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1 Introduction

Nakajima’s quiver varieties were introduced by Hiraku Nakajima in [11] to study the moduli
spaces of instantons on ALE spaces, and have been extensively studied since then, see, e.g.,
[8, 10, 12, 13]. They provide a modern and significant example of how algebra and geometry
can be sometimes so deeply, yet surprisingly connected: in fact, their main feature is that they
allow one to put in relation some moduli spaces of bundles (or torsion-free sheaves) over certain
smooth projective varieties with some moduli spaces of representations of suitable algebras (the
so-called path algebras of a quiver and quotients of them). A major example of this bridge is
given by the moduli space of framed sheaves on P2, which can be identified with the moduli
space of semistable representations of the ADHM quiver (see [12] for details).
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honour of Giovanni Landi. The full collection is available at https://www.emis.de/journals/SIGMA/Landi.html
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The way this relation is usually looked at is the one that inspired Nakajima’s first pioneering
work: the philosophy is to use the algebraic data we get on one side (usually called ADHM
data) to parameterize the geometric moduli spaces we have on the other side, i.e., the objects
we are actually interested in (see for example [4, 6, 14]). But sometimes it may be useful to
switch roles and use the geometric interpretation as a “tool” to prove something interesting
per se on the algebraic side. For instance, this is the case when one deals with irreducibility
problems: to determine whether a variety of matrices is irreducible is known to be a challenging
problem (see [15] and references therein), and in the specific case of Nakajima’s quiver varieties
the conclusive result by Crawley-Boevey stating that all of them are indeed irreducible has been
achieved only by using hyperkähler geometry techniques [5].

In [1] we introduced a collection of new quiver varietiesM(Λn, ~vc, wc, ϑc), n ≥ 1 (see below for
the notation); for n 6= 2 they are not Nakajima’s quiver varieties, as the quivers involved are not
doubles. We proved that M(Λ1, ~vc, wc, ϑc) is isomorphic to the Hilbert scheme of points of the
total space of OP1(−1), and, in particular, that it is therefore irreducible (as the Hilbert scheme
is so [7]). For n ≥ 2 we only proved a weaker result, i.e., that only a certain connected component
of M(Λn, ~vc, wc, ϑc) can be identified with Hilbc(Tot(OP1(−n))). However, as M(Λ2, ~vc, wc, ϑc)
is a Nakajima quiver variety, its irreducibility follows from Crawley-Boevey’s result, so that
one only has to determine whether the varieties M(Λn, ~vc, wc, ϑc) are irreducible for n ≥ 3.
In this paper we prove this fact, completing the work of [1], actually showing directly that
Hilbc(Tot(OP1(−n))) is isomorphic to the wholeM(Λn, ~vc, wc, ϑc). As this technique also works
for the case n = 2 we include it as well.

2 Some background

The quivers we are going to consider are extracted from the ADHM data for the Hilbert schemes
of points of the varieties Hilbc(Xn), where Xn is the total space of the line bundle OP1(−n), and,
in turn, the construction of the ADHM data is based on the description of the moduli spaces
of framed sheaves on the Hirzebruch surfaces Σn in terms of monads that was given in [2].
We denote by H and E the classes in Pic(Σn) of the sections of the natural ruling Σn → P1

that square to n and −n, respectively. We fix a curve `∞ in Σn belonging to the class H (the
“line at infinity”). A framed sheaf on Σn is a pair (E , θ), where E is a rank r torsion-free sheaf
which is trivial along `∞, and θ : E|`∞

∼→ O⊕r`∞ is an isomorphism. A morphism between framed
sheaves (E , θ), (E ′, θ′) is by definition a morphism Λ: E −→ E ′ such that θ′ ◦ Λ|`∞ = θ. The
moduli space parameterizing isomorphism classes of framed sheaves (E , θ) on Σn with Chern
character ch(E) =

(
r, aE,−c − 1

2na
2
)
, where r, a, c ∈ Z and r ≥ 1, will be denoted Mn(r, a, c).

