
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 049, 11 pages

Reddening Sequences for Banff Quivers

and the Class P
Eric BUCHER : and John MACHACEK ;

: Department of Mathematics, Xavier University, Cincinnati, Ohio 45207, USA

E-mail: buchere1@xavier.edu

; Department of Mathematics and Statistics, York University,
Toronto, Ontario M3J 1P3, Canada

E-mail: machacek@yorku.ca

Received June 15, 2019, in final form May 23, 2020; Published online June 08, 2020

https://doi.org/10.3842/SIGMA.2020.049

Abstract. We show that a reddening sequence exists for any quiver which is Banff. Our
proof is combinatorial and relies on the triangular extension construction for quivers. The
other facts needed are that the existence of a reddening sequence is mutation invariant and
passes to induced subquivers. Banff quivers define locally acyclic cluster algebras which are
known to coincide with their upper cluster algebras. The existence of reddening sequences
for these quivers is consistent with a conjectural relationship between the existence of a red-
dening sequence and a cluster algebra’s equality with its upper cluster algebra. Our result
completes a verification of the conjecture for Banff quivers. We also prove that a certain
subclass of quivers within the class P define locally acyclic cluster algebras.
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1 Introduction

Cluster algebras are commutative algebras where generators can be explicitly described through
a process known as quiver mutation. It is natural to ask what influence the combinatorics of
the quiver has on the algebra. It has been observed that the existence of a maximal green or
reddening sequence for a quiver seems to correspond to when the cluster algebra defined by the
quiver equals its upper cluster algebra. We provide further evidence for this relationship and aim
to clarify why the two notions seem to coincide. Our methods look at combinatorial properties
of quiver and use them to either produce reddening sequences or show the cluster algebra equals
its upper cluster algebra. Moreover, we find that the same combinatorial construction, which
is known as a triangular extension, is essential to our results on both reddening sequences and
upper cluster algebras.

For a semifield P with group algebra ZP we choose some ground ring A inside the field of
fractions of ZP. We will restrict our attention to skew-symmetric cluster algebras. In [10] Fomin
and Zelevinsky define a cluster algebra A as a certain A-algebra inside an ambient field with
generators determined by a quiver Q. In [2] Bernstein, Fomin, and Zelevinsky define the upper
cluster algebra U which satisfies A � U . A fundamental problem in cluster algebra theory is
to determine when there is the equality A � U . In general this can be a difficult problem.
Typically the ground ring of choice is A � ZP. However, there has been recent attention paid
to the choice of ground ring in the A � U question. There can be a delicate dependence on
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the ground ring A as demonstrated by the authors with M. Shapiro [5]. Goodearl and Yakimov
have developed techniques for showing A � U for ground rings A � ZP [14].

In the case that ground ring is A � ZP, Muller’s theory of cluster localization and locally
acyclic cluster algebras provides a means of showing A � U [24, 25]. The Banff algorithm
presented by G. Muller, [24], is one way of showing that a cluster algebra is locally acyclic, and
quivers for which the Banff algorithm produces a positive output are called Banff. In particular
if a quiver is Banff, then the cluster algebra it defines over ZP satisfies A � U .

Keller [16, 17] introduced certain sequences of quiver mutations, which are now known as
maximal green sequences and reddening sequences, as a combinatorial way to study Kontsevich
and Soibelman’s Donaldson-Thomas transformations [18]. The existence of both maximal green
sequences and reddening sequences are important in cluster algebra theory and has been thought
to be related to the equality of the cluster algebra and upper cluster algebra.1 Canakci, Lee,
and Schiffler [7] had observed existence of a maximal green sequence coincided with A � U in
known cases at the time. Mills [23] offers an explicit conjecture on the potential relationship of
maximal green sequences, the equality A � U , locally acyclicity, and choice of ground ring. Our
work here is progress in understanding this relationship.

In Theorem 3.2 we show that Banff quivers admit reddening sequences. Theorem 3.3 gives
reddening sequences for any quiver in the class P. These theorems cover many examples which
have been the subject of previous research. Ford and Serhiyenko [11] have shown that the quivers
arising from Postnikov’s reduced plabic graphs [28] admit reddening sequences. Theorem 3.2,
combined with the work of Muller and Speyer’s [27] which says such quivers are Banff, gives
another proof of this fact. Many quivers from marked surfaces are known to be Banff [24,
Theorem 10.6] [7, Proposition 12]. Thus, Theorem 3.2 gives reddening sequences for these
quivers. For surfaces covered by these cases maximal green sequences have been previously
constructed [1, 4, 6, 13]. Quivers associated to surfaces belong to an important class of quivers
known as mutation finite quivers. For mutation finite quivers there is a complete classification
of the existence of reddening and maximal green sequences [22]. Also, minimal mutation infinite
quivers are further examples of Banff quivers for which Lawson and Mills have shown have
maximal green sequences [21].

