Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 054, 13 pages      arXiv:1912.10567      https://doi.org/10.3842/SIGMA.2020.054

Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz

Moulay Barkatou a, Thomas Cluzeau a, Lucia Di Vizio b and Jacques-Arthur Weil a
a) XLIM, UMR7252, Université de Limoges et CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
b) Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles, 78000, Versailles, France

Received January 20, 2020, in final form June 04, 2020; Published online June 17, 2020

Abstract
Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.

Key words: linear differential systems; differential Galois theory; Lie algebras; reduced forms.

pdf (374 kb)   tex (22 kb)  

References

  1. Amzallag E., Minchenko A., Pogudin G., Degree bound for toric envelope of a linear algebraic group, arXiv:1809.06489.
  2. André Y., Sur la conjecture des $p$-courbures de Grothendieck-Katz et un problème de Dwork, in Geometric Aspects of Dwork Theory, Vols. I, II, Walter de Gruyter, Berlin, 2004, 55-112.
  3. Aparicio-Monforte A., Compoint E., Weil J.-A., A characterization of reduced forms of linear differential systems, J. Pure Appl. Algebra 217 (2013), 1504-1516, arXiv:1206.6661.
  4. Barkatou M., Cluzeau T., Weil J.-A., Di Vizio L., Computing the Lie algebra of the differential Galois group of a linear differential system, in Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, 63-70.
  5. Bertrand D., Groupes algébriques et équations différentielles linéaires, Astérisque 206 (1992), Exp. No. 750, 4, 183-204.
  6. Borel A., Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.
  7. Combot T., Sanabria C., A symplectic Kovacic's algorithm in dimension 4, in ISSAC'18 - Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2018, 143-150, arXiv:1802.01023.
  8. Compoint E., Singer M.F., Computing Galois groups of completely reducible differential equations, J. Symbolic Comput. 28 (1999), 473-494.
  9. Dreyfus T., Weil J.-A., Computing the Lie algebra of the differential Galois group: the reducible case, arXiv:1904.07925.
  10. Feng R., Hrushovski's algorithm for computing the Galois group of a linear differential equation, Adv. in Appl. Math. 65 (2015), 1-37, arXiv:1312.5029.
  11. Hessinger S.A., Computing the Galois group of a linear differential equation of order four, Appl. Algebra Engrg. Comm. Comput. 11 (2001), 489-536.
  12. Hrushovski E., Computing the Galois group of a linear differential equation, in Differential Galois Theory (Będlewo, 2001), Banach Center Publ., Vol. 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 97-138.
  13. Katz N.M., A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France 110 (1982), 203-239.
  14. Kovacic J.J., An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. 2 (1986), 3-43.
  15. Nguyen K.A., van der Put M., Solving linear differential equations, Pure Appl. Math. Q. 6 (2010), 173-208.
  16. Person A.C., Solving homogeneous linear differential equations of order 4 in terms of equations of smaller order, Ph.D. Thesis, North Carolina State University, 2002.
  17. Seidenberg A., Some basic theorems in differential algebra (characteristic $p$, arbitrary), Trans. Amer. Math. Soc. 73 (1952), 174-190.
  18. Seidenberg A., Contribution to the Picard-Vessiot theory of homogeneous linear differential equations, Amer. J. Math. 78 (1956), 808-818.
  19. Singer M.F., Ulmer F., Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), 9-36.
  20. van der Hoeven J., Around the numeric-symbolic computation of differential Galois groups, J. Symbolic Comput. 42 (2007), 236-264.
  21. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
  22. van Hoeij M., Decomposing a 4th order linear differential equation as a symmetric product, in Differential Galois Theory (Będlewo, 2001), Banach Center Publ., Vol. 58, Polish Acad. Sci. Inst. Math., Warsaw, 2002, 89-96.
  23. van Hoeij M., Ragot J.F., Ulmer F., Weil J.-A., Liouvillian solutions of linear differential equations of order three and higher, J. Symbolic Comput. 28 (1999), 589-609.
  24. Wei J., Norman E., On global representations of the solutions of linear differential equations as a product of exponentials, Proc. Amer. Math. Soc. 15 (1964), 327-334.

Previous article  Next article  Contents of Volume 16 (2020)