G)) ⊆ PdR ⊗ Pm
a (G).

53The operation of factorisation of a H-system modulo 2πi is called a Tate twist, and it can indeed be formally
defined in terms of the Hodge–Tate systems introduced in Example 3.27.

54Panzer and Schnetz [52] explicitly computed the first examples of φ4-amplitudes which are not MZVs. Such
numbers are polylogarithms at 2nd and 6th roots of unity. The coaction conjecture is verified for them as well.
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We write Pm
a to denote the space spanned by all Pm

a (G) for any55 scalar Feynman graph G.
Since direct computations show that Pm

a ' Pm
φ4 at low loop orders, Theorem 5.27 directly

supports Conjecture 5.26.

Remark 5.28. The affine motive Ha of a scalar Feynman graph G is defined analogously to the
projective H-system H = HnG−1(P\YG, B\(B ∩ YG)), described in Section 5.3, after replacing
the projective space P with an affine open subspace A ⊂ P obtained by removing its hyperplanes
with strictly positive coefficients. The inclusion A\YG ↪→ P\YG induces a morphism of objects
H → Ha in H, which gives an equivalence at the level of motivic periods. Every motivic period
of H is also a motivic period of Ha, but the contrary is not true. Many periods of Ha are not
periods of Feynman graphs in the ordinary sense.

Let G be a scalar Feynman graph. We define the generalised Feynman integrals associated
to G as the projective integrals of parametric form56∫

σ

pΩ

Ψk
G ΞhG({pj ,me})

,

where k, h ≥ 1 are integers, and p is a homogeneous polynomial in Q[{xe}] of degree klG +
h(lG + 1)− nG, so that the overall integrand is homogeneous of degree zero. Although possibly
divergent, generalised Feynman integrals are periods, and they can be promoted to their motivic
realisations after being suitably regularised. We define the finite-dimensional Q-vector space Pm

g

to be the space of motivic realisations of regularised versions of generalised Feynman integrals.
An analogous statement to Conjecture 5.26 is proposed by Brown [14].

Conjecture 5.29. Pm
g is stable under the Galois coaction, that is ∆(Pm

g ) ⊆ PdR ⊗ Pm
g .

5.7 Weights and the small graph principle

Recall the notions of Hodge and weight filtrations introduced in Sections 3.4 and 3.5. For
H ∈ Ob(H), the Q-vector space ωdR(H) is equipped with a Hodge filtration F • and a weight
filtration W dR

• , while the Q-vector space ωB(H) is provided with a weight filtration WB
• only.

Mixed H-systems, contrary to pure ones, do not have a well-defined weight. However, their
graded quotients with respect to the weight filtration do possess a pure structure of definite
weight. These properties are used to define a notion of weight for motivic periods.

Definition 5.30. The weight filtration on ωdR(H) induces a weight filtration on the space of
motivic periods by

W dR
• Pm = Q

〈
[H,ω, σ]m |ω ∈W dR

•
〉
.

We denote W = W dR for simplicity. A given motivic period [H,ω, σ]m is said to have weight
at most n if it belongs to WnPm, and to have weight n if it is non-zero in the graded quotient
GrWn Pm = WnPm/Wn−1Pm.

Remark 5.31. We observe that the weight of motivic periods can alternatively, but equivalently,
be defined from the Betti realisation via the weight filtration induced on Pm by WB.

Example 5.32. Consider H = H1(Gm, {1, z}) for z ∈ Q\{0, 1}. Its weight filtration in the de
Rham realisation is

W−1 = 0 ⊆W0 = W1 = Q(0) ⊆W2 = H1(Gm, {1, z}).
55We observe that restricting to φ4-graphs does not change the resulting space Pm

a , which is sometimes also
denoted by Pm

φ̃4 .
56Note that the ordinary Feynman integral (2.4) of G can be written in this form.
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Observing that 0, 1 ∈ W0 and 2πi, log(z) ∈ W2, the weight of each entry of the period matrix
of H is determined. Indeed, 0, 1 are periods of weight zero, while 2πi, log(z) have weight 2.

Example 5.33. The weight filtration can be used to systematically study Pm
φ4 weight by weight.

For example, direct computation in low weight shows that W0Pm
φ4 = W1Pm

φ4 = W2Pm
φ4 = Q(0).

More generally, the following proposition is due to Brown [14].

Proposition 5.34. Let G be a primitive log-divergent Feynman graph. Every Galois conjugate
of its motivic Feynman integral Im

G which has weight up to 2 is a period of Q(0), that is a rational
number.

The Galois conjugates of Feynman periods are expected to satisfy the following conjecture
by Brown [14], known as small graph principle.57

Conjecture 5.35. Let G be a primitive log-divergent Feynman graph. Denote by [HG, ωG, σ]m

the motivic realisation of its Feynman integral Im
G . The elements on the right-hand side of the

coaction formula for ∆[HG, ωG, σ]m can be expressed in the form∏
i

[Hγi , ωγi , σ]m,

where the product runs over a subset {γi} of the set of subgraphs and quotient graphs of G.