We normalize the framed sheaves so that 0 ≤ a ≤ r − 1.
A monad M on a scheme X is a three-term complex of locally free OX -modules of finite

rank, having nontrivial cohomology only at the middle term (cf. [16, Definition II.3.1.1]). It
was proved in [2] that a framed sheaf (E , θ) on Σn with invariants (r, a, c) is the cohomology of
a monad

M(α, β) : 0 // U~k
α // V~k

β //W~k
// 0 , (2.1)

where ~k is the quadruple (n, r, a, c), and

U~k := OΣn(0,−1)⊕k1 , V~k := OΣn(1,−1)⊕k2 ⊕O⊕k4Σn
, W~k

:= OΣn(1, 0)⊕k3 ,

with

k1 = c+
1

2
na(a− 1), k2 = k1 + na, k3 = k1 + (n− 1)a, k4 = k1 + r − a.
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The space L~k of pairs in Hom(U~k,V~k) ⊕ Hom(V~k,W~k
) fitting into (2.1), such that the coho-

mology of the complex is torsion-free and trivial at infinity, is a smooth algebraic variety. There
is a principal GL(r,C)-bundle P~k over L~k whose fibre at a point (α, β) is the space of framings
for the corresponding cohomology of (2.1). The algebraic group

G~k = Aut(U~k)×Aut(V~k)×Aut(W~k
)

acts freely on P~k, and the moduli spaceMn(r, a, c) is the quotient P~k/G~k [2, Theorem 3.4]. This
is nonempty if and only if c + 1

2na(a − 1) ≥ 0, and when nonempty, it is a smooth algebraic
variety of dimension 2rc+ (r − 1)na2.

When r = 1 we can assume a = 0, and there is an identification

Mn(1, 0, c) ' Hilbc(Σn \ `∞) = Hilbc(Xn).

A first step to construct ADHM data for the Hilbert schemes of points of the varieties Xn

is to show that the Hilbert schemes can be covered by open subsets that are isomorphic to the
Hilbert scheme of C2, and therefore have an ADHM description, according to Nakajima. Then
one proves that these “local ADHM data” can be glued to provide ADHM data for the Hilbert
schemes of Xn.

Let Pn(c) be the set of collections (A1, A2;C1, . . . , Cn; e) in End(Cc)⊕n+2 ⊕ Hom(Cc,C) sa-
tisfying the conditions

(P1)


A1C1A2 = A2C1A1, when n = 1,

A1Cq = A2Cq+1,

CqA1 = Cq+1A2
for q = 1, . . . , n− 1, when n > 1;

(P2) A1 +λA2 is a regular pencil of matrices, i.e., there exists [ν1, ν2] ∈ P1 such that det(ν1A1 +
ν2A2) 6= 0;

(P3) for all values of the parameters ([λ1, λ2], (µ1, µ2)) ∈ P1 × C2 satisfying

λn1µ1 + λn2µ2 = 0

there is no nonzero vector v ∈ Cc such that
C1A2v = −µ1v,

CnA1v = (−1)nµ2v,

v ∈ ker e

and (λ2A1 + λ1A2) v = 0.

The group GL(c,C)×GL(c,C) acts on Pn(c) according to

(Ai, Cj , e) 7→
(
φ2Aiφ

−1
1 , φ1Cjφ

−1
2 , eφ−1

1

)
for i = 1, 2, j = 1, . . . , n, (φ1, φ2) ∈ GL(c,C)×GL(c,C).

The following result expresses the fact that the collections (A1, A2;C1, . . . , Cn; e) satisfying
conditions (P1) to (P3) are ADHM data for the varieties Hilbc(Xn) (this is Theorem 3.1 in [2]).

Theorem 2.1. Pn(c) is a principal GL(c,C)×GL(c,C)-bundle over Hilbc(Xn).

3 The main result

Now we turn to the purpose of this paper, namely, proving that the Hilbert schemes of points
of the varieties Xn are isomorphic to moduli spaces of representations of suitable quivers. For
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Figure 1. The quivers Qn.

any n ≥ 2 let Qn be the framed quiver in Fig. 1, where ∞ is the framing vertex. Let Jn be the
two sided ideal of CQn generated by the relations{

a2cq+1 − a1cq = 0,

cq+1a2 − cqa1 − iqj = 0
for q = 1, . . . , n− 1. (3.1)

Our purpose is to describe the spaces of representations of the quiver Qn with relations Jn, i.e.,
the spaces of representations of the quotient algebra Λn = CQn/Jn.

