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Abstract. In this paper we give two general formulae for the Müger centralizers in the
category of representations of a semisimple quasitriangular Hopf algebra. The first formula
is given in the terms of the Drinfeld map associated to the quasitriangular Hopf algebra.
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1 Introduction

The notion of centralizer in a braided fusion category was introduced by Müger in [25]. It
was shown in [12, Theorem 3.13] that the centralizer of a nondegenerate fusion subcategory of
a braided category is a categorical complement of the nondegenerate subcategory. This principle
is the basis of many classification results of braided fusion categories, see for example papers
[11, 12, 15] and references therein.

Despite its importance, in the current literature there is no concrete known formula for the
Müger centralizer of all fusion subcategories of a given fusion category. Only few particular cases
are completely known in the literature. For instance, in the same paper [25], Müger described
the centralizer of all fusion subcategories of the category of finite-dimensional representations of
a Drinfeld double of a finite abelian group. More generally, for the category of representations of
a (twisted) Drinfeld double of an arbitrary finite group, not necessarily abelian, a similar formula
was then given in [26]. For the braided center of Tambara–Yamagami categories, in [16], the
centralizer can be described by computing completely the S-matrix of the modular category.
In [5] a different approach gave a partial formula for the centralizer of fusion subcategories of
a braided equivariantized fusion category.

Given a fusion subcategory D of a braided fusion category C, the notion of Müger centralizer
of D was introduced in [12]. The centralizer D′ is defined as the fusion subcategory D′ of C
generated by all simple objects X of C satisfying

cX,Y cY,X = idX⊗Y

for all objects Y ∈ O(D) (see also [25]). For a fusion category C as usually, we denote by O(C)
the set of isomorphism classes of simple objects of C.

sebastian.burciu@imar.ro
http://www.imar.ro/~sburciu/
https://doi.org/10.3842/SIGMA.2020.039


2 S. Burciu

If (A,R) is a quasitriangular Hopf algebra then the category Rep(A) of finite-dimensional
A-modules is a braided category with the braiding given by

cM,N : M ⊗N → N ⊗M, m⊗ n 7→ R21(n⊗m) = R(2)n⊗R(1)m,

for any two objects M,N ∈ Rep(A).
Given a quasitriangular Hopf algebra (A,R) one can also define the Drinfeld map

φR : A∗ → A, f 7→ (f ⊗ id)(R21R) = f(Q1)Q2,

where Q = R21R is the monodromy matrix.
We prove the following theorem which gives a general description for the centralizer of any

fusion subcategory of the category of representations of a quasitriangular Hopf algebra:

Theorem 1.1. Let (A,R) be a semisimple quasitriangular Hopf algebra and L be a left normal
coideal subalgebras of A. Then

Rep(A//L)′ = Rep(A//M), where M = φR((A//L)∗).

We denote by F0, F1, . . . , Fr the central primitive idempotents of the character ring C(A)
where F0 = t is the idempotent integral of A∗. Following [7] one can define the conjugacy
classes Cj of A as Cj := Λ ↼ FjA

∗, where Λ is an idempotent integral of A and a ↼ f = 〈f, a1〉a2
for all a ∈ A and f ∈ A∗. It is well known that these conjugacy classes are the simple D(A)-

submodules of the induced D(A)-module k ↑D(A)
A ' A, see [31].

Let (A,R) be a semisimple quasitriangular Hopf algebra and V0 = k, . . . , Vr be a complete set
of isomorphism classes of irreducible A-modules. Let also Irr(A) = {χ0 = ε, χ1, . . . , χr} be the
set of irreducible characters afforded by these modules and Ei ∈ Z(A) be the associated central
primitive idempotent of the irreducible character χi. Since the Drinfeld map φR : C(A)→ Z(A)
is an algebra map we may suppose that φR(Fj) =

∑
i∈Aj

Ei for some subset Aj ⊆ {0, . . . , r}.

Since φR(1) = 1 we obtain a partition for the set of indices of all irreducible representations
{0, 1, . . . , r} =

⊔
j∈J
Aj . For any 0 ≤ i ≤ r we denoted by m(i) the unique index j ∈ J such that

i ∈ Aj . Therefore in this way we obtain a unique function

m : {0, 1, . . . , r} → J

with the property that EiφR(Fm(i)) 6= 0 for all i ∈ {0, 1, . . . , r}.
Our second main result is the following:

Theorem 1.2. Suppose that (A,R) is a semisimple quasitriangular Hopf algebra and L is a left
normal coideal subalgebra of A. With the above notations one has

O(Rep(A//L)′) =
{
χi | Cm(i) ⊆ L

}
.

Recall that the quasitriangular Hopf algebra (A,R) is called factorizable if the Drinfeld map
φR : A∗ → A is an isomorphism of algebras. In this case, its restriction φR|C(A) : C(A)→ Z(A)
is an isomorphism of algebras. For a factorizable semisimple Hopf algebra we can record the
primitive central idempotents Fj of C(A) such that Fj := φ−1R (Ej) any 1 ≤ j ≤ r. With these
notations, m(i) = i for any 0 ≤ i ≤ r and Theorem 1.2 implies the following:

Corollary 1.3. Let (A,R) be a semisimple factorizable Hopf algebra and L be a left normal
coideal subalgebra of A. Then with the above notations one has that

O(Rep(A//L)′) =
{
χi | Ci ⊆ L

}
.
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Shortly, this paper is organized as follows. In Section 2 we recall the basic notions of Hopf
algebras and fusion categories that are used throughout this paper. In this section we also prove
a canonical decomposition of a left normal coideal subalgebra in terms of the decomposition of
its integral, see equation (2.2). In Section 2.5 we recall the main properties of quasitriangular
Hopf algebras and their associated Drinfeld maps. In Section 3 we prove Theorem 1.1 and
some consequences of it. In particular we apply Theorem 1.1 to the adjoint subcategory of the
category of representations of a factorizable Hopf algebra. In this way we obtain a relation,
via the Drinfeld map, between the Hopf center and the first commutator of a factorizable Hopf
algebra.

In Section 4 we prove Theorem 1.2. Some consequences of this result are also described. In
Section 5 we give an example, by considering the semisimple quasitriangular Hopf algebra H8

of dimension 8. Based on our results we are able to compute the function m in this case and
therefore the centralizer of any fusion subcategory of Rep(H8).

