Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 101, 26 pages      arXiv:2004.09924      https://doi.org/10.3842/SIGMA.2020.101
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain

Linnea Hietala
Department of Mathematics, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden

Received April 22, 2020, in final form September 24, 2020; Published online October 07, 2020

Abstract
We study the connection between the three-color model and the polynomials $q_n(z)$ of Bazhanov and Mangazeev, which appear in the eigenvectors of the Hamiltonian of the XYZ spin chain. By specializing the parameters in the partition function of the 8VSOS model with DWBC and reflecting end, we find an explicit combinatorial expression for $q_n(z)$ in terms of the partition function of the three-color model with the same boundary conditions. Bazhanov and Mangazeev conjectured that $q_n(z)$ has positive integer coefficients. We prove the weaker statement that $q_n(z+1)$ and $(z+1)^{n(n+1)}q_n(1/(z+1))$ have positive integer coefficients. Furthermore, for the three-color model, we find some results on the number of states with a given number of faces of each color, and we compute strict bounds for the possible number of faces of each color.

Key words: eight-vertex SOS model; domain wall boundary conditions; reflecting end; three-color model; partition function; XYZ spin chain; polynomials; positive coefficients.

pdf (497 kb)   tex (32 kb)  

References

  1. Baxter R.J., Three-colorings of the square lattice: a hard squares model, J. Math. Phys. 11 (1970), 3116-3124.
  2. Baxter R.J., Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228.
  3. Baxter R.J., Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I. Some fundamental eigenvectors, Ann. Physics 76 (1973), 1-24.
  4. Bazhanov V.V., Mangazeev V.V., Eight-vertex model and non-stationary Lamé equation, J. Phys. A: Math. Gen. 38 (2005), L145-L153, arXiv:hep-th/0411094.
  5. Bazhanov V.V., Mangazeev V.V., The eight-vertex model and Painlevé VI, J. Phys. A: Math. Gen. 39 (2006), 12235-12243, arXiv:hep-th/0602122.
  6. Bressoud D.M., Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, Mathematical Association of America, Washington, DC, Cambridge University Press, Cambridge, 1999.
  7. Filali G., Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end, J. Geom. Phys. 61 (2011), 1789-1796, arXiv:1012.0516.
  8. Izergin A.G., Partition function of the six-vertex model in a finite volume, Soviet Phys. Dokl. 32 (1987), 878-879.
  9. Izergin A.G., Coker D.A., Korepin V.E., Determinant formula for the six-vertex model, J. Phys. A: Math. Gen. 25 (1992), 4315-4334.
  10. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  11. Kuperberg G., Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Not. 1996 (1996), 139-150, arXiv:math.CO/9712207.
  12. Kuperberg G., Symmetry classes of alternating-sign matrices under one roof, Ann. of Math. 156 (2002), 835-866, arXiv:math.CO/0008184.
  13. Lamers J., On elliptic quantum integrability: vertex models, solid-on-solidmodels and spin chains, Ph.D. Thesis, Utrecht University, 2016.
  14. Lieb E.H., Residual entropy of square ice, Phys. Rev. 162 (1967), 162-172.
  15. Mangazeev V.V., Bazhanov V.V., The eight-vertex model and Painlevé VI equation II: eigenvector results, J. Phys. A: Math. Theor. 43 (2010), 085206, 16 pages, arXiv:0912.2163.
  16. Mills W.H., Robbins D.P., Rumsey Jr. H., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
  17. Propp J., The many faces of alternating-sign matrices, in Discrete Models: Combinatorics, Computation, and Geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., Vol. AA, Editors R. Cori, J. Mazoyer, M. Morvan, R. Mosseri, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, 043-058, arXiv:math.CO/0208125.
  18. Razumov A.V., Stroganov Yu.G., Spin chains and combinatorics, J. Phys. A: Math. Gen. 34 (2001), 3185-3190, arXiv:cond-mat/0012141.
  19. Razumov A.V., Stroganov Yu.G., A possible combinatorial point for the XYZ spin chain, Theoret. and Math. Phys. 164 (2010), 977-991, arXiv:0911.5030.
  20. Rosengren H., An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices, Adv. in Appl. Math. 43 (2009), 137-155, arXiv:0801.1229.
  21. Rosengren H., The three-colour model with domain wall boundary conditions, Adv. in Appl. Math. 46 (2011), 481-535, arXiv:0911.0561.
  22. Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. I. Behaviour at cusps, arXiv:1305.0666.
  23. Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. III. Painlevé VI equation, arXiv:1405.5318.
  24. Rosengren H., Special polynomials related to the supersymmetric eight-vertex model: a summary, Comm. Math. Phys. 340 (2015), 1143-1170, arXiv:1503.02833.
  25. Sutherland B., Exact solution of a two-dimensional model for hydrogen-bonded crystals, Phys. Rev. Lett. 19 (1967), 103-104.
  26. Tsuchiya O., Determinant formula for the six-vertex model with reflecting end, J. Math. Phys. 39 (1998), 5946-5951, arXiv:solv-int/9804010.
  27. Zeilberger D., Proof of the alternating sign matrix conjecture, Electron. J. Combin. 3 (1996), R13, 84 pages, arXiv:math.CO/9407211.
  28. Zinn-Justin P., Six-vertex, loop and tiling models: integrability and combinatorics, Habilitation Thesis, Paris, 2008, arXiv:0901.0665.
  29. Zinn-Justin P., Sum rule for the eight-vertex model on its combinatorial line, in Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., Vol. 40, Springer, Heidelberg, 2013, 599-637, arXiv:1202.4420.

Previous article  Next article  Contents of Volume 16 (2020)