Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 145, 25 pages      arXiv:2008.07847      https://doi.org/10.3842/SIGMA.2020.145
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

Representations of Quantum Affine Algebras in their $R$-Matrix Realization

Naihuan Jing a, Ming Liu b and Alexander Molev c
a) Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b) School of Mathematics, South China University of Technology, Guangzhou, 510640, China
c) School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received August 19, 2020, in final form December 25, 2020; Published online December 28, 2020

Abstract
We use the isomorphisms between the $R$-matrix and Drinfeld presentations of the quantum affine algebras in types $B$, $C$ and $D$ produced in our previous work to describe finite-dimensional irreducible representations in the $R$-matrix realization. We also review the isomorphisms for the Yangians of these types and use Gauss decomposition to establish an equivalence of the descriptions of the representations in the $R$-matrix and Drinfeld presentations of the Yangians.

Key words: $R$-matrix presentation; Drinfeld polynomials; highest weight representation; Gauss decomposition.

pdf (460 kb)   tex (29 kb)  

References

  1. Arnaudon D., Molev A., Ragoucy E., On the $R$-matrix realization of Yangians and their representations, Ann. Henri Poincaré 7 (2006), 1269-1325, arXiv:math.QA/0511481.
  2. Bazhanov V.V., Trigonometric solutions of triangle equations and classical Lie algebras, Phys. Lett. B 159 (1985), 321-324.
  3. Bazhanov V.V., Integrable quantum systems and classical Lie algebras, Comm. Math. Phys. 113 (1987), 471-503.
  4. Beck J., Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555-568, arXiv:hep-th/9404165.
  5. Brundan J., Kleshchev A., Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$, Comm. Math. Phys. 254 (2005), 191-220, arXiv:math.QA/0407011.
  6. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  7. Chari V., Pressley A., Quantum affine algebras and their representations, in Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78, arXiv:hep-th/9411145.
  8. Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$, Comm. Math. Phys. 156 (1993), 277-300.
  9. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
  10. Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  11. Drinfeld V.G., A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
  12. Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1-60.
  13. Gel'fand I.M., Retakh V.S., A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), 231-246.
  14. Gow L., Molev A., Representations of twisted $q$-Yangians, Selecta Math. (N.S.) 16 (2010), 439-499, arXiv:0909.4905.
  15. Guay N., Regelskis V., Wendlandt C., Equivalences between three presentations of orthogonal and symplectic Yangians, Lett. Math. Phys. 109 (2019), 327-379, arXiv:1706.05176.
  16. Hernandez D., Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), 163-200, arXiv:math.QA/0312336.
  17. Jimbo M., A $q$-difference analogue of $U({\mathfrak g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
  18. Jimbo M., Quantum $R$ matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547.
  19. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$, Comm. Math. Phys. 361 (2018), 827-872, arXiv:1705.08155.
  20. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$, J. Math. Phys. 61 (2020), 031701, 41 pages, arXiv:1903.00204.
  21. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$, SIGMA 16 (2020), 043, 49 pages, arXiv:1911.03496.
  22. Khoroshkin S., Pakuliak S., Tarasov V., Off-shell Bethe vectors and Drinfeld currents, J. Geom. Phys. 57 (2007), 1713-1732, arXiv:math.QA/0610517.
  23. Kulish P.P., Sklyanin E.K., Quantum spectral transform method. Recent developments, in Integrable Quantum Field Theories (Tvärminne, 1981), Lecture Notes in Phys., Vol. 151, Springer, Berlin - New York, 1982, 61-119.
  24. Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, Vol. 143, Amer. Math. Soc., Providence, RI, 2007.
  25. Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
  26. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  27. Tarasov V.O., Structure of quantum $L$-operators for the $R$-matrix of the $XXZ$-model, Theoret. and Math. Phys. 61 (1984), 1065-1072.
  28. Tarasov V.O., Irreducible monodromy matrices for the $R$-matrix of the $XXZ$-model and local lattice quantum Hamiltonians, Theoret. and Math. Phys. 63 (1985), 440-454.
  29. Wendlandt C., The $R$-matrix presentation for the Yangian of a simple Lie algebra, Comm. Math. Phys. 363 (2018), 289-332, arXiv:1709.08162.
  30. Zamolodchikov A.B., Zamolodchikov A.B., Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Physics 120 (1979), 253-291.

Previous article  Next article  Contents of Volume 16 (2020)