We work over an algebraically closed field k of characteristic zero. The comultiplication and
antipode of a Hopf algebra are denoted by ∆ and S respectively. We use Sweedlers notation
for comultiplication with the sigma symbol dropped. All the other Hopf algebra notations are
those used in [24].

2 Preliminaries

Let A be a finite-dimensional semisimple Hopf algebra over an algebraically closed field k of
characteristic zero. Then A is also cosemisimple and S2 = id [21]. The character ring C(A) :=
G0(A) ⊗Z k is a semisimple subalgebra of A∗ and it has a vector space basis given by the set
Irr(A) of irreducible characters of A, see [30]. Moreover, C(A) = Cocom(A∗), the space of
cocommutative elements of A∗. By duality, the character ring of A∗ is a semisimple subalgebra
of A and C(A∗) = Cocom(A). If M is an A-representation with character χ then M∗ is also an
A-representation with character χ∗ = χ ◦ S. This induces an involution “ ∗ ”: C(A) → C(A)
on C(A).

Throughout of this paper we denote by Λ an idempotent integral of A and by t an idempotent
integral of A∗. Moreover one has that t(Λ) = 1

dimk(A)
. Recall also [20] that

dimk(A)Λ =
∑

d∈Irr(A∗)

ε(d)d

is the regular character of A∗. Dually

dimk(A)t =
∑

χ∈Irr(A)

χ(1)χ

is the regular character of A.

Recall that a left coideal subalgebra of A is a subalgebra L ⊆ A with ∆(L) ⊂ A⊗L. Then L
is called left normal coideal subalgebra if L is closed under the left adjoint action of A, i.e.,
a1lS(a2) ∈ L for any l ∈ L and any a ∈ A. Recall also from [1] that given a left coideal
subalgebra L of A there is a unique element ΛL ∈ L (called integral) such that lΛL = ε(l)ΛL for
all l ∈ L, see also [19]. Then the coideal subalgebra L is normal if and only if ΛL is central, i.e.,
ΛL ∈ Z(A).

For any left normal coideal subalgebra L of A the augmentation ideal AL+ is a Hopf ideal
and it has the following form AL+ = A(1 − ΛL) = AnnA(ΛL). Thus one can define the Hopf
quotient A//L := A/AL+. It is well known that any fusion subcategories of Rep(A) can be
written as Rep(A//L) for some Hopf quotient of A.
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Remark 2.1. Since A is free as left L-module [29] it follows that the map

A⊗L k ' AΛL, a⊗L 1 7→ aΛL

is an isomorphism of A-modules. Moreover, by [2, Proposition 3.11] it follows that the regular
module of the quotient Hopf algebra A//L is isomorphic to the induced module A⊗L k.

2.1 Duality between the character ring and the center

Let A be a semisimple Hopf algebra over the ground field k. Let us denote by Irr(A) the set
of irreducible characters of A. We suppose that Irr(A) = {χ0, χ1, . . . , χr}. Without loss of
generality we may suppose that χ0 = ε. Let also E0, E1, . . . , Er be the corresponding central
primitive central idempotents in A. The evaluation form

C(A)⊗Z(A)→ k, χ⊗ a 7→ χ(a)

is nondegenerate. A pair of dual bases for this form is given by
{
χi,

1
ni
Ei
}

since
〈
χi,

1
nj
Ej
〉

= δi,j
for any 1 ≤ i, j ≤ r.

2.2 Another pair of dual basis in the commutative case

Let A be a semisimple Hopf algebra with a commutative character ring. According to [7] in
the case of a commutative ring C(A) there is another pair of dual bases corresponding to this
nondegenerate form. This pair of dual bases is given in terms of the conjugacy class sums as
defined in [7].

The conjugacy classes Cj of A are defined as Cj = Λ ↼ FjA
∗, where Λ = ΛA is a two-sided

idempotent integral of A and {Fj}j is the (complete) set of central primitive idempotents of
the semisimple algebra C(A). This notion of conjugacy classes generalizes the usual notion of
conjugacy classes in finite groups.

Example 2.2. Let G be a finite group and A = kG be the associated group algebra. It is easy
to see that the conjugacy classes as defined above coincide with the usual notion of conjugacy
class in a group. Indeed, let C0, C1, . . . , Cr be the usual conjugacy classes of G. Then the set
of central primitive idempotents of C(kG) can be described as pj =

∑
h∈Cj

ph where ph ∈ kG is

defined as ph(g) = δg,h. Since Λ = 1
|G|
∑
g∈G

g it follows that

Cj = Λ ↼ pjkG = k[Cj ]

is the vector sub-space of kG generated by all group elements of Cj .

Recall that the Fourier transform F : A∗ → A defined by f 7→ Λ ↼ f for any f ∈ A∗ is

a k-linear isomorphism. Since A∗ =
r⊕
j=0

FjA
∗ and Cj = F(FjA

∗) one has

A =

r⊕
j=0

Cj .

One can also define the corresponding conjugacy class sums

Cj = Λ ↼ (dimA)Fj .

Note that Cj ∈ Z(A) and since dimkZ(A) = dimkC(A) it follows that Cj ∩Z(A) = kCj . Note

also that dimk(A)Λ =
r∑
j=0

Cj . Indeed, Λ = Λ ↼ ε = Λ ↼
r∑
j=0

Fj = 1
dimk(A)

r∑
j=0

Cj .



Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras 5

Example 2.3. If A = kG then

Cj =

(
1

|G|
∑
g∈G

g

)
↼ |G|pj =

∑
g∈G

pj(g)g =
∑
h∈Cj

h

is the usual class sum of a conjugacy class Cj .

Remark 2.4. By the class equation for semisimple Hopf algebras, see [22], one has that the
value nj := dimk A

∗

dimk(A∗Fj)
is an integer. Moreover as in [7, equation (11)] one can deduce that

Fj(Λ) = 1
nj

.

Example 2.5. If A = kG then nj = |G|
|Cj | is the order of the centralizer of any group element

gj ∈ Cj .

This implies that a second pair of dual bases for the form of equation (2.1) can be given by{
Fi,

ni
dimk(A)

Ci

}
, see also [7, equation (17)]. This can be written as

〈
Fi,

nj

dimk(A)
Cj

〉
= δi,j .

