Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 083, 11 pages      arXiv:2006.08301      https://doi.org/10.3842/SIGMA.2020.083

On Products of Delta Distributions and Resultants

Michel Bauer abcde and Jean-Bernard Zuber fg
a)  Institut de Physique Théorique de Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette, France
b)  CNRS, UMR 3681, IPhT, F-91191 Gif-sur-Yvette, France
c)  Département de mathématiques et applications, École normale supérieure, F-75005 Paris, France
d)  CNRS, UMR 8553, DMA, ENS, F-75005 Paris, France
e)  PSL Research University, F-75005 Paris, France
f)  Sorbonne Université, UMR 7589, LPTHE, F-75005, Paris, France
g)  CNRS, UMR 7589, LPTHE, F-75005, Paris, France

Received June 16, 2020, in final form August 20, 2020; Published online August 25, 2020

Abstract
We prove an identity in integral geometry, showing that if $P_x$ and $Q_x$ are two polynomials, $\int {\rm d}x\, \delta(P_x) \otimes \delta(Q_x)$ is proportional to $\delta(R)$ where $R$ is the resultant of $P_x$ and $Q_x$.

Key words: measures and distributions; integral geometry.

pdf (359 kb)   tex (15 kb)  

References

  1. Coquereaux R., Zuber J.-B., The Horn problem for real symmetric and quaternionic self-dual matrices, SIGMA 15 (2019), 029, 34 pages, arXiv:1809.03394.
  2. Gelfand I.M., Shilov G.E., Generalized functions, Vol. I, Properties and operations, Academic Press, New York - London, 1964.
  3. Hörmander L., The analysis of linear partial differential operators, Vol. I, Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 256, Springer-Verlag, Berlin, 1983.

Previous article  Next article  Contents of Volume 16 (2020)