We recall some basic definitions. Given ~v = (v0, v1) ∈ N2 and w ∈ N, a (~v, w)-dimensional
representation of Λn is the datum of a triple of C-vector spaces V0, V1, W , with dimVi = vi,
dimW = w, and of an element (A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1) in

HomC(V0, V1)⊕2 ⊕HomC(V1, V0)⊕n ⊕HomC(V0,W )⊕HomC(W,V0)⊕n−1

satisfying the relations determined by equations (3.1), namely{
A2Cq+1 −A1Cq = 0,

Cq+1A2 − CqA1 − fqe = 0
for q = 1, . . . , n− 1. (Q1)

The space Rep(Λn, ~v, w) of all (~v, w)-dimensional representations of Λn is an affine variety,
on which the group G~v = GL(v0,C) × GL(v1,C) acts by basis change. Indeed, we ignore the
action of GL(w,C) on the vector space W attached to the framing vertex. As usual, to get a well
behaved quotient space one has to perform a GIT construction by introducing a suitable notion
of stability. This was done by A. King [9] and, in a slightly different way, by A. Rudakov [17]. In
the case of a quiver with a framing vertex, the following definition can be shown to be equivalent
to the King–Rudakov one [3, 5].

Definition 3.1. Fix ϑ ∈ R2. A (~v, w)-dimensional representation (V0, V1,W ) of Λn is said to
be ϑ-semistable if, for any subrepresentation S = (S0, S1) ⊆ (V0, V1), one has:

if S0 ⊆ ker e, then ϑ · (dimS0, dimS1) ≤ 0; (3.2)

if S0 ⊇ Im fi for i = 1, . . . , n− 1, then ϑ · (dimS0, dimS1) ≤ ϑ · (v0, v1). (3.3)

A ϑ-semistable representation is ϑ-stable if a strict inequality holds in (3.2) whenever S 6= 0 and
in (3.3) whenever S 6= (V0, V1).

Let Rep(Λn, ~v, w)ss
ϑ be the subset of Rep(Λn, ~v, w) consisting of ϑ-semistable representations.

By [9, Proposition 5.2], the coarse moduli space of (~v, w)-dimensional ϑ-semistable representa-
tions of Λn is the GIT quotient

M(Λn, ~v, w, ϑ) = Rep(Λn, ~v, w)ss
ϑ //G~v.



On the Irreducibility of Some Quiver Varieties 5

It can be proved that the open subset Ms(Λn, ~v, w, ϑ) ⊂ M(Λn, ~v, w, ϑ) consisting of stable
representations makes up a fine moduli space. Notice that, for quivers without a framing, this
holds only when the dimension vector is primitive [9, Proposition 5.3], whilst this requirement
is not necessary in the case of framed quivers [5]. Theorem 4.5 of [1] states that the Hilbert
scheme of points Hilbc(Xn) can be embedded into M(Λn, ~v, w, ϑ) for suitable choices of ~v, w,
and ϑ. Precisely, one has the following result:

Theorem 3.2. For every n ≥ 2 and c ≥ 1 let

~vc = (c, c), wc = 1, ϑc = (2c, 1− 2c),

and let H(n, c) be the irreducible component of M(Λn, ~vc, 1, ϑc) given by the equations

f1 = f2 = · · · = fn−1 = 0. (3.4)

Then Hilbc(Xn) ' H(n, c).

Let pr : Rep(Λn, ~vc, 1)ss
ϑc
→M(Λn, ~vc, 1, ϑc) be the quotient map. The proof of Theorem 3.2

basically consists in proving that the counterimage pr−1(H(n, c)) =: Zn(c) coincides with the
total space of the principal fibration Pn(c) we introduced in Section 2. As it is quite involved
and requires a few intermediate Lemmas and Propositions, we refer the reader to [1] for fur-
ther details. Here we only note that the starting point is given by the stability conditions in
Definition 3.1.

