Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 135, 33 pages      arXiv:2004.00933      https://doi.org/10.3842/SIGMA.2020.135

Toward Classification of 2nd Order Superintegrable Systems in 3-Dimensional Conformally Flat Spaces with Functionally Linearly Dependent Symmetry Operators

Bjorn K. Berntson a, Ernest G. Kalnins b and Willard Miller Jr. c
a) Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
b) Department of Mathematics, University of Waikato, Hamilton, New Zealand
c) School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA

Received April 07, 2020, in final form December 09, 2020; Published online December 16, 2020

Abstract
We make significant progress toward the classification of 2nd order superintegrable systems on 3-dimensional conformally flat space that have functionally linearly dependent (FLD) symmetry generators, with special emphasis on complex Euclidean space. The symmetries for these systems are linearly dependent only when the coefficients are allowed to depend on the spatial coordinates. The Calogero-Moser system with 3 bodies on a line and 2-parameter rational potential is the best known example of an FLD superintegrable system. We work out the structure theory for these FLD systems on 3D conformally flat space and show, for example, that they always admit a 1st order symmetry. A partial classification of FLD systems on complex 3D Euclidean space is given. This is part of a project to classify all 3D 2nd order superintegrable systems on conformally flat spaces.

Key words: superintegrable systems; Calogero 3 body system; functional linear dependence.

pdf (555 kb)   tex (34 kb)  

References

  1. Benenti S., Chanu C., Rastelli G., The super-separability of the three-body inverse-square Calogero system, J. Math. Phys. 41 (2000), 4654-4678.
  2. Berntson B.K., Kalnins E.G., Miller Jr. W., Nonexistence of Calogero-like 2nd order superintegrable systems on the complex 3-sphere, available at https://www-users.math.umn.edu/~mille003/FLDpaperArk_e.pdf.
  3. Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894.
  4. Calogero F., Solution of a three-body problem in one dimension, J. Math. Phys. 10 (1969), 2191-2196.
  5. Calogero F., Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.
  6. Capel J.J., Kress J.M., Invariant classification of second-order conformally flat superintegrable systems, J. Phys. A: Math. Theor. 47 (2014), 495202, 33 pages, arXiv:1406.3136.
  7. Escobar-Ruiz M.A., Miller Jr. W., Toward a classification of semidegenerate 3D superintegrable systems, J. Phys. A: Math. Theor. 50 (2017), 095203, 22 pages, arXiv:1611.02977.
  8. Evans N.W., Superintegrability in classical mechanics, Phys. Rev. A 41 (1990), 5666-5676.
  9. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
  10. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory, J. Math. Phys. 46 (2005), 103507, 28 pages.
  11. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.
  12. Kalnins E.G., Kress J.M., Miller Jr. W., Fine structure for 3D second-order superintegrable systems: three-parameter potentials, J. Phys. A: Math. Theor. 40 (2007), 5875-5892.
  13. Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties, J. Math. Phys. 48 (2007), 113518, 26 pages, arXiv:0708.3044.
  14. Kalnins E.G., Kress J.M., Miller Jr. W., Separation of variables and superintegrability: the symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018.
  15. Koenigs G.X.P., Sur les géodésiques a integrales quadratiques, in Le cons sur la théorie générale des surfaces, Vol. 4, Editor J.G. Darboux, Chelsea Publishing, 1972, 368-404.
  16. Moser J., Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975), 197-220.
  17. Rañada M.F., Superintegrability of the Calogero-Moser system: constants of motion, master symmetries, and time-dependent symmetries, J. Math. Phys. 40 (1999), 236-247.
  18. Rauch-Wojciechowski S., Waksjö C., What an effective criterion of separability says about the Calogero type systems, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 535-547.
  19. Smirnov R.G., Winternitz P., A class of superintegrable systems of Calogero type, J. Math. Phys. 48 (2006), 093505, 8 pages, arXiv:math-ph/0606006.
  20. Wojciechowski S., Superintegrability of the Calogero-Moser system, Phys. Lett. A 95 (1983), 279-281.

Previous article  Next article  Contents of Volume 16 (2020)