Indeed, one has〈
Fi,

nj
dimk(A)

Cj

〉
=

nj
dimk(A)

〈Fi,Λ ↼ (dimk(A))Fj〉 = nj〈FjFi,Λ〉 = δi,jnjFj(Λ) = δi,j .

2.3 Decomposition of the integral

Let L be a left normal coideal subalgebra of a semisimple Hopf algebra A with a commutative
character ring C(A). We shall use the notation λL ∈ (A//L)∗ for the idempotent integral of the
Hopf algebra (A//L)∗. Clearly λL ∈ C((A//L)∗) ⊂ C(A∗) and we may suppose that

λL =
∑
j∈IL

Fj (2.1)

for some subset of indices IL ⊆ {0, 1, . . . , r}. Note that by [10, Lemma 1.1] Λ̃L := Λ ↼ λL is
a left integral for L. It follows from above that

Λ̃L =
1

dimk(A)

∑
j∈IL

Cj .

Then one has

L = ΛL ↼ A∗ =
⊕
j∈IL

Cj ↼ A∗ =
⊕
j∈IL

Cj .

Note also that

ε(Cj) = dimk(A)Fj(Λ) =
dimk(A)

nj
= dimk(FjA

∗) = dimk
(
Cj
)
.

Thus

ε
(
Λ̃L
)

=
1

dimk(A)

( ∑
j∈JL

ε(Cj)

)
=

1

dimk(A)

( ∑
j∈JL

dimk
(
Cj
))

=
dimk(L)

dimk(A)
.

It follows then that

ΛL =
dimk(A)

dimk(L)
Λ̃L =

1

dimk(L)

∑
j∈IL

Cj (2.2)

is a formula for the idempotent integral of L.
Define the functional pCj ∈ A∗ as the unique linear functional that coincides to ε on Cj and

it is equal to zero on the other conjugacy classes Cl with l 6= j. The following lemma was proven
in [3, Theorem 5.13].
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Lemma 2.6. Suppose that A is a semisimple Hopf algebra with a commutative character ring
C(A). Let {Fj}0≤j≤r be a complete set of central primitive idempotents of C(A). Then Fj = pCj
for all 0 ≤ j ≤ r.

Equation (2.2) and the above lemma implies the following:

Lemma 2.7. Let L be a left normal coideal subalgebra of a semisimple Hopf algebra A. With
the above notations one has j ∈ IL ⇐⇒ Fj(ΛL) 6= 0.

Let A be a semisimple Hopf algebra with a commutative character ring C(A). Then {Fj}

form a k-linear basis for C(A) and for any character χ ∈ C(A) one can write χ =
r∑
j=0

αχ,jFj

with αχ,j ∈ k. Previous lemma implies the following result, see also [8, Theorem 1.12].

Proposition 2.8. Let A be a semisimple Hopf algebra with a commutative character ring and
χ ∈ C(A). Then one has χ ∈ C(A//L) ⇐⇒ χFj = χ(1)Fj for all j ∈ IL.

Proof. We may suppose that χ = χM is the character of an A-module M . If χ ∈ C(A//L)
then χλL = χ(1)λL and equation (2.1) implies that χFj = χ(1)Fj , for any j ∈ JL. Conversely
if χFj = χ(1)Fj for all j ∈ JL then χλL = λLχ(1). Thus

χ(ΛL) =
dimk(A)

dimk(L)
χ
(
Λ̃L
)

=
dimk(A)

dimk(L)
χ(λL ⇀ Λ) =

dimk(A)

dimk(L)
χλL(Λ) =

dimk(A)

dimk(L)
χ(1)λL(Λ).

On the other hand note that λL(Λ) = ε
(
Λ̃L
)

= dimk(L)
dimk(A)

by equation (2.2). Thus χ(ΛL) = χ(1)
which shows that the restriction of the A-module M to L is trivial. It follows that M ∈
Rep(A//L). �

Example 2.9. If A = kG then a left normal coideal subalgebra of A is of the form L = kN for
some normal subgroup N �G. Then

λL =
∑
Cj⊆N

pj and IL = {j |Cj ⊆ N}.

2.4 Left kernels and Burnside formula

Let M be an A-module and let LKerA(M) be the left kernel of M . Recall [1] that LKerA(M) is
defined by

LKerA(M) = {a ∈ A | a1 ⊗ a2m = a⊗m, for allm ∈M}.

Then by [1] it follows that LKerA(M) is the largest left coideal subalgebra of A that acts
trivially on M . It is also a left normal coideal subalgebra. For example, if A = kG is the
group algebra of a finite group G and M is a kG-module then LKerA(M) = k kerG(M), where
kerG(M) = {g ∈ G | g.m = m, for allm ∈M} is the usual kernel of M .

Next theorem generalizes a well known result of Brauer in the representation theory of finite
groups.

Theorem 2.10 ([1, Theorem 4.2.1]). Suppose that M is a finite-dimensional module over
a semisimple Hopf algebra A. Then

〈M〉 = Rep(A//LKerA(M)),

where 〈M〉 is the fusion subcategory of Rep(A) generated by M .
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This implies that for any left normal coideal subalgebra L of A one has that⋂
M∈Irr(A//L)

LKerA(M) = L. (2.3)

The previous theorem also implies that any fusion subcategory of Rep(A) is of the type
Rep(A//L) for some left normal coideal subalgebra L of A. Moreover, for any V ∈ Rep(A) one
has

M ∈ Rep(A//L) ⇐⇒ LKerA(M) ⊇ L. (2.4)

2.5 Quasitriangular and factorizable Hopf algebras

Recall that a Hopf algebra A is called quasitriangular if A admits an R-matrix, i.e., an element
R ∈ A⊗A satisfying the following properties:

1) R∆(x) = ∆cop(x)R for all x ∈ A,

2) (∆⊗ id)(R) = R(1) ⊗ r(1) ⊗R(2)r(2),

3) (id⊗∆)(R) = R(1)r(1) ⊗ r(2) ⊗R(2),

4) (id⊗ε)(R) = 1 = (ε⊗ id)(R).