Remark 3.3. The set of (~vc, wc)-dimensional representations of Λn which are semistable ac-
cording to Definition 3.1 does not change if we let the stability parameter vary inside the open
cone

Γc =

{
ϑ = (ϑ0, ϑ1) ∈ R2 |ϑ0 > 0, −ϑ0 < ϑ1 < −

c− 1

c
ϑ0

}
.

It can be shown that for any stability parameter ϑ̄ on the open rays

R1 =
{

(ϑ0, ϑ1) ∈ R2 |ϑ0 > 0, ϑ0 + ϑ1 = 0
}
,

R2 =
{

(ϑ0, ϑ1) ∈ R2 |ϑ0 > 0, (c− 1)ϑ0 + cϑ1 = 0
}

there exist representations which are ϑ̄-semistable, but not ϑc-semistable. So, Γc is a chamber in
the space R2

(ϑ0,ϑ1) of stability parameters and the closed rays R1, R2 are its walls. Furthermore,

inside Γc semistability and stability are equivalent (cf. [1, Lemma 4.7]): in particular, points in
M(Λn, ~vc, 1, ϑc) can be thought of as G~vc-orbits of representations in Rep(Λn, ~vc, 1).

A full description of the chamber/wall decomposition of the space R2
(ϑ0,ϑ1) will be the object

of a future work.

We wish to prove that the component H(n, c) of M(Λn, ~vc, 1, ϑc) introduced in Theorem 3.2
coincides with the whole moduli space M(Λn, ~vc, 1, ϑc) (this will be Theorem 3.8). Let us
introduce the following notation

R(Λn, c) = Rep(Λn, ~vc, 1); Rss(Λn, c) = Rep(Λn, ~vc, 1)ss
ϑc .

Given a representation (A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1) ∈ R(Λn, c), we form the pencil A1 +
λA2, with λ ∈ C. We recall that a pencil A1 +λA2 is regular if there is a point [ν1, ν2] ∈ P1 such
that det(ν1A1 + ν2A2) 6= 0.
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Figure 2. The quivers Q′
n for n ≥ 3.

To prove Theorem 3.8 it is convenient to introduce “augmented” framed quivers defined as
follows: let Q′2 = Q2, and, for every n ≥ 3, let Q′n be the framed quiver in Fig. 2. Let J ′2 = J2

and, for all n ≥ 3, let J ′n be the two sided ideal of CQ′n generated by the relations{
a2dq+1 − a1bq = 0,

dq+1a2 − bqa1 − iqj = 0
for q = 1, . . . , n− 1. (3.5)

We set Λ′n = CQ′n/J ′n for all n ≥ 2. Notice that Λ′2 = Λ2; for n ≥ 3, the algebra Λn can be
obtained by taking the quotient of Λ′n by a suitable ideal. Indeed, let Kn be the two sided ideal
of Λ′n generated by the relations

b̄q = d̄q for q = 2, . . . , n− 1, (3.6)

where x̄ is the class in Λ′n of the element x ∈ CQ′n. Let p̃n : CQ′n −→ CQn be the C-algebra
morphism determined by the assignments

p̃n(aq) = aq, p̃n(bq) = cq, p̃n(dq) = cq, p̃n(j) = j, p̃n(iq) = iq. (3.7)

It is straightforward that p̃n is surjective and that its kernel is the two sided ideal Ln ⊂ CQ′n
generated by the relations

bq = dq for q = 2, . . . , n− 1. (3.8)

It follows directly from equation (3.7) that p̃n maps the set of generators of J ′n (see equation (3.5))
onto the set of generators of Jn (see equation (3.1)), so that

p̃n(J ′n) = Jn.

Then it is not hard to check that p̃n induces a surjective morphism pn : Λ′n → Λn, whose kernel,
by equations (3.6) and (3.8), is

ker pn = Ln/(Ln ∩ J ′n) = Kn.

In conclusion, we have proved the following lemma.