Morally, the proposed conjecture (with some dependence on ground ring) is that for a given
quiver the following are equivalent:

(i) The quiver admits a reddening sequence.

(ii) The associated cluster algebra equals its upper cluster algebra.

(iii) The associated cluster algebra is locally acyclic.

Mills offers a more precise conjecture [23, Conjecture 2] and verifies the conjecture for mu-
tation finite quivers [23, Theorem 1.2]. Theorem 3.2 completes a proof that all three con-
ditions are equivalent for Banff quivers. Theorem 3.3 suggests the class P as a next step
in verifying the conjecture. To the knowledge of the authors every known Banff quiver is
also in the class P (in fact inside a more restrictive class we denote P 1). We ask Ques-
tions 3.5 and 3.6 in attempt to better understand the relationship between Banff quivers
and the class P. In Theorem 4.6 we make some progress toward the equivalence of (i), (ii),
and (iii) for the class P by showing the conditions are equivalent for a certain subfamily of
quivers.

1In [23] Mills states “The conjecture that the cluster algebra and upper cluster algebra coincide if and only if
a maximal green sequence exists arose from a discussion led by Arkady Berenstein and Christof Geiss at the Hall
and cluster algebras conference at Centre de Recherches Mathématiques, Montréal in 2014”.
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2 Quiver mutation background

In this section we will briefly establish some of the basic definitions that we will use to prove our
main results on reddening sequences. A quiver, Q, is a directed graph whose edge set contains
no loops or 2-cycles. The framed quiver associated to Q, denoted pQ, is the quiver whose vertex
set and edge set are the following:

V
� pQ� :� V pQq \ ti1 | i P V pQqu,

E
� pQ� :� EpQq \ tiÑ i1 | i P V pQqu.

The coframed quiver associated to Q, denoted qQ, is the quiver whose vertex set and edge set
are the following:

V
� qQ� :� V pQq \ ti1 | i P V pQqu,

E
� qQ� :� EpQq \ ti1 Ñ i | i P V pQqu.

The vertices i P V pQq are the mutable vertices and the vertices i1 are the frozen vertices.
Mutation is not allowed at any frozen vertex. The framed quiver corresponds to considering
a cluster algebra with principle coefficients. For any mutable vertex i, mutation at the vertex i
produces a new quiver denoted µipQq obtained from Q by doing the following:

(1) For each pair of arrows k Ñ j, iÑ k add an arrow j Ñ k.

(2) Reverse all arrows incident on i.

(3) Delete a maximal collection of disjoint 2-cycles and any arrows between two frozen vertices.

Two quivers are said to be mutation equivalent if one can be reached from the other by a sequence
of mutations.

Given any quiver Q and A � V pQq we let Q|A denote the induced subquiver which has

V pQ|Aq � A,

EpQ|Aq �
 
i
α
Ñ j P EpQq : i, j P A

(
and is a natural restriction of Q to A. We will use QzA to denote Q|V pQqzA.

A mutable vertex is green if there are no incident incoming arrows from frozen vertices.
Similarly, a mutable vertex is red if there are no incident outgoing arrows to frozen vertices.
If we start with an initial quiver Q and preform mutations at mutable vertices of the framed
quiver pQ, then any mutable vertex will always be either green or red. The result is known as
sign-coherence and was established by Derksen, Weyman, and Zelevinsky [9]. Notice also that
all vertices are initially green when starting with pQ. Keller [16, 17] has introduced the following
types of sequences of mutations which will our main interest. A sequence of mutations is
called a reddening sequence if after preforming this sequences of mutations all mutable vertices
are red. A maximal green sequence is a reddening sequence where each mutation occurs at
a green vertex. By [3, Proposition 2.10], after preforming a reddening sequence starting with pQ
the resulting quiver will be isomorphic to qQ. By definition all maximal green sequences are
reddening sequences. There are quivers for which a maximal green sequence does not exist, but
a reddening sequence does [26]. Furthermore there are quivers for which no reddening sequence
exists [29], green or otherwise. If a reddening (maximal green) sequence exists for a quiver, we
will say this quiver admits a reddening (maximal green) sequence.

