Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 019, 21 pages      arXiv:2007.09950      https://doi.org/10.3842/SIGMA.2021.019
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday

Computing Regular Meromorphic Differential Forms via Saito's Logarithmic Residues

Shinichi Tajima a and Katsusuke Nabeshima b
a) Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku Niigata, Japan
b) Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, Japan

Received July 24, 2020, in final form February 05, 2021; Published online February 27, 2021

Abstract
Logarithmic differential forms and logarithmic vector fields associated to a hypersurface with an isolated singularity are considered in the context of computational complex analysis. As applications, based on the concept of torsion differential forms due to A.G. Aleksandrov, regular meromorphic differential forms introduced by D. Barlet and M. Kersken, and Brieskorn formulae on Gauss-Manin connections are investigated. $(i)$ A method is given to describe singular parts of regular meromorphic differential forms in terms of non-trivial logarithmic vector fields via Saito's logarithmic residues. The resulting algorithm is illustrated by using examples. $(ii)$ A new link between Brieskorn formulae and logarithmic vector fields is discovered and an expression that rewrites Brieskorn formulae in terms of non-trivial logarithmic vector fields is presented. A new effective method is described to compute non trivial logarithmic vector fields which are suitable for the computation of Gauss-Manin connections. Some examples are given for illustration.

Key words: logarithmic vector field; logarithmic residue; torsion module; local cohomology.

pdf (402 kb)   tex (27 kb)  