Lemma 3.4. There is an isomorphism of C-algebras Λ′n/Kn ' Λn.
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One of the reasons to introduce the augmented quivers Q′n is that their path algebras carry
an action of the group SO(2,C) which descends to the quotient algebra Λ′n. This action will be
instrumental in proving the regularity of the pencil A1 + λA2.

Elements of SO(2,C) will be denoted by ν = ( ν1 ν2
−ν2 ν1 ). Given arrows

(a1, a2; b1, . . . , bn−1; d2, . . . , dn; j; i1, . . . , in−1)

as above and ν ∈ SO(2,C), we set(
a′1
a′2

)
= ν

(
a1

a2

)
,

(
b′q
d′q+1

)
= ν−1

(
bq
dq+1

)
for q = 1, . . . , n− 1.

The assignment

(a1, a2; b1, . . . , bn−1; d2, . . . , dn; j; i1, . . . , in−1)

7−→ (a′1, a
′
2; b′1, . . . , b

′
n−1; d′2, . . . , d

′
n; j; i1, . . . , in−1),

induces an action

Φ̃n : SO(2,C)→ AutC-alg(CQ′n),

which leaves invariant the generators of the ideal J ′n, that is,

Φ̃n(ν)
(
J ′n
)

= J ′n.

So one has an induced action

Φn : SO(2,C)→ AutC-alg(Λ′n).

We wish now to study the space Rep(Λ′n, ~vc, 1) = R(Λ′n, c) of (c, c)-dimensional framed
representations of Λ′n and its open subset Rep(Λ′n, ~vc, 1)ss

ϑc
= Rss(Λ′n, c) of ϑc-semistable rep-

resentations (defined analogously to Definition 3.1). For n = 2 there is nothing new, since
R(Λ′2, c) = R(Λ2, c) and Rss(Λ′2, c) = Rss(Λ2, c). For n ≥ 3, R(Λ′n, c) is the affine subvariety of
the vector space

HomC(V0, V1)⊕2 ⊕HomC(V1, V0)⊕2n−2 ⊕HomC(V0,W )⊕HomC(W,V0)⊕n−1

whose points (A1, A2;B1, . . . , Bn−1;D2, . . . , Dn, e; f1, . . . , fn−1) satisfy the relations determined
by equations (3.5), namely,{

A2Dq+1 = A1Bq,

Dq+1A2 = BqA1 + fqe
for q = 1, . . . , n− 1. (Q1′)

Lemma 3.5. Rss(Λ′n, c) is the open subset of R(Λ′n, c) determined by the conditions:

(Q2′) for all subrepresentations S = (S0, S1) such that S0 ⊆ ker e, one has dimS0 ≤ dimS1,
and, if dimS0 = dimS1, then S = 0;

(Q3′) for all subrepresentations S = (S0, S1) such that S0 ⊇ Im fi, for i = 1, . . . , n− 1, one has
dimS0 ≤ dimS1.

Proof. Given a subrepresentation (S0, S1), we set si = dimSi, i = 0, 1. By substituting the
definitions of ~vc and ϑc given in Theorem 3.2 into equations (3.2) and (3.3) one gets

if S0 ⊆ ker e, then s0 ≤ s1 −
s1

2c
; (3.9)

if S0 ⊇ Im fi for i = 1, . . . , n− 1, then s0 ≤ s1 +
1

2
− s1

2c
. (3.10)

Whenever s1 > 0, one has 0 < s1
2c < 1; hence, equation (3.9) is equivalent to condition (Q2′).

On the other hand, as 0 ≤ 1
2 −

s1
2c <

1
2 , equation (3.10) is equivalent to condition (Q3′). �
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Proposition 3.6. For each point of Rss(Λ′n, c) the associated matrix pencil A1 +λA2 is regular.