Now we recall two results of Muller which will be needed for the proofs of our main re-
sults. Both these results were first shown in [26] and their proofs make use scattering diagrams
which have been connected with cluster algebras by Gross, Hacking, Keel, and Kontsevich [15].
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Figure 1. A triangular extension of quivers.

A version of Lemma 2.1 also holds for maximal green sequences, but we will not need it. How-
ever, Lemma 2.2 is false for maximal green sequences. The mutation invariance of reddening is
essential to our results.

Lemma 2.1 ([26, Theorem 17]). If a quiver Q admits a reddening sequence, then any induced
subquiver of Q also admits a reddening sequence.

Lemma 2.2 ([26, Corollary 19]). If a quiver Q admits a reddening sequence, then any quiver
mutation equivalent to Q also admits a reddening sequence.

We now consider a result which states the triangular extension construction preserves the
existence of reddening sequences and maximal green sequences. Let Q1 and Q2 be quivers.
A triangular extension of Q1 and Q2 is any quiver Q with

V pQq � V pQ1q \ V pQ2q,

EpQq � EpQ1q \ EpQ2q \ E,

where E is any set of arrows such that either we have either

for any iÑ j P E implies i P V pQ1q and j P V pQ2q

or else

for any iÑ j P E implies i P V pQ2q and j P V pQ1q.

That is, a triangular extension of quivers simply takes the disjoint union of the two quivers
then adds additional arrows between the quivers with the condition that all arrows are directed
from one quiver to the other. An example of a triangular extension of quivers Q1 and Q2 where
V pQ1q � t1, 2, 3u and V pQ2q � t4, 5, 6u is given in Fig. 1.

We shortly will state a result that the triangular extension construction preserves the existence
of reddening sequences and maximal green sequences. Garver and Musiker show an analogous
result for maximal green sequences in a restricted case needed for their work which they call
a t-colored direct sum [12, Theorem 3.12] and suggest the result holds in greater generality [12,
Remark 3.13]. Cao and Li show the result (stated for maximal green sequences, but remark
on reddening sequences [8, Remark 4.6]) for any triangular extension in the generality of skew-
symmetrizable matrices [8, Theorem 4.5]. In sections following this one we will emphasize the
results for reddening sequences. The fact that the existence of reddening sequences is mutation
invariant will allow applications of the following lemma to Banff quivers and quivers in class P
since both these classes are defined up to mutation equivalence.

Lemma 2.3 ([8, Theorem 4.5, Remark 4.6]). If Q1 and Q2 are any two quivers which both
admit reddening pmaximal greenq sequences, then any triangular extension of Q1 and Q2 admits
a reddening pmaximal greenq sequence.
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Figure 2. Showing a quiver is Banff using a covering pair consisting of vertices 3 and 4.

3 Existence of reddening sequences

In this section we define Banff quivers and the class P. We show that Banff quivers and quivers
in the class P admit reddening sequences.

3.1 Banff quivers

A bi-infinite path in a quiver Q is a sequence piaqaPZ of mutable vertices such that ia Ñ ia�1 is
a arrow for each a P Z. A pair of vertices pi, jq is a covering pair if i Ñ j is an arrow which is
not part of any bi-infinite path. Muller’s class of Banff quivers is the smallest class of quivers
such that

• any acyclic quiver is Banff,

• any quiver mutation equivalent to a Banff quiver is Banff,

• and any quiver Q with a covering pair pi, jq where both Qztiu and Qztju are Banff is
a Banff quiver.

A demonstration that a quiver is Banff is shown in Fig. 2.

Remark 3.1. It is possible to replace “any acyclic quiver is Banff” with “any quiver which is
a collection of isolated vertices is Banff” to give closer analogy to the class P define in Section 3.2.

Theorem 3.2. Let Q be a Banff quiver, then Q admits a reddening sequence.

Proof. We will induct on the number of vertices of Q. If Q has a single vertex, the result is
immediate. The result is also immediate if Q a collection of isolated vertices. Now assume Q is
a non-isolated quiver with more than one vertex. Since Q is a Banff quiver there is covering pair
in either Q or some quiver mutation equivalent to Q. We may assume that Q has this covering
pair because existence of a reddening sequence is mutation invariant by Lemma 2.2.