Here R = r = R(1) ⊗ R(2) = r(1) ⊗ r(2). If (A,R) is a quasitriangular Hopf algebra then the
category of representations is a braided fusion category with the braiding given by

cM,N : M ⊗N → N ⊗M, m⊗ n 7→ R21(n⊗m) = R(2)n⊗R(1)m

for any two left A-modules M,N ∈ Rep(A) (see [18]). Recall that R21 := R(2) ⊗ R(1). Denote
Q := R21R. Then the monodromy of two objects is defined as

cM,NcN,M : M ⊗N → N ⊗M, (m⊗ n) 7→ R(2)R(1)m⊗R(2)R(1)n = Q(m⊗ n).

A quasitriangular Hopf algebra (A,R) is called factorizable if and only if the Drinfeld map

φR : A∗ → A, f 7→ (f ⊗ id)(R21R)

is an isomorphism of vector spaces. In this situation, following [28, Theorem 2.3] φR maps the
character ring C(A) onto the center Z(A) of A and the restriction φR|C(A) is an isomorphism of
algebras.

Remark 2.11. By [27, Lemma 4.1] one has that φR(C) is a left normal coideal for any sub-
coalgebra C of A∗.

One can also define the map Rφ : A∗ → A by Rφ(f) = (id⊗f)(Q) for all f ∈ A∗. Moreover
by [28, Theorem 2.1] one has that Rφ(fχ) = Rφ(f)Rφ(χ) for all f ∈ A∗ and χ ∈ C(A). Thus

Rφ|C(A) : C(A)→ Z(A) is an isomorphism of k-algebras.

Remark 2.12. By [27, Lemma 2.3] one has that S◦Rφ = φR◦s where S and s are the antipodes
of A and A∗ respectively.

In the case of a factorizable Hopf algebra Rφ is also bijective and moreover by [9] the two
maps Rφ and φR coincide on the character ring C(A).
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3 Proof of Theorem 1.1 on Müger centralizer

In this section we prove the first main theorem mentioned in the introduction. Given a fusion
subcategory D of a braided fusion category C, recall that the Müger centralizer D′ is defined as
the fusion subcategory of C generated by all simple objects X of C satisfying

cX,Y cY,X = idX⊗Y

for all objects Y ∈ O(D) (see also [25]). Recall that O(D) denotes the set of isomorphism classes
of simple objects of D.

Let A be a semisimple quasitriangular Hopf algebra over k and D = Rep(A//L) be a fusion
subcategory of Rep(A) where L is a left normal coideal subalgebra of A.

Lemma 3.1. Let (A,R) be a semisimple quasitriangular Hopf algebra and L, N be two left
normal coideal subalgebras. Then the following assertions are equivalent:

1) Rep(A//N) ⊆ Rep(A//L)′,

2) the following equation holds in A⊗A:

Q(ΛL ⊗ ΛN ) = ΛL ⊗ ΛN , (3.1)

3) N ⊇ φR((A//L)∗).

Proof. (1) ⇐⇒ (2) It is well known that two fusion subcategories of Rep(A) centralize each
other if and only if their regular representations centralize. Thus one needs to show that the
two regular representations of A//L and A//N centralize each other if and only if equation (3.1)
holds. On the other hand from the definition of the braiding in Rep(A) the two representations
centralize each other if and only if Q = R(2)r(1) ⊗ R(1)r(2) acts as identity on their tensor
product A//L⊗ A//N . By Remark 2.1 one has k ↑AL ⊗k ↑AN= AΛL ⊗ AΛN . Since ΛL and ΛN
are central elements of A it is clear that Q acts as identity on this subspace of A⊗A if and only
if equation (3.1) holds.

(2) =⇒ (3) By [10, Lemma 1.1] one has (A//L)∗ = ΛL ⇀ A∗. Therefore φR(ΛL ⇀ f) =
f(Q1ΛL)Q2 for any f ∈ A∗. From here, applying equation (3.1) it follows

φR(ΛL ⇀ f)ΛN = f
(
Q1ΛL

)
Q2ΛN = f(ΛL)ΛN . (3.2)

On the other hand note that

εA(φR(ΛL ⇀ f)) = f(ΛL). (3.3)

If L′ := φR((A//L)∗) then equation (3.3) gives that A(L′)+ ⊆ AN+ and by [2, Lemma 6.2] one
has that L′ ⊆ N .

(3) =⇒ (2) In this situation equation (3.2) is satisfied for any f ∈ A∗ which shows that
equation (3.1) also holds. �

Remark 3.2. If B ⊆ D are fusion subcategories of a braided fusion category C then clearly
D′ ⊆ B′. In particular if Rep(A//N) ⊆ Rep(A//L)′ then by centralizing once more one has that
Rep(A//L) ⊆ Rep(A//L)′′ ⊆ Rep(A//N)′. Thus the three above conditions from the previous
lemma are also equivalent to:

1) Rep(A//L) ⊆ Rep(A//N)′,

2) Q(ΛN ⊗ ΛL) = (ΛN ⊗ ΛL),

3) L ⊇ φR((A//N)∗).
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3.1 Proof of Theorem 1.1

Proof. Let M := φR((A//L)∗) as in the statement of the theorem. By Remark 2.11 it is well-
known that M is also a left normal coideal subalgebra of A. Suppose also that Rep(A//L)′ =
Rep(A//L◦) for some other left normal coideal subalgebra L◦ of A.

We need to prove that L◦ = M . Note that for any left normal coideal subalgebra N of A one
has Rep(A//N) ⊆ Rep(A//L)′ if and only if Rep(A//N) ⊆ Rep(A//L◦), i.e L◦ ⊆ N . Then the
previous Lemma 3.1 shows that for any left normal coideal subalgebra N of A one has

L◦ ⊆ N ⇐⇒ M ⊆ N.

In particular, for N = L◦ one obtains that M ⊆ L◦. For N = M one obtains the other inclusion
L◦ ⊆M . Thus L◦ = M and the proof is complete. �

Theorem 1.1 can be rewritten as following by using the notion of left kernel of an A-module,
see Section 2.4:

Theorem 3.3. Let (A,R) be a quasitriangular semisimple Hopf algebra and L be a left normal
coideal subalgebra of A. If M ∈ Rep(A) then the following assertions are equivalent:

1) M ∈ Rep(A//L)′,

2) φR((A//L)∗) ⊆ LKerA(M).