Proof. Let (A1, A2;B1, . . . , Bn−1;D2, . . . , Dn, e; f1, . . . , fn−1) be a point of Rss(Λ′n, c), and as-
sume that A1 + λA2 is singular. If c = 1, then A1 + λA2 is singular if and only if A1 = A2 = 0.
But this implies the subrepresentation (V0, 0) does not satisfy condition (Q3′). Hence we can
assume c ≥ 2. The fact that the pencil A1 + λA2 is singular implies that there is a nontrivial
element

v(λ) =
ε∑

α=0

(−λ)αvα ∈ V0 ⊗C C[λ] (3.11)

such that

(A1 + λA2)v(λ) = 0 for all λ ∈ C. (3.12)

By arguing as in the proof of [1, Lemma 4.11], one can show that the minimal degree polynomial
solution v(λ) for the pencil A1 +λA2 has necessarily degree ε > 0. Let us inductively define the
vector spaces {Ui}i∈N as follows:

U0 = 〈v0, . . . , vε〉,
U2k+1 = A1(U2k) +A2(U2k) for k ≥ 0,

U2k =
n−1∑
q=1

Bq(U2k−1) +
n∑
q=2

Dq(U2k−1) for k ≥ 1.

Note that each Uj , with j even, is a subspace of V0, while each Uj , with j odd, is a subspace
of V1. So, if we introduce the subspaces

S0 =
∞∑
k=0

U2k ⊂ V0, S1 =
∞∑
k=0

U2k+1 ⊂ V1,

it follows that (S0, S1) is a subrepresentation of (V0, V1). We will show that this subrepresen-
tation fails to satisfy either condition (Q2′) or condition (Q3′) of Lemma 3.5, so that one gets
a contradiction.

By substituting equation (3.11) into equation (3.12) one finds out that
A1v0 = 0,

A1vα = A2vα−1, α = 1, . . . , ε,

A2vε = 0,

(3.13)

so that

U1 = 〈A1v1, . . . , A1vε〉 = A1(U0). (3.14)

There are two possible cases, either i) U0 ⊆ ker e, or ii) U0 6⊆ ker e.
i) If we suppose that U0 ⊆ ker e, equation (3.13) and condition (Q1′) imply that

U2 =

n∑
q=2

DqA1(U0).

By letting wq,α = DqA1vα, α = 1, . . . , ε, for each q = 2, . . . , n we obtain an element

(wq,1, . . . , wq,ε) ∈ U⊕ε2
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such that
ε−1∑
α=0

(−λ)αwq,α+1 is a polynomial solution for the pencil A1 +λA2 of degree ε−1. Since

we have supposed ε to be minimal, one has (wq,1, . . . , wq,ε) = 0. From that it is easy to deduce
that U2 = 0 and that (S0, S1) = (U0, U1). So, since kerA1 ∩ U0 6= 0 by equation (3.13), then
equation (3.14) entails that (S0, S1) is a subrepresentation violating condition (Q2′).

ii) Suppose now that U0 is not contained in ker e. So, there is at least one γ ∈ {0, . . . , ε} such
that e(vγ) 6= 0. Condition (Q1′) implies that

Im fq = 〈fqe(vγ)〉 ⊆ U2 for all q = 1, . . . , n− 1. (3.15)

To simplify computations, we may assume γ = 0 and e(v0) = 1. Actually, one checks that
the SO(2,C) action on Λ′n induces an action on R(Λ′n, c), which commutes with the G~vc ac-
tion defined on the same space, and therefore it restricts to an SO(2,C) action on Rss(Λ′n, c).
Moreover, this action preserves the regularity of the matrix pencil A1 + λA2. An element
ν = ( ν1 ν2

−ν2 ν1 ) ∈ SO(2,C) produces a change of basis

(v0, . . . , vε) 7→ ν · (v0, . . . , vε) = (v′0, . . . , v
′
ε),

so that

e(v′0) =
ε∑

α=0

(−ν2)ανε−α1 e(vα).

Since (e(v0), . . . , e(vε)) 6= (0, . . . , 0), there is ν ∈ SO(2,C) so that e(v′0) 6= 0. Moreover, e(v′0)
can be assumed to be 1.