Let pi, jq be a covering pair used in determining that Q is Banff. Let B be the set of vertices k
such that there exists a directed path from j to k in Q. Here we count the path consisting of
no arrows, and hence j P B. Let A be the complement of B in V pQq. We have i P A since pi, jq
is a covering pair. If i R A, then i P B and there would be a cycle containing the arrow i Ñ j
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which would contradict the fact that pi, jq is a covering pair. It follows by the definition of the
sets A and B that Q is a triangular extension of Q|A and Q|B since if there was an arrow k Ñ `
with k P B then ` P B. That is, there are no arrows k Ñ ` with k P B and ` P A.

Now Qztiu and Qztju are both Banff quivers with strictly fewer vertices than Q. Hence,
Qztiu and Qztju admit reddening sequences by induction. The quiver Q|A is an induced sub-
quiver of Qztju and Q|B is an induced subquiver of Qztiu. Thus, Q|A and Q|B both admit
reddening sequences by Lemma 2.1. We then conclude that Q admits a reddening sequence by
Lemma 2.3. �

3.2 The class P

The following three properties define the class P:

• The quiver with one vertex is in the class P.

• The class P is closed under quiver mutation.

• The class P is closed under taking any triangular extension of two quivers in the class P.

This class of quivers was introduced by Kontsevich and Soibelman [18, Section 8.4]. The nest
theorem follows immediately from results in the literature. This theorem will be used as a star-
ting point for exploration of classes of quivers defined by similar properties.

Theorem 3.3. Let Q be in the class P, then Q admits a reddening sequence.

Proof. The quiver with one vertex admits a reddening sequence. The theorem then follows
from Lemmas 2.2 and 2.3 along with the definition of the class P. �

We now discuss the relationship between the class P and the class of Banff quivers. Lad-
kani [19, Remark 4.21] also considers the class P 1 of quivers defined by:

• The quiver with one vertex is in the class P 1.
• the class P 1 is closed under quiver mutation.

• The class P 1 is closed under taking triangular extensions of quivers where one is in the
class P 1 and the other is the quiver with one vertex.

Now let B1 denote the class of quivers defined by:

• Any quiver without arrows is in B1.
• Any quiver mutation equivalent to a quiver in B1 is in B1.
• Any quiver Q with an arrow i Ñ j such that i is a source or j is a sink, and both Qztiu

and Qztju are in B1 is in B1.

Notice P 1 and B1 are subclasses of P and B respectively. These classes make use of sources
(or equivalently sinks) which can be helpful. In practice this is how quivers are often shown
to be Banff. For example, quivers from many marked surfaces [24, Section 10] and quivers for
Grassmannians [27] are in B1 since covering pairs are always taken to use a source (or sink). The
next proposition follows immediately from the definitions of P 1 and B1.

Proposition 3.4. If a quiver is in B1, then the quiver is in P 1.

Question 3.5. Does there exist a Banff quiver which is not in the class P?

Question 3.6. Does there exist a Banff quiver which is not in B1?
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Figure 3. Quiver for torus with one boundary component and one marked point. A maximal green

sequence for this quiver is p1, 3, 4, 2, 1, 3q.

A quiver has a covering pair if and only if it has a source or sink [24, Proposition 8.1]. So, at
any step which covering pairs are available there is the option to choose a covering pair which
contains a source or sink. A quiver giving a positive answer to Question 3.6 must fail to be Banff
whenever using only source and sink covering pairs, but succeed when making use of a covering
pair not containing a source nor a sink.

Lam and Speyer’s class of Louise quivers [20] is another class of quivers for which similar
questions could be asked. It would be interesting to better understand the relationship of
Louise quivers to the classes of quivers defined in this section. Any Louise quiver is Banff, and
to the authors’ knowledge there is no known example of a Banff quiver which is not Louise. We
will not define or work further with Louise quivers here.

The results in this section readily generalize to the following system for producing quivers
with reddening sequences. We can choose a property of a quiver for which we know any quiver
with this property admits a reddening sequence. We will say a quiver is of type T if it has this
chosen property. We then create a collection C of quivers by:

• Any quiver of type T is in C.

• Any quiver mutation equivalent to a quiver in C is in C.

• The triangular extension of any two quivers in C is in C.