References

  1. Aleksandrov A.G., A de Rahm complex of nonisolated singularities, Funct. Anal. Appl. 22 (1988), 131-133.
  2. Aleksandrov A.G., Nonisolated hypersurface singularities, in Theory of Singularities and its Applications, Adv. Soviet Math., Vol. 1, Amer. Math. Soc., Providence, RI, 1990, 211-246.
  3. Aleksandrov A.G., Logarithmic differential forms, torsion differentials and residue, Complex Var. Theory Appl. 50 (2005), 777-802.
  4. Aleksandrov A.G., Tsikh A.K., Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 973-978.
  5. Barlet D., Le faisceau $\omega'_{X}$ sur un espace analytique $X$ de dimension pure, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math., Vol. 670, Springer, Berlin, 1978, 187-204.
  6. Brasselet J.P., Sebastiani M., Brieskorn and the monodromy, J. Singul. 18 (2018), 84-104.
  7. Brieskorn E., Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161.
  8. Brunella M., Some remarks on indices of holomorphic vector fields, Publ. Mat. 41 (1997), 527-544.
  9. Corrêa M., da Silva Machado D., Residue formulas for logarithmic foliations and applications, Trans. Amer. Math. Soc. 371 (2019), 6403-6420, arXiv:1611.01203.
  10. Corrêa M., da Silva Machado D., GSV-index for holomorphic Pfaff systems, Doc. Math. 25 (2020), 1011-1027, arXiv:1611.09376.
  11. Douai A., Très bonnes bases du réseau de Brieskorn d'un polynôme modéré, Bull. Soc. Math. France 127 (1999), 255-287.
  12. Granger M., Schulze M., Normal crossing properties of complex hypersurfaces via logarithmic residues, Compos. Math. 150 (2014), 1607-1622, arXiv:1109.2612.
  13. Greuel G.M., Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266.
  14. Guimaraes A.G., Polinômio de Bernstein-Sato de uma hipersuperficie com singularidade isolada, Ph.D. Thesis, ICMC-USP, São Carlos, 2002.
  15. Kersken M., Der Residuenkomplex in der lokalen algebraischen und analytischen Geometrie, Math. Ann. 265 (1983), 423-455.
  16. Kersken M., Reguläre Differentialformen, Manuscripta Math. 46 (1984), 1-25.
  17. Lê D.T., Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973), 261-270.
  18. Michler R., Torsion of differentials of hypersurfaces with isolated singularities, J. Pure Appl. Algebra 104 (1995), 81-88.
  19. Nabeshima K., Tajima S., Testing zero-dimensionality of varieties at a point, Math.Comput.Sci., to appear, arXiv:1903.12365.
  20. Nabeshima K., Tajima S., Computing Tjurina stratifications of $\mu$-constant deformations via parametric local cohomology systems, Appl. Algebra Engrg. Comm. Comput. 27 (2016), 451-467.
  21. Nabeshima K., Tajima S., Solving extended ideal membership problems in rings of convergent power series via Gröbner bases, in Mathematical Aspects of Computer and Information Sciences, Lecture Notes in Comput. Sci., Vol. 9582, Springer, Cham, 2016, 252-267.
  22. Nabeshima K., Tajima S., Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals, J. Symbolic Comput. 82 (2017), 91-122, arXiv:1508.06724.
  23. Nabeshima K., Tajima S., Computing $\mu^*$-sequences of hypersurface isolated singularities via parametric local cohomology systems, Acta Math. Vietnam. 42 (2017), 279-288.
  24. Nabeshima K., Tajima S., Computation methods of logarithmic vector fields associated to semi-weighted homogeneous isolated hypersurface singularities, Tsukuba J. Math. 42 (2018), 191-231.
  25. Nabeshima K., Tajima S., A new method for computing the limiting tangent space of an isolated hypersurface singularity via algebraic local cohomology, in Singularities in Generic Geometry, Adv. Stud. Pure Math., Vol. 78, Math. Soc. Japan, Tokyo, 2018, 331-344.
  26. Nabeshima K., Tajima S., Alternative algorithms for computing generic $\mu^*$-sequences and local Euler obstructions of isolated hypersurface singularities, J. Algebra Appl. 18 (2019), 1950156, 13 pages.
  27. Nabeshima K., Tajima S., Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes, Rev. Roumaine Math. Pures Appl. 64 (2019), 523-540.
  28. Nabeshima K., Tajima S., Generalized integral dependence relations, in Mathematical Aspects of Computer and Information Sciences, Lecture Notes in Computer Science, Vol. 11989, Springer, Cham, 2020, 48-63.
  29. Pol D., On the values of logarithmic residues along curves, Ann. Inst. Fourier (Grenoble) 68 (2018), 725-766, arXiv:1410.2126.
  30. Pol D., Characterizations of freeness for equidimensional subspaces, J. Singul. 20 (2020), 1-30, arXiv:1512.06778.
  31. Saito K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142.
  32. Saito K., Calcul algébrique de la monodromie, Astérisque 7 (1973), 195-211.
  33. Saito K., On the uniformization of complements of discriminant loci, in Hyperfunctions and Linear Partial Differential Equations, RIMS Kôkyûroku, Vol. 287, Res. Inst. Math. Sci. (RIMS), Kyoto, 1977, 117-137.
  34. Saito K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
  35. Scherk J., On the Gauss-Manin connection of an isolated hypersurface singularity, Math. Ann. 238 (1978), 23-32.
  36. Scherk J., On the pole order and Hodge filtrations of isolated hypersurface singularities, Canad. Math. Bull. 36 (1993), 368-372.
  37. Schulze M., Algorithms for the Gauss-Manin connection, J. Symbolic Comput. 32 (2001), 549-564.
  38. Skoda H., Briançon J., Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de ${\bf C}^{n}$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951.
  39. Tajima S., On polar varieties, logarithmic vector fields and holonomic D-modules, in Recent Development of Micro-Local Analysis for the Theory of Asymptotic Analysis, RIMS Kôkyûroku Bessatsu, Vol. 40, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 41-51.
  40. Tajima S., Nabeshima K., An algorithm for computing torsion differential forms associated to an isolated hypersurface singularity, Math.Comput.Sci., to appear.
  41. Tajima S., Nakamura Y., Nabeshima K., Standard bases and algebraic local cohomology for zero dimensional ideals, in Singularities - Niigata-Toyama 2007, Adv. Stud. Pure Math., Vol. 56, Math. Soc. Japan, Tokyo, 2009, 341-361.
  42. Tajima S., Shibuta T., Nabeshima K., Computing logarithmic vector fields along an ICIS germ via Matlis duality, in Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, Vol. 12291, Springer, Cham, 2020, 543-562.
  43. Teissier B., Cycles évanescents, sections planes et conditions de Whitney, Astérisque 7 (1973), 285-362.
  44. Teissier B., Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292.
  45. van Straten D., The spectrum of hypersurface singularities, arXiv:2002.00519.
  46. Vetter U., Äußere Potenzen von Differentialmoduln reduzierter vollständiger Durchschnitte, Manuscripta Math. 2 (1970), 67-75.
  47. Zariski O., Characterization of plane algebroid curves whose module of differentials has maximum torsion, Proc. Nat. Acad. Sci. USA 56 (1966), 781-786.

Previous article  Next article  Contents of Volume 17 (2021)