Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 129, 12 pages      arXiv:2006.15965      https://doi.org/10.3842/SIGMA.2020.129
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday

Positive Scalar Curvature due to the Cokernel of the Classifying Map

Thomas Schick a and Vito Felice Zenobi b
a) Mathematisches Institut, Universität Göttingen, Germany
b) Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5 - 00185 - Roma, Italy

Received July 13, 2020, in final form December 04, 2020; Published online December 09, 2020

Abstract
This paper contributes to the classification of positive scalar curvature metrics up to bordism and up to concordance. Let $M$ be a closed spin manifold of dimension $\ge 5$ which admits a metric with positive scalar curvature. We give lower bounds on the rank of the group of psc metrics over $M$ up to bordism in terms of the corank of the canonical map $KO_*(M)\to KO_*(B\pi_1(M))$, provided the rational analytic Novikov conjecture is true for $\pi_1(M)$.

Key words: positive scalar curvature; bordism; concordance; Stolz exact sequence; analytic surgery exact sequence; secondary index theory; higher index theory; K-theory.

pdf (422 kb)   tex (22 kb)  

References

  1. Baum P., Connes A., Higson N., Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, in $C^\ast$-Algebras: 1943-1993 (San Antonio, TX, 1993), Contemp. Math., Vol. 167, Amer. Math. Soc., Providence, RI, 1994, 240-291.
  2. Botvinnik B., Gilkey P.B., The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995), 507-517.
  3. Buggisch L., The spectral flow theorem for families of twisted Dirac operators, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2019.
  4. Carr R., Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988), 63-74.
  5. Cecchini S., Seyedhosseini M., Zenobi V.F., Relative torsion and bordism classes of positive scalar metrics on manifolds with boundary, arXiv:2009.13718.
  6. Ebert J., The two definitions of the index difference, Trans. Amer. Math. Soc. 369 (2017), 7469-7507, arXiv:1308.4998.
  7. Ebert J., Frenck G., The Gromov-Lawson-Chernysh surgery theorem, arXiv:1807.06311.
  8. Ebert J., Randal-Williams O., Infinite loop spaces and positive scalar curvature in the presence of a fundamental group, Geom. Topol. 23 (2019), 1549-1610, arXiv:1711.11363.
  9. Frenck G., H-Space structures on spaces of metrics of positive scalar curvature, arXiv:2004.01033.
  10. Gromov M., Lawson Jr. H.B., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434.
  11. Hebestreit F., Joachim M., Twisted spin cobordism and positive scalar curvature, J. Topol. 13 (2020), 1-58, arXiv:1311.3164.
  12. Kazaras D., Ruberman D., Saveliev N., On positive scalar curvature cobordisms and the conformal Laplacian on end-periodic manifolds, Comm. Anal. Geom., to appear, arXiv:1902.00443.
  13. Leichtnam E., Piazza P., On higher eta-invariants and metrics of positive scalar curvature, $K$-Theory 24 (2001), 341-359.
  14. Piazza P., Schick T., Groups with torsion, bordism and rho invariants, Pacific J. Math. 232 (2007), 355-378, arXiv:math.GN/0604319.
  15. Piazza P., Schick T., Rho-classes, index theory and Stolz' positive scalar curvature sequence, J. Topol. 7 (2014), 965-1004, arXiv:1210.6892.
  16. Piazza P., Schick T., Zenobi V.F., Higher rho numbers and the mapping of analytic surgery to homology, arXiv:1905.11861.
  17. Piazza P., Schick T., Zenobi V.F., On positive scalar curvature bordism, Comm. Anal. Geom., to appear, arXiv:1912.09168.
  18. Rosenberg J., $C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II, in Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., Vol. 123, Longman Sci. Tech., Harlow, 1986, 341-374.
  19. Schick T., Real versus complex $K$-theory using Kasparov's bivariant $KK$-theory, Algebr. Geom. Topol. 4 (2004), 333-346, arXiv:math.KT/0311295.
  20. Stolz S., Concordance classes of positive scalar curvature metrics, Preprint, 1998, available at http: www3.nd.edu/ stolz/concordance.ps.
  21. Wall C.T.C., Finiteness conditions for ${\rm CW}$-complexes, Ann. of Math. 81 (1965), 56-69.
  22. Wall C.T.C., Geometrical connectivity. I, J. London Math. Soc. 3 (1971), 597-604.
  23. Weinberger S., Yu G., Finite part of operator $K$-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol. 19 (2015), 2767-2799, arXiv:1308.4744.
  24. Xie Z., Yu G., Positive scalar curvature, higher rho invariants and localization algebras, Adv. Math. 262 (2014), 823-866, arXiv:1302.4418.
  25. Xie Z., Yu G., Zeidler R., On the range of the relative higher index and the higher rho-invariant for positive scalar curvature, arXiv:1712.03722.
  26. Zeidler R., Positive scalar curvature and product formulas for secondary index invariants, J. Topol. 9 (2016), 687-724, arXiv:1412.0685.
  27. Zenobi V.F., Adiabatic groupoid and secondary invariants in K-theory, Adv. Math. 347 (2019), 940-1001, arXiv:1609.08015.

Previous article  Next article  Contents of Volume 16 (2020)