The small graph principle implies that the Galois conjugates of weight at most k of the
motivic amplitude of a primitive log-divergent Feynman graph are associated to its sub-quotient
graphs58 with at most k+1 edges. In other words, when interested in Feynman periods of weight
at most k, it suggests to look at graphs with up to k+ 1 edges. As a consequence, the topology
of a given graph constrains the Galois theory of its amplitudes.

Example 5.36. Consider the system of realisations H = H1(Gm, {1, p}) for p ∈ Q\{0, 1}
prime. Following Example 5.32, log(p)m is a period of H with weight 2. Then, the small graph
principle suggests that any log(p)m appearing in the right-hand side of the coaction formula for
a given φ4-periods comes from graphs with at most three edges. Proposition 5.5 implies that all
two-edge graphs are trivial, meaning that the associated graph motive HG is the Hodge–Tate
system Q(0), which does not have log(p)m in its period matrix. Writing down all possible graphs
with three edges, we get the graphs shown in Fig. 16 along with their first graph polynomials
in the Schwinger parameters.

(a) x1 + x2 + x3 (b) x1x2+x2x3+x3x1 (c) x1(x2 + x3) (d) x1x2x3

Figure 16. Feynman graphs with 3 edges and their first graph polynomials.

The two outer graphs (a) and (d) are also trivial by Proposition 5.5, while the two middle
graphs (b) and (c) satisfy HG = Q(0) ⊕ Q(−1), which does not have log(p)m as a period.

57The small graph principle is also conjectured to hold for regularised versions of generalised Feynman integrals
associated to arbitrary scalar Feynman graphs.

58Sub-quotient graphs are formally obtained by contracting and deleting edges of the original graph.
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Indeed, log(p) cannot be obtained as an integral with a denominator equal to either of the
first graph polynomials (b) or (c). We conclude that log(p)m cannot be a Galois conjugate of
a φ4-period. By equation (5.8), we derive that log(p)m /∈ Pm

φ4 . Note that this is consistent with
Proposition 5.34.

Example 5.37. Direct computation by Panzer and Schnetz [52] shows that all φ4-periods of
loop order up to 6 are Q-linear combinations of multiple zeta values. Following the small graph
principle, we graphically order the set of MZVs by weight as

1 ζ(2) ζ(3) ζ(2)2 ζ(5) ζ(3)2 ζ(7) ζ(3, 5) · · ·
ζ(2)ζ(3) ζ(2)3 ζ(2)ζ(5) ζ(2)ζ(3)2

ζ(2)2ζ(3)
...

As a consequence of the coaction conjecture and explicit expressions of the coaction formula,
as the ones in equation (5.9), ζ(2)m /∈ Pm

φ4 implies that all MZVs which are linear in ζ(2) cannot

be φ4-periods. Analogously,
(
ζ(2)2

)m
/∈ Pm

φ4 implies that all MZVs which are quadratic in ζ(2)

are not φ4-periods. The set of MZVs that can appear as φ4-periods would then be reduced to

1 ζ(3) ζ(5) ζ(3)2 ζ(7) ζ(3, 5) · · ·

ζ(2)3
...

However, the statements ζ(2), ζ(2)2 /∈ Pφ4 are only conjectural. Precisely, it is conjectured that
ζ(2)k /∈ Pφ4 for k ≤ 5, while ζ(2)k ∈ Pφ4 for k ≥ 6. We observe that such statements rely on the
control over weight drops, as conjectured by Panzer and Schnetz [52], which excludes low weight
MZVs coming from high loop order graphs.

From similar considerations, other highly non-trivial constraints at all loop orders in per-
turbation theory can be derived using the Galois coaction and weight filtrations. For example,
by Conjecture 5.26, whenever it is shown that a given period is not a φ4-period, we conjecturally
deduce that all periods that have the given one among their Galois conjugates cannot appear
in Pφ4 either.

Remark 5.38. Structures even more fundamental than those captured by the coaction con-
jecture and the small graph principle underly the space of motivic periods of Feynman graphs.
Although not being sufficiently explored in the literature, the notion of operad in the category
of motives imposes strong constraints on the admissible periods and it should be the object of fur-
ther investigation. The operad structure underlying the space of motivic Feynman integrals is
interestingly the same structure governing the renormalisation group equation. Kaufmann and
Ward [45] provide details on related notions in category theory.

6 Conclusions

Originally providing a framework for re-organising and re-interpreting much of the previous
knowledge on Feynman integrals, the theory of motivic periods has revealed unexpected features,
placing restrictions on the set of numbers which can occur as amplitudes and paving the way for
a more comprehensive understanding of their general structure. Indeed, the coaction conjecture
gives new constraints at each loop order, which in turn propagate to all higher loop orders
because of the recursive structure inherent in perturbative quantum field theories. At the same
time, the small graph principle makes finite computations at low-loop into all-order results.