Proof. One has that Rep(A//L)′ = Rep(A//L◦) where L◦ = φR((A//L)∗). Then by equa-
tion (2.4) one has M ∈ Rep(A//L◦) ⇐⇒ LKerA(M) ⊇ L◦. �

3.2 On the commutators and Hopf centre

Given a fusion category C we denote by Cpt the fusion subcategory generated by the invertible
objects of C. In the case C = Rep(A) for a semisimple Hopf algebra we have that Cpt is
the full abelian subcategory generated by one-dimensional modules. It was shown in [2] that
Rep(A)pt = Rep(A/I) where I := {ab− ba | a, b ∈ A} is the first commutator of the k-algebra A.
Moreover the commutator ideal [A,A] is a Hopf ideal and by Takeuchi’s correspondence it
corresponds to a left normal coideal subalgebra A′. Thus A(A′)+ = I and

Rep(A)pt = Rep(A//A′).

Moreover by [2] A′ is the smallest left normal coideal subalgebra L with the property that A//L
is a commutative Hopf algebra. A′ is called the the commutator of A.

Example 3.4. If A = kG then A′ = kG′ where G′ is the first commutator of G, i.e., G′ = [G, G].

For a fusion category C, recall that the adjoint subcategory Cad is defined as the smallest
fusion subcategory generated by all objects of the type X ⊗ X∗ with X a simple object of C.
If C = Rep(A) is the category of representations of a semisimple Hopf algebra A then it is
well-known that

Rep(A)ad = Rep(A//K(A)),

where K(A) is the Hopf centre of A, i.e., largest central Hopf subalgebra of A.
Recall that a braided fusion subcategory C is called nondegenerate if its Müger center is trivial,

i.e., C′ = Vec. If C is a nondegenerate braided fusion category then by [11, Corollary 3.11] one
has

(Cad)′ = Cpt. (3.4)
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Since D′′ = D for any fusion subcategory D of a nondegenerate braided category C we can also
write that

(Cpt)′ = Cad. (3.5)

Proposition 3.5. Let A be a factorizable semisimple Hopf algebra. With the above notations,
one has that

φR((A//K(A))∗) = A′ and φR((A/I)∗) = K(A).

Proof. For a quasitriangular Hopf algebra (A,R) it is well known that Rep(A) is nondegenerate
if and only if A is a factorizable Hopf algebra. In this case equation (3.4) gives that

Rep(A//K(A))′ = Rep(A//A′).

Then Theorem 1.1 gives φR((A//K(A))∗) = A′.

Similarly, equation (3.5) gives that

Rep(A//A′)′ = Rep(A//K(A))

and Theorem 1.1 implies K(A) = φR((A//A′)∗) . �

4 Conjugacy classes and Müger centralizer

In this section we will prove Theorem 1.2. Suppose that (A,R) is a semisimple quasitriangular
Hopf algebra. Let as above V0, V1, . . . , Vr be a complete set of isomorphism classes of irreducible
A-modules. Let also Irr(A) = {χ0, χ1, . . . , χr} be the set of irreducible characters afforded by
these modules and {E0, . . . , Er} be their associated central primitive idempotents of A. Without
loss of generality we may suppose that V0 = k is the trivial A-module and therefore χ0 = ε and
E0 = Λ.

Recall by [14], that Rep(A) is a ribbon category with the canonical ribbon element v = u−1,
where u := S

(
R1
)
R2 is the Drinfeld element of (A,R). With respect to the canonical ribbon

structure given by this ribbon element, the S-matrix of (A,R) has entries

sii′ := trVi⊗Vi′ (Q) = (χi ⊗ χi′)(Q) = 〈χi′ , φR(χi)〉.

It follows from [12] that one has |sii′ | ≤ χi(1)χi′(1) and Vi, Vi′ centralize each other if and only
if sii′ = χi(1)χi′(1).

The Drinfeld map φR : C(A) → Z(A) is an algebra map and we may suppose as in the
introduction that

φR(Fj) =
∑
i∈Aj

Ei

for some subset Aj ⊆ {0, . . . , r}.
Without loss of generality we may also suppose that F0 = t, the idempotent integral of A∗.

Then φR(F0) is the idempotent integral of Φ(A) := φR(A∗) since φR(f)φR(F0) = φR(fF0) =
f(1)φR(F0) = ε(φR(f))φR(F0) for any f ∈ A∗ and also ε(φR(F0)) = F0(1) = 1.

Note that the set Aj is empty if and only if φR(Fj) = 0. Denote by J ⊆ {0, 1, . . . , r} the set
of all indices j with Aj not a empty set. Since φR(1) = 1 we obtain in this way a partition for
the set of indices of all irreducible representations {0, 1, . . . , r} =

⊔
j∈J
Aj .
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For any index 0 ≤ i ≤ r we denoted by m(i) the unique index j ∈ J such that i ∈ Aj .
Therefore in this way we obtain a unique function

m : {0, 1, . . . , r} → J

with the property that EiφR(Fm(i)) 6= 0 for all i ∈ {0, 1, . . . , r}.
Recall from Section 2.4 the definition of the left kernel of an A-module.

Lemma 4.1. Let (A,R) be a quasitriangular Hopf algebra and Vi, Vi′ be two irreducible A-
representations. Then, with the above notations the following assertions are equivalent:

1) Vi and Vi′ centralize each other in Rep(A),

2) χi′Fm(i) = χi′(1)Fm(i),

3) χiFm(i′) = χi(1)Fm(i′),

4) Cm(i) ⊆ LKerA(Vi′),

5) Cm(i′) ⊆ LKerA(Vi).

Proof. For any character χ ∈ C(A) write as above χ =
r∑
j=0

αχ,jFj . Then one has that

φR(χ) =

r∑
j=0

αχ,jφR(Fj) =

r∑
j=0

αχ,j

( ∑
s∈Aj

Es

)
.

With these formulae note that

sii′ = 〈χi, φR(χi′)〉 =

〈
χi,
∑
j∈J

∑
s∈Aj

αχi′ ,jEs

〉
= χi(1)αχi′ ,m(i),

wherem(i) as above, is the unique index j ∈ J with i ∈ Aj . Therefore we see that Vi centralize Vi′

if and only if

αχi′ ,m(i) = χi′(1) ⇐⇒ χi′Fm(i) = χi′(1) ⇐⇒ Cm(i) ⊆ LKerA(Vi′). (4.1)

The equivalence of assertions (2) and (4) follows from [9, Theorem 3.6]. The rest of the
equivalences follow from the symmetry property of the centralizer. �

Remark 4.2. The above lemma also shows that if Vi centralizes Vi′ then Vi centralize all Vi′′

with i′′ ∈ Am(i′).