If a quiver is of type T only if it has a single vertex, then C is just the class P. Theorem 3.2 says
we can take a quiver to be of type T if it is Banff. If Question 3.5 has a positive answer then
this will be a class of quivers with reddening sequences which is strictly larger than the class P.
This raises the following fairly ambitious question:

Question 3.7. What is a minimal T for which C consists of all quivers which admit reddening
sequences?

The goal would be to classify all quivers which admit a reddening sequence by looking at
finding the essential generating quivers up to triangular extension and mutation. As one can
see from the class P, a small set of generating quivers can produce a large and interesting
class. Also, the collection of quivers which admit a reddening sequence is strictly larger than
the class P. The quivers associated to a triangulation of a torus with one boundary component
and one marked point on the boundary give examples of quivers not in the class P which admit
reddening sequences. Such a quiver is shown in Fig. 3 along with a maximal green (reddening)
sequence for it. Up to isomorphism the quiver shown in the figure is the only quiver for the
torus with one boundary component and one marked point on the boundary. Hence, it is readily
checked that the quiver in Fig. 3 is not Banff either. Furthermore, quivers from closed surfaces
with more than one puncture admit reddening sequence [6], but they are neither Banff [24,
Theorem 10.9] nor do they belong to class P [19, Theorem 4.11].
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4 Locally acyclic cluster algebras

Let P be a semifield. Let F be a field which contains ZP. A seed of rank n in F is a triple
px,y, Qq. The cluster x � tx1, x2, . . . , xnu is an n-tuple in F which freely generates F as a field
over the fraction field of ZP. The coefficients y � ty1, y2, . . . , ynu consist of elements of P.
Here Q a is quiver on vertex set V pQq � t1, 2, . . . , nu.

A seed px,y, Qq may be mutated at any index 1 ¤ i ¤ n, to produce a new seed pµipxq,
µipyq, µipQqq. Quiver mutation works exactly as defined in Section 2. Let Qij denote the
difference between the number of arrows i Ñ j and the number of arrows j Ñ i in Q. Note
that then skew symmetry will follow. In other words Qji � �Qij . The cluster mutates as
µipxq :� tx1, x2, . . . , xi�1, x

1
i, xi�1, . . . , xnu, where

xix
1
i :�

yi
yi ` 1

¹
Qij¡0

x
Qij

j �
1

yi ` 1

¹
Qji¡0

x
Qji

j .

The coefficients mutate by µipyq :� ty11, y
1
2, . . . , y

1
nu, where

y1k :�

$'''&
'''%
y�1
k if k � i,

ykpyi ` 1qQik if k � i and Qik ¥ 0,

yk

�
yi

yi ` 1


Qki

if k � i and Qki ¥ 0.

Two seeds are call mutation equivalent if one can be obtained from the other (up to permuting
the indices) by a sequence of mutations.

Given a seed px,y, Qq we will call the union of all x1 from any seed which is mutation
equivalent to px,y, Qq the set of cluster variables. The cluster algebra, A � Apx,y, Qq, is
the unital ZP-subalgebra of F generated by the cluster variables. Here we have restricted our
attention to the ground ring ZP since we will make use of the theory of cluster localization.
Notice that since we are allowed to freely mutate when generating the cluster variables, that
two mutation equivalent seeds will generate the same cluster algebra.

The Laurent phenomenon [10, Theorem 3.1] states that A is a subalgebra of ZP
�
x�1
1 , x�1

2 , . . . ,
x�1
n

�
. The upper cluster algebra is denoted by U or Upx,y, Qq and defined by

U :�
£

px,y,Qq

ZP
�
x�1
1 , x�1

2 , . . . , x�1
n

�
,

where the intersection is taken over all seeds. The Laurent phenomenon gives an inclusion
A � U . We will be interested in conditions on the quiver Q which imply A � U .

To showA � U we will use Muller’s theory of locally acyclic cluster algebras [24]. Let px,y, Qq
be a seed of rank n. The freezing of A at xn P x is the cluster algebra A: � A

�
x:,y:, Q:

�
defined

as follows

• The new semifield is P: � P�Z with xn as the generator of the free abelian group Z. The
auxiliary addition is extended as�

p1x
a
n

�
`
�
p2x

b
n

�
� pp1 ` p2qx

minpa,bq
n .