Next, by using condition (Q1′) and equation (3.13), along with the identity A2(Im fq) =
〈A2fq(1)〉 = 〈A2fq(e(v0))〉, it is not hard to show that

A2(Im fq) ⊆ A1(U2) for all q = 1, . . . , n− 1. (3.16)

Now we show that

U2k+1 ⊆
k∑
l=1

A1(U2l) (3.17)

for all k ≥ 1. Assume k = 1. By using equations (3.13), (Q1′) and condition e(v0) = 1, one gets

fqe(vα) = e(vα)Dq+1A1v1

for q = 1, . . . , n− 1. Hence, by using equations (3.13) and (Q1′) again one shows that

U2 =
n∑
q=2

DqA1(U0).

Then U3 is spanned by the sets of vectors

{A1DqA1vα}q=2,...,n
α=1,...,ε

⊆ A1(U2), {A2DqA1vα}q=2,...,n
α=1,...,ε

⊆ A2(U2)

and it follows directly from equations (Q1′) that A2DqA1vα ∈ A1(U2), for q = 2, . . . , n. So
U3 ⊆ A1(U2).

Let us now suppose that equation (3.17) holds true for 1 ≤ k ≤ m, with m ≥ 1. This means
that U2m+1 is spanned by vectors of the form A1w with w ∈ U2l, l = 1, . . . ,m. By noticing that
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U2m+2 is spanned by vectors of the form BpA1w and DqA1w
′, with w ∈ U2l and w′ ∈ U2l′ for

l, l′ = 1, . . . ,m, and by using equation (Q1′) and the inductive hypothesis one finds out that

U2m+2 ⊆
m∑
l=1

n∑
q=2

DqA1(U2l) +
n−1∑
q=1

Im fq.

From this it follows

A1(U2m+2) +A2(U2m+2) = U2m+3

⊆ A1(U2(m+1)) +

m∑
l=1

n∑
q=2

A2DqA1(U2l) +

n−1∑
q=1

A2(Im fq)

⊆ A1(U2(m+1)) +A1(U2) +

m∑
l=1

n∑
q=2

A2DqA1(U2l), (3.18)

where in the last step equation (3.16) has been used. For q = 2, . . . , n, equation (Q1′) implies
that

A2DqA1(U2l) ⊆ A1(U2(l+1)).

Thus, from equation (3.18) we may conclude that

U2(m+1)+1 ⊆
m+1∑
l=1

A1(U2l),

so that the inclusion (3.17) is proved.
This and equation (3.14) imply that

S1 =
∞∑
k=0

U2k+1 ⊆ A1(U0) +
∞∑
k=1

k∑
l=1

A1(U2l) =
∞∑
k=0

A1(U2k) = A1

( ∞∑
k=0

U2k

)
= A1(S0).

But A1(S0) ⊆ S1, so that

S1 = A1(S0).

By equation (3.13), one has kerA1 ∩ S0 6= 0, and therefore dimS1 < dimS0. Finally, equa-
tion (3.15) implies that the subrepresentation (S0, S1) violates condition (Q3′). �

When n ≥ 3, there is a map R(Λn, c) −→ R(Λ′n, c) given by

(A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1) 7→ (A1, A2;C1, . . . , Cn−1;C2, . . . , Cn, e; f1, . . . , fn−1).

This map provides a G~vc-equivariant isomorphism of R(Λn, c) onto the subvariety of R(Λ′n, c)
cut by the equations

Bq = Dq for q = 2, . . . , n− 1

(cf. equations (3.6)). Through this isomorphism R(Λn, c) may be regarded as a closed subvariety
of R(Λ′n, c).

Lemma 3.7. When n ≥ 3, one has that

Rss(Λn, c) = Rss(Λ′n, c) ∩R(Λn, c).
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Proof. Semistability is a numerical condition which is to be checked on the set of all submodules
of a given representation. Hence, it is enough to show that for any left Λn-module M , an abelian
subgroup N ⊂M is a left Λn-submodule if and only if it is a left Λ′n-submodule (notice that M
has also a natural structure of left Λ′n-module, induced by restriction of scalars; cf. Lemma 3.4).
However, precisely because the algebra Λn is a quotient of Λ′n, the category Λn-mod is a full
subcategory of Λ′n-mod, and this implies in particular that the set of all subobjects of a given
Λn-module is the same in the two categories. �

Theorem 3.8. The component H(n, c) of the moduli space M(Λn, ~vc, 1, ϑc) defined by equa-
tions (3.4) coincides with the whole of M(Λn, ~vc, 1, ϑc).