Next theorem is a generalization of Theorem 1.2.

4.1 Proof of Theorem 1.2

Proof. Using the previous lemma we have the following equalities:

O(Rep(A//L)′) =
⋂

M∈Irr(A//L)

O(〈M〉′) =
⋂

M∈Irr(A//L)

{
Vi | Cm(i) ⊆ LKerA(M)

}
=

{
Vi | Cm(i) ⊆

⋂
M∈Irr(A//L)

LKerA(M)

}
.

On the other hand by equation (2.3) one has that

∩M∈Irr(A//L)LKerA(M) = L

and therefore O(Rep(A//L)′) =
{
χi | Cm(i) ⊆ L

}
. �
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Another description of the simple objects of Rep(A//L)′ is given in the following:

Proposition 4.3. If (A,R) is a semisimple quasitriangular Hopf algebra then

O(Rep(A//L)′) = {χi |m(i) ∈ IL} = {χi |Fm(i)(ΛL) 6= 0}

for any left normal coideal subalgebra L of A.

Proof. By Theorem 1.2 one has thatO(Rep(A//L)′) =
{
χi | Cm(i) ⊆ L

}
, i.e., O(Rep(A//L)′) =

{χi |m(i) ∈ IL}. On the other hand by Lemma 2.7 one has that Cm(i) ⊆ L if and only if
Fm(i)(ΛL) 6= 0. �

Corollary 3.3 together with Theorem 1.2 gives the following:

Theorem 4.4. Let (A,R) be a quasitriangular semisimple Hopf algebra and L be a left normal
coideal subalgebra of A. For an irreducible representation Vi of A we have that the following
assertions are equivalent:

1) Vi ∈ O(Rep(A//L)′),

2) Cm(i) ⊆ L,

3) φR((A//L)∗) ⊆ LKerA(Vi).

4.2 Description of Φ(A)

As above denote by Φ(A) := φR(A∗) the image of the Drinfeld map.

Proposition 4.5. Suppose that (A,R) is a quasitriangular Hopf algebra and φR(F0) =
∑
i∈A0

Ei

where F0 = t is the idempotent integral of A∗. Then

1) Rep(A)′ = Rep(A//Φ(A)),

2) Irr(A//Φ(A)) = {χi | i ∈ A0},

3) Φ(A) =
⊕
j∈J
Cj.

Proof. By Theorem 1.1 one has that

Rep(A)′ = Rep(A//k)′ = Rep(A//φR(A∗)) = Rep(A//Φ(A)).

On the other hand, Theorem 1.2 gives the following equality

O(Rep(A)′) = O(Rep(A//k)′) =
{
χi | Cm(i) ⊆ k

}
=
{
χi | Cm(i) = k

}
.

It is easy to see that Cm(i) = k if and only if m(i) = 0. Indeed, Cm(i) = F(Fm(i)A
∗) =

Λ ↼ Fm(i)A
∗ and k = F(F0A

∗). Since F is bijective the statement follows. Therefore
O(Rep(A//Φ(A))) = O(Rep(A)′) = {χi |m(i) = 0} = {χi | i ∈ A0}.

For the last item note that O(Rep(A)) = O(Rep(A//Φ(A))′) =
{
χi | Cm(i) ⊆ Φ(A)

}
. This

implies that Φ(A) =
⊕

j∈J Cj . �
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4.3 Proof of Corollary 1.3

This is now a particular case of Theorem 1.2.

Proof. Note that if A is factorizable then φR is bijective and every set Aj is a singleton.
Moreover φR(F0) = E0, the integral of A in this case. Then, without loss of generality, after a
permutation of the indices, we may suppose φR(Fi) = Ei and therefore m(i) = i for all 0 ≤ i ≤ r.
Then the statement of Theorem 1.2 becomes Theorem 1.3. �

For the rest of this subsection we suppose that A is a semisimple factorizable Hopf algebra.
As explained above without loss of generality we may also assume φR(Fi) = Ei and therefore
that the function m : {0, 1, . . . , r} → {0, 1, . . . , r} is the identity map.

Proposition 4.6. Suppose that (A,R) is a semisimple factorizable Hopf algebra. Then for any
irreducible A-module Vi one has that

LKerA(Vi) =
⊕

{i′ |Vi′ centralize Vi}

Ci′ .

Proof. Since J = {0, 1, . . . , r} in this case, by equation (4.1) and [9, Theorem 3.6] one has that

χiFi′ = χi(1)Fi′ ⇐⇒ Ci′ ⊆ LKerA(Vi) ⇐⇒ Vi centralizes Vi′ .

It follows that in this case one has

LKerA(Vi) =
⊕

Ci′⊆LKerA(Vi)

Ci′ =
⊕

{i′ |Vi centralizes Vi′}

Ci′ . �

Remark 4.7.

1. From the previous proposition, in the case of a semisimple factorizable Hopf algebra one
can deduce that for any two irreducible characters χi and χi′ one has Ci′ ⊆ LKerA(Vi) ⇐⇒
Ci ⊆ LKerA(Vi′)

2. Recall that in [4, Theorem 1.4] it is shown that

O(Rep(A//K)′) = {χi |Fi(ΛK) 6= 0}

for any normal Hopf subalgebra K of a factorizable Hopf algebra A. Note that Propo-
sition 4.3 generalizes the above result from normal Hopf subalgebras K to left normal
coideal subalgebras L of A. It also drops the factorizability assumption on A.

Define CVi := Cχi ⊂ A∗ as the subcoalgebra of A∗ generated by χi. By [9, Lemma 4.2(i)], in
the factorizable case one has that φR(CVi) = Ci. for all 0 ≤ i ≤ r.