• The new ambient field is F: � Q
�
P:, x1, x2, . . . , xn�1

�
and the new cluster is x: �

px1, x2, . . . , xn�1q.

• The new coefficients are y: �
�
y:1, y

:
2, . . . , y

:
n�1

�
where y:i � yix

Qin
n .

• The new quiver Q: is obtained from Q by deleting the vertex n.
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We will denote the new upper cluster algebra by U:. By permuting indices we can freeze at
any xi P x. Freezing at a subset of cluster variables can be done iteratively and is independent
of the order of freezing. When the freezing A: of A at txi1 , xi2 , . . . , ximu P x satisfies A: �
A
�
pxi1xi2 � � �ximq

�1
�

we then call A: a cluster localization. A cover of A is a collection tAiuiPI
of cluster localizations such that there exists i P I where AiP � Ai for any prime ideal P � A.
A cluster algebra is called acyclic if it has a seed px,y, Qq where Q is an acyclic quiver. A locally
acyclic cluster algebra is a cluster algebra for which there exists a cover by acyclic cluster
algebras. Being a cover is a transitive property. Thus to show a cluster algebra is locally acyclic
it suffices to produce a cover by cluster algebras known to be locally acyclic. Another key
property of covers is that equality of the cluster algebra with its upper cluster algebra can be
checked locally.

Lemma 4.1 ([25, Lemma 2]). Let tAiuiPI be a cover of A. If Ai � Ui for all i P I, then A � U .

We also will use a property which guarantees that a freezing is a cluster localization.

Lemma 4.2 ([25, Lemma 1]). If A: is a freezing of a cluster algebra A at cluster variables
txi1 , xi2 , . . . , ximu and A: � U:, then A: � A

�
pxi1 , xi2 , . . . , ximq

�1
�

is a cluster localization.

We now prove a lemma that will give us a cover. Observe in the situation of Lemma 4.3
the Banff algorithm would freeze i and some j with i Ñ j. The only change we are making is
freezing at potentially more vertices.

Lemma 4.3. Let px,y, Qq be a seed for a cluster algebra A so that

V pQq � tiu \A\B,

where i is a source and there exists an arrow i Ñ j for all j P A. Furthermore, let A: denote
the freezing at tiu and A:: the freezing at A. If both A:: and A: are cluster localizations, then 
A:,A::

(
is a cover for A.

Proof. Under the hypothesis of the lemma it suffices to check for any prime ideal P � A either
A:P � A: or A::P � A::. Consider a prime ideal P and the mutation relation at i which gives

xix
1
i �

yiM

yi ` 1

¹
jPA

x
Qij

j �
1

yi ` 1
,

where M is a monomial in cluster variables. Since 1{pyi ` 1q is invertible in A and Qij ¡ 0
for all j P A it follows that 1 P Axi � A

�±
jPA xj

�
. Since P is prime, it is a proper ideal. So,

xi P P implies xj R P for all j P A. If xi R P , then A:P � A:. If xj R P for all j P A, then
A::P � A::. �

Let us now consider a class of quivers we call P 1m defined by:

• The quiver with one vertex is in the class P 1m.

• The class P 1m is closed under quiver mutation.

• If Q is a quiver in P 1m, then P 1m contains any triangular extension of Q and a quiver with
a single vertex v such that the number of vertices in Q not connected to v by an arrow is
less than or equal to m.

Remark 4.4. It is clear that P 1m � P 1 for any m. One should note that it is indeed the case
that P 1m � P 1. Ladkani [19] has classified which finite mutation type quivers are in P 1. Using
this classification we can choose a quiver Q in P 1 coming from a triangulation of a surface which
has N vertices for some N ¥ 8. Since any arc in a triangulation will be in one quadrilateral
a quiver associated to a surface will only have vertices of degree at most 4. It follows that Q is
not in P 1m when m   N � 5.
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We will focus on m � 3 and make use of the fact that quivers on 3 vertices admit reddening
sequences if and only if they are acyclic. We record this as the following lemma which is implied
by a result of Seven [29, Theorem 1.4] on c-vectors which holds in skew-symmetrizable generality.

Lemma 4.5 ([29, Theorem 1.4]). Let Q be a quiver on three or fewer vertices. The quiver Q
admits a reddening sequence if and only if Q is mutation equivalent to an acyclic quiver.

We are now ready to prove our main theorem on locally acyclic cluster algebras.

