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Figure 3. The kernels involving K0(ξ) in momentum space.

shows that each factor 1/t corresponds in momentum space to i times an integration over ω.
The integration constant can be determined by using the symmetries. The resulting kernels are
shown in Figure 3.

We now proceed in two steps: We first show that the resulting contribution to the surface
layer integral (5.1) is conserved in time (i.e. that it is independent of t0). The second step will
be to show that it is even zero. For the first step, we differentiate (5.1) with respect to t0. Using
that the integrand is antisymmetric in the arguments x and y, we obtain

dI

dt0
=

ˆ

R3

d3x

ˆ

M

(

D1,u −D2,u

)

L
(

t0, ~x; y
)

d4y . (5.7)

Therefore, the surface layer integral (5.1) is conserved if and only if this expression vanishes.
Clearly, it is a sufficient condition to show that

ˆ

M

(

D1,u −D2,u

)

L(x, y) d4y = 0 for all x ∈ M . (5.8)

This is the scalar component of the linearized field equations. Indeed, this equation was used
in [23, 25] to derive the conservation law (for details see [25, Proof of Theorem 3.1]).

Theorem 5.1. The contribution (5.4) with J according to (5.3) vanishes in (5.8).

Proof. Using (5.4) in (5.8), we obtain terms of the form
ˆ

M

Jk ξk
1

δ4ε2
1

t2
iK0(ξ) d

4y .

According to (5.3), the current gives a factor ψ(y) or ψ(y). Therefore, applying Plancherel gives
terms of the form

ˆ

K̂(p) ĝ(k) d4p , (5.9)

where ĝ is supported on the upper or lower mass shell. Noting that the factor ξk in (5.4)
corresponds to a partial derivative in momentum space, the kernel K(p) is obtained from the
distribution shown on the right of Figure 3 by differentiation. Hence it vanishes inside both the
upper and lower mass cone. We conclude that the two factors in the integrand in (5.9) have
disjoint supports. Therefore, the integral (5.9) vanishes, giving the result. �

Knowing that the surface layer integral is conserved, we can simplify its form with the help
of the following lemma, which is inspired by a similar computation in [23, proof of Lemma 5.5].

Lemma 5.2. Using the conservation of the surface layer integral as proved in Theorems 5.1,
the surface layer integral can be written as
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