Remark 4.8. Let A be a semisimple factorizable Hopf algebra and L a left normal coideal
subalgebra of A. If D := Rep(A//L) then (A//L)∗ =

⊕
χj∈O(D)

CVj and L◦ = φR((A//L)∗) =⊕
χj∈O(D)

φR(CVj ), i.e., L◦ =
⊕

χj∈O(D)
Cj . This gives another proof for Theorem 1.3 in the case of

a factorizable Hopf algebra since in this case D′′ = D.
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5 Example H8

In this section we compute the centralizer of any fusion subcategory of the quasi-triangular
Hopf algebra H8, the unique semisimple non-trivial Hopf algebra of dimension 8. We note that
the category of representations Rep(H8) is a braided Tambara–Yamagami category and there-
fore Rep(H8) ⊂ Rep(D(H8)). The S-matrix of the center of a Tambara–Yamagami was com-
puted in [16]. Using this one can describe completely the centralizer of any fusion subcategory
of Rep(H8). However, we decided to include this example here to illustrate how Theorem 1.2
can be applied in a concrete example.

The eight-dimensional semisimple Hopf algebra (see [17, 23]) is generated by {x, y, z} subject
to the relations

x2 = y2 = z2 = 1, xz = zx, zy = yz, xyz = yx.

The comultiplication is given by

∆(x) = xe0 ⊗ x+ xe1 ⊗ y, ∆(y) = ye1 ⊗ x+ ye0 ⊗ y, ∆(z) = z ⊗ z, (5.1)

and the counit by ε(x) = ε(y) = ε(z) = 1. The antipode has the formulae

S(x) = xe0 + ye1, S(y) = xe1 + ye0, S(z) = z.

Based on equation (5.1) one can compute that

∆(xy) = xye0 ⊗ xy + xye1 ⊗ yx, ∆(yx) = yxe0 ⊗ yx+ yxe1 ⊗ xy.

It can also be checked that

∆(xz) = xe0 ⊗ xz − xe1 ⊗ yz, ∆(yz) = ye0 ⊗ yz − ye1 ⊗ xz.

Since z is a central element in H8, there are two central orthogonal idempotents:

e0 =
1

2
(1 + z), e1 =

1

2
(1− z).

5.1 Dual basis of H∗

H8 has a k-linear basis given by the set of elements {1, x, y, z, xy, yx, xz, yz}. We consider its
linear dual basis on H∗8 given by {p1, px, py, pz, pxy, pyx, pxz, pyz}.

It is easy to see that the idempotent integrals of H8 and H∗8 are given by

Λ =
e0
4

(1 + x+ y + xy) =
1

8
(1 + x+ y + xy + z + zx+ zy + yx), λ = p1.

5.2 H∗
8 representations

Since H8 is a self dual Hopf algebra [13] it has also four-1-dimensional representations given by
the group like elements of H8 and a 2-dimensional representation. One has that

G(H8) = {1, g1, g2, z},

with g1 = xy(e0 + ie1), g2 = xy(e0 − ie1). It can be easily checked that g1g2 = z, zgi = gi and
g2i = 1. Moreover, the set of central grouplike elements of H8 is given by Ḡ(H8) = {1, z}.
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5.2.1 On the 2-dimensional comodule

From equation (5.1) one can compute that

∆(xe0) = xe0 ⊗ xe0 + xe1 ⊗ ye1, ∆(xe1) = xe0 ⊗ xe1 + xe1 ⊗ ye0,
∆(ye0) = ye0 ⊗ ye0 + ye1 ⊗ xe1, ∆(ye1) = ye0 ⊗ ye1 + ye1 ⊗ xe0.

This shows that W = kw1 ⊕ kw2 is a left H8-comodule with the comodule structure given by

ρ(w1) = xe0 ⊗ w1 + xe1 ⊗ w2, ρ(w2) = ye1 ⊗ w1 + ye0 ⊗ w2.

Thus

H8 = k1⊕ kg1 ⊕ kg2 ⊕ kz ⊕ (kxe0 ⊕ kye1)⊕ (kye0 ⊕ kxe1) (5.2)

is a decomposition of H8 into simple left H8-comodules. We denote M0 = k1, M1 = kg1,
M2 = kg2, M3 = kz the four one-dimensional H∗8 -modules. Moreover, M4 := (kxe0 ⊕ kye1) is
an irreducible H∗8 -module and M4 'M5 := (kye0 ⊕ kxe1).

5.3 Fourier transform

Based on the comultiplication formulae one can compute the Fourier transform

F : H∗8 → H8, f 7→ dimk(H8)f ⇀ Λ.

After some computations it follows that under F one has

p1 7→ 1, pz 7→ z, px 7→ xe0 + ye1, pxz 7→ xe0 − ye1
and

py 7→ ye0 + xe1, pyz 7→ ye0 − xe1, pxy 7→ yx, pyx 7→ xy.

5.4 Irreducible H8-modules and their characters

H8 has four-1-dimensional modules V0, V1, V2, V3 and a 2-dimensional irreducible module V .
The action of the generators on these modules is given as follows.

For V0, the trivial H-module the action is given by xv = yv = zv = v and therefore the
character is given by

χ0 = p1 + pz + px + py + pxy + pyx + pxz + pyz.

For V1 the action is given by xv = −v, yv = v, zv = v. The character χ1 of V1 has χ1(1) =
χ1(z) = χ1(y) = χ1(yz) = 1, χ1(x) = χ1(yx) = χ1(xy) = χ1(xz) = −1. Thus

χ1 = p1 + pz − px + py − pxy − pyx − pxz + pyz.

For V2 the action is given by xv = −v, yv = −v, zv = v and the character is given by

χ2 = p1 + pz − px − py + pxy + pyx − pxz − pyz.

For V3 one has xv = v, yv = −v, zv = v and the character is given by

χ3 = p1 + pz + px − py − pxy − pyx + pxz − pyz.

For V4 = V , the 2-dimensional simple module, if V = kv1 ⊕ kv2 then the action of generators
given by

xv1 = v1, yv1 = v2, zv1 = −v1, xv2 = −v2, yv2 = v1, zv2 = −v2.

The character χ4 of V has the values χ4(1) = 2χ4(z) = −2, χ4(x) = χ4(y) = χ4(yx) = χ4(xy) =
χ4(xz) = χ4(zx) = 0. This gives that

χ4 = 2p1 − 2pz.
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5.4.1 Multiplication of the characters

It can be easily checked that χ2
4 =

3∑
i=0

χi, and χiχ4 = χ4χi = χi for all 0 ≤ i ≤ 3. Moreover

χiχj = χk if {i, j, k} = {1, 2, 3}.