Proof. For each representation (A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1)∈Rss(Λn, c), equations (3.4)
hold if and only if the pencil A1 + λA2 is regular (condition (P2) in Section 2 and in [1]):

� in the proof of Proposition 4.9 of [1] it has been shown that condition (P2) holds in
Zn(c) = pr−1(H(n, c)); i.e., equations (3.4) imply the regularity of the pencil;

� further on, in the proof of Theorem 4.5 of [1] it has been shown that Zn(c) actually
coincides with the open subset of Rss(Λn, c) (denoted Rn(c) in [1]) where condition (P2)
is satisfied; i.e., the regularity of the pencil implies equations (3.4).

So, the orbit of a ϑc-semistable representation

(A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1) ∈ Rss(Λn, c)

lies in H(n, c) if and only if the pencil A1 + λA2 is regular. Then the conclusion follows from
Proposition 3.6 and Lemma 3.7. �

4 A remark involving the 2-Kronecker quiver

We want to rephrase Proposition 3.6 is a slightly different way which involves the Kronecker
quiver with two arrows QK

0 1
•

a1
''

a2

77 •

The new claim, Proposition 4.2, may be regarded as a statement in relative Geometric Invariant
Theory.

The vector space of ~vc = (c, c)-dimensional representations of QK is the space Rep(QK , ~vc) =
HomC(V0, V1)⊕2. Since Definition 3.1 only applies to framed quivers, we need a slightly different
notion of semistability. So we recall from [9, 17] that, given ϑ ∈ R2, a ~vc-dimensional represen-
tation of QK is said to be ϑ-semistable if, for any proper nontrivial subrepresentation supported
by (S0, S1) ⊆ (V0, V1), one has

ϑ · (dimS0, dimS1)

dimS0 + dimS1
≤ ϑ · ~vc

2c
. (4.1)

A ϑ-semistable representation is ϑ-stable if strict inequality holds in (4.1).

As in Section 3, we set ϑc = (2c, 1− 2c).

Lemma 4.1. A point (A1, A2) ∈ Rep(QK , ~vc) is ϑc-semistable if and only if the matrix pencil
A1 + λA2 is regular.
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Proof. Let (A1, A2) be a representation of QK supported by the pair of vector spaces (V0, V1),
and consider a proper subrepresentation supported by (S0, S1). If the stability parameter is
ϑc = (2c, 1− 2c), the inequality (4.1) is equivalent to

2cdimS0 + (1− 2c) dimS1

dimS0 + dimS1
≤ 1

2
,

which is in turn equivalent to

dimS0 ≤ dimS1. (4.2)

It is not hard to show that (4.2) implies

dim(A1(S) +A2(S)) ≥ dimS for all vector subspaces S ⊆ V0. (4.3)

Conversely, if condition (4.3) is satisfied, then, given any subrepresentation supported by S =
(S0, S1), one has

dimS1 ≥ dim(A1(S0) +A2(S0)) ≥ dimS0.

Finally, by [1, Lemma 4.10] condition (4.3) is equivalent to the fact that the matrix pencil
A1 + λA2 is regular. �

Recall that R(Λn, c) is the affine subvariety of

Rep(Qn, ~vc, 1) = HomC(V0, V1)⊕2 ⊕HomC(V1, V0)⊕n ⊕HomC(V0,W )⊕HomC(W,V0)⊕n−1

defined by equations (Q1). Let us denote by πn : R(Λn, c)→ Rep(QK , ~vc) the restriction of the
natural projection Rep(Qn, ~vc, 1)→ HomC(V0, V1)⊕2 = Rep(QK , ~vc).

As a straightforward consequence of Lemma 4.1, Proposition 3.6 may be rephrased in the
following terms.

Proposition 4.2. Each (~vc, 1)-dimensional ϑc-semistable representation of Λn is mapped by πn
to a ~vc-dimensional ϑc-semistable representation of QK :

πn
(
Rss(Λn, c)

)
⊆ Rep(QK , ~vc)

ss
ϑc .
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