Theorem 4.6. If Q is a quiver in the class P 13, then for any seed px,y, Qq containing the
quiver Q the cluster algebra Apx,y, Qq is locally acyclic.

Proof. We will induct on the number of vertices. The theorem holds when Q has one vertex.
Now assume the theorem is true for quivers in the class P 13 which have n vertices. Take a quiver
in the class P 13 which has n vertices and consider a triangular extension with a new vertex i0.
Let this quiver be denoted Q so that

V pQq � ti0u \A\B,

where i0 is a source, there exists an arrow i0 Ñ j for all j P A, and |B| ¤ 3 such that there are
no arrows from i0 to any vertex in B.

Let A � Apx,y, Qq and denote the freezings at ti0u and A by A: and A:: respectively.
Now A: is defined by a seed with quiver Qzti0u which is in the class P 13. Hence, A: is locally
acyclic by induction. This implies A: equals its upper cluster algebra and this is a cluster
localization by Lemma 4.2. The freezing A:: is defined by a seed with a quiver which is the
disjoint union of the vertex i0 and Q|B. Since Q is in P 13 it admits a reddening sequence by
Theorem 3.3. Thus Q|B admits a reddening sequence by Lemma 2.1. It follows by Lemma 4.5
that Q|B is mutation acyclic since |B| ¤ 3. Thus A:: agrees with its upper cluster algebra and
is a cluster localization by Lemma 4.2.

We can now apply Lemma 4.3 to conclude that
 
A:,A::

(
is a cover of A. Therefore A is

locally acyclic as desired since A: is locally acyclic and A:: is acyclic. �

We believe the condition of connecting to all but at most three vertices to be artificial. We
do offer the following conjecture of a more natural result.

Conjecture 4.7. If Q is in the class P 1, then A � U pover ZPq for any cluster algebra defined
by a seed with the quiver Q.

There are obstacles to extending the result in Theorem 4.6 to Conjecture 4.7. The main
problem is that being locally acyclic over ZP does not pass to induced subquivers in general [24,
Remark 3.11].

Conjecture 4.8. If Q is in the class P, then A � U over some ground ring pover ZP?q for the
cluster algebra defined by Q.
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[3] Brüstle T., Dupont G., Pérotin M., On maximal green sequences, Int. Math. Res. Not. 2014 (2014), 4547–
4586, arXiv:1205.2050.

[4] Bucher E., Maximal green sequences for cluster algebras associated to orientable surfaces with empty bound-
ary, Arnold Math. J. 2 (2016), 487–510, arXiv:1412.3713.

[5] Bucher E., Machacek J., Shapiro M., Upper cluster algebras and choice of ground ring, Sci. China Math.
62 (2019), 1257–1266, arXiv:1802.04835.

[6] Bucher E., Mills M.R., Maximal green sequences for cluster algebras associated with the n-torus with
arbitrary punctures, J. Algebraic Combin. 47 (2018), 345–356, arXiv:1503.06207.

[7] Canakci I., Lee K., Schiffler R., On cluster algebras from unpunctured surfaces with one marked point, Proc.
Amer. Math. Soc. Ser. B 2 (2015), 35–49, arXiv:1407.5060.

[8] Cao P., Li F., Uniform column sign-coherence and the existence of maximal green sequences, J. Algebraic
Combin. 50 (2019), 403–417, arXiv:1712.00973.

[9] Derksen H., Weyman J., Zelevinsky A., Quivers with potentials and their representations II: applications to
cluster algebras, J. Amer. Math. Soc. 23 (2010), 749–790.

[10] Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497–529,
arXiv:math.RT/0104151.

[11] Ford N., Serhiyenko K., Green-to-red sequences for positroids, J. Combin. Theory Ser. A 159 (2018), 164–
182, arXiv:1610.01695.

[12] Garver A., Musiker G., On maximal green sequences for type A quivers, J. Algebraic Combin. 45 (2017),
553–599, arXiv:1403.6149.

[13] Goncharov A., Shen L., Donaldson–Thomas transformations of moduli spaces of G-local systems, Adv. Math.
327 (2018), 225–348, arXiv:1602.06479.

[14] Goodearl K.R., Yakimov M.T., Cluster algebra structures on Poisson nilpotent algebras, arXiv:1801.01963.

[15] Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31
(2018), 497–608, arXiv:1411.1394.

[16] Keller B., On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related
Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 85–116, arXiv:1102.4148.
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