Assume to deal with a Feynman integral of the form
∫
σ ω in P. The general prescription for

its investigation via the theory of motivic periods can be summarised as follows:
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(1) Associate a motivic representation [H,ω, σ]m to the integral
∫
σ ω, deriving explicitly the

corresponding algebraic de Rham and Betti system of realisations, and cohomology and
homology classes.

(2) Use all the known information about the mixed system of realisations H to derive explicit
filtrations.

(3) Write down the period matrix of H.

(4) Apply the Galois coaction and derive the Galois conjugates.

(5) Apply the theory of weights of mixed Hodge structures to reduce the calculation of the
Galois conjugates to the study of motivic periods of small graphs.

(6) Analyse explicitly the few admissible small graphs and eliminate the excluded periods,
sometimes called holes.

(7) Possibly use other known symmetries of the specific example at hand to draw conclusions.

This picture is, however, extensively conjectural. The very first step of replacing periods with
their motivic version requests the validity of the period conjecture. Moreover, even disregard-
ing the conjectural status of current statements, the present state of understanding of motivic
amplitudes is still far from building a theory. Although the given general prescription for the
investigation of motivic Feynman integrals has been particularly fruitful for massless scalar φ4

quantum field theory, further advancements are needed to enlarge the reach of current results.
Speculating in full generality, consider the whole class of Feynman integrals in perturbative

quantum field theory. We expect them to have a natural motivic representation, and thus to
generate a space M of motivic periods, a space A of de Rham periods, and a corresponding
coaction ∆: M −→ PdR ⊗ Pm. A potential coaction principle would then state that ∆(M) ⊆
A⊗M. Being A a Hopf algebra, we could canonically introduce the group C of homomorphisms
from A to any commutative ring. It would follow that the coaction principle can be recast
in terms of the group action C ×M −→M, that is, the space of amplitudes is stable under the
action of the group C, often referred to as cosmic Galois group. This speculative construction,
that broadly reproduces the general prescription summarised above, motivates a programme
of research leading towards a systematic study of scattering amplitudes via the representation
theory of groups.

Although practically harder than the φ4-case, like-minded attempts are already on the way
to gather information about the numbers that come from evaluating other classes of Feynman
integrals.

(a) Towards a general motivic description of scalar quantum field theories, Abreu et al. [1, 2, 3]
give evidence suggesting that scalar Feynman integrals of small graphs with non-trivial
masses and momenta satisfy similar properties to φ4-periods. A diagrammatic coaction
for specific families of integrals appearing in the evaluation of scalar Feynman diagrams,
such as multiple polylogarithms and generalised hypergeometric functions, is proposed and
a connection between this diagrammatic coaction and graphical operations on Feynman di-
agrams is conjectured. At one-loop order, a fully explicit and very compact representation
of the coaction in terms of one-loop integrals and their cuts is found. Moreover, Brown and
Dupont [17] investigate a rigorous theory of motives associated to certain hypergeometric
integrals.

(b) A subsequent generalisation arises transitioning from scalar quantum field theories to gauge
theories. The problem of dealing with much more involved parametric integrands which
are not explicitly expressed in terms of the Symanzik polynomials of the associated Feyn-
man graphs has only recently been tackled. A combinatoric and graph-theoretic approach
to Schwinger parametric Feynman integrals in quantum electrodynamics by Golz [36] has
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revealed that the parametric integrands can be explicitly written in terms of new types
of graph polynomials related to specific subgraphs. The tensor structure of quantum
electrodynamics is given a diagrammatic interpretation. The resulting significant sim-
plification of the integrands paves the way for a systematic motivic description of gauge
theories.

(c) In the same research direction, a high-precision computation of the 4-loop contribution
to the electron anomalous magnetic moment g − 2 by Laporta [49] shows the presence
of polylogarithmic parts with fourth and sixth roots of unity. This result is conjecturally
recast into the motivic f -alphabet by Schnetz [59], giving a more compact expression which
explicitly reveals a Galois structure. In this work, the Q-vector spaces of Galois conjugates
of the g − 2 are conjectured up to weight four.

As a final remark, we mention that scattering amplitudes do not appear exclusively in per-
turbative quantum field theory. Among other settings, there are string perturbation theory and
N = 4 super Yang–Mills theory. In each of these theories, after suitably defining the space of
integrals or amplitudes59 under consideration, a version of the coaction principle is expected to
hold and some promising preliminary results have already been found. We refer to the work of
Schlotterer, Stieberger and Taylor [57, 66] and subsequent developments for superstring pertur-
bation theory, and to the work of Caron-Huot et al. [21, 22] for the planar limit of N = 4 super
Yang–Mills theory.
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