5.5 Central primitive idempotent of the character ring

Based on the above multiplication, the central primitive idempotents of C(H8) can be computed
as follows

F0 =
1

8
(ε+ χ1 + χ2 + χ3 + 2χ4) = p1 is the integral of H∗8 ,

F1 =
1

4
(ε+ χ1 − χ2 − χ3) = py + pyz, F2 =

1

4
(ε− χ1 + χ2 − χ3) = pxy + pyx,

F3 =
1

4
(ε− χ1 − χ2 + χ3) = px + pxz, F4 =

1

8
(ε+ χ1 + χ2 + χ3 − 2χ4) = pz.

Note that F4 is the central primitive idempotent of H∗8 attached to the central grouplike element
z ∈ Ḡ(H8) := G(H8) ∩ Z(H8).

5.6 Conjugacy class sums of H8

Using the above formulae for the central primitive idempotents since Ci = 8
(
Λ ↼ Fi

)
it follows

that

C0 = 8(Λ ↼ F0) = 1, C1 = 8(Λ ↼ F1) = 2ye0,

C2 = 8(Λ ↼ F2) = xy + yx = g1 + g2,

and

C3 = 8(Λ ↼ F3) = 2xe0, C4 = 8(Λ ↼ F4) = z.

5.7 Description of the adjoint action

Using the antipode formulae one can see that the adjoint action of H8 on itself can be given by

x.a = xax, y.a = yay, z.a = a, for all a ∈ H8.

5.8 Conjugacy classes of H8

Recall that the conjugacy classes are simple D(H8)-modules [31]. We rewrite the decomposition
of H8 into left H8-comodules from equation (5.2) as follows

H8 = k1⊕ kz ⊕ (kg1 ⊕ kg2)⊕ (kxe0 ⊕ kye1)⊕ (kxe1 ⊕ kye0).

Moreover, by the above description of the left adjoint action it can be checked each of the above
five subspaces is closed under the adjoint action of H8.

Clearly, the first two subspaces are irreducible D(H8)-modules being one-dimensional. Since
C0 ∈ k1 and C4 = z ∈ kz we deduce that

C0 = k1, C4 = kz.

It can be checked directly that the third D(H8)-module is an irreducible D(H8)-module since

x.g1 = g2, x.g2 = g1, y.g1 = g2, y.g2 = g1.
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Since C2 = g1 + g2 = xy + yx it follows that

C2 = kg1 ⊕ kg2.

Similarly one can check that the simple H8-comodule M4 = kxe0⊕kye1 is an irreducible D(H8)-
module and since C3 = 2xe0 = x+ xz ∈M4 we can say that

C3 = kxe0 ⊕ kye1.

By the same argument

C1 = kxe1 ⊕ kye0.

5.9 Presentation of the central primitive idempotents of H8

The associated central primitive idempotents of V0, V1, V2, V3, V can be computed as

E0 =
e0
4

(1 + x+ y + xy) = Λ

is the central primitive idempotent of χ0, i.e., the idempotent integral ΛH8 of H8,

E1 =
e0
4

(1− x+ y − xy)

is the central primitive idempotent of χ1,

E2 =
e0
4

(1− x− y + xy)

is the central primitive idempotent of χ2,

E3 =
e0
4

(1 + x− y − xy)

is the central primitive idempotent of χ3,

E4 = e1

is the central primitive idempotent of χ4.

5.10 The R-matrix and the Drinfeld map

It is well-known that H8 is a semisimple quasitriangular Hopf algebra [23] with the R-matrix
given by

R =
1

2
(1⊗ 1 + g2 ⊗ 1 + 1⊗ g1 − g2 ⊗ g1).

It follows that

Q = R21R =
1

4
(1⊗ (1 + z + g1 + g2) + g1 ⊗ (1 + g1 − g2 − z)

+ g2 ⊗ (1− g1 + g2 − z) + z ⊗ (1− g1 − g2 + z).

5.10.1 The Drinfeld map on k-linear basis

One can compute that the Drinfeld map φR : H∗8 → H8, f 7→ f
(
Q1
)
Q2 is given by

p1 7→ ΛkG =
1

4
(1 + g1)(1 + g2) = e0,0, pz 7→

1

4
(1− g1)(1− g2) = e11,

pxy 7→
1

4
(1 + ig1 − ig2 − z), pyx 7→

1

4
(1− ig1 + ig2 − z), px, py, pxz, pyz 7→ 0.
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5.10.2 The Drinfeld map given on the central primitive idempotents
of the character ring

The following formulae hold for the Drinfeld map:

φR(F0) = E0 + E2, φR(F1) = φR(F3) = 0, φR(F2) = E4, φR(F4) = E1 + E3.

5.10.3 The map m and the subset J

It follows that in this case the subset J = {0, 2, 4} and the function m : {0, 1, 2, 3, 4} → J is
given by

m(0) = m(2) = 0, m(1) = m(3) = 4, m(4) = 2. (5.3)

Therefore φR(H∗8 ) = kG(H8) and by Proposition 4.5 one has

O(Rep(H8)
′) = {χi |m(i) = 0} = {χ0, χ2}.

5.11 Description of the centralizer based on the function m

In this subsection we describe the centralizer of any fusion subcategory of Rep(H8). For the
entire category, Rep(H8) this was done above.

There are two normal coideal subalgebras of H8 which are not Hopf subalgebras,

L1 = k〈1, z, ye0, xe1〉 = LKerH(V1)

and

L3 = k〈1, z, xe0, ye1〉 = LKerH(V3).

One has

L1 = C0 ⊕ C1 ⊕ C4, L2 = C0 ⊕ C3 ⊕ C4.

Theorem 2.10 gives that Rep(H8//LKerH8(Vi)) ' 〈Vi〉, the fusion subcategory of Rep(H8) gen-
erated by Vi. Using Theorem 1.2 it follows

Rep(A//L1)
′ =

{
χi | Cm(i) ⊆ L1

}
= {χi |m(i) ∈ {0, 1, 4}}.

By description of the function m from equation (5.3) it follows that

O(〈V1〉′) = {χ0, χ1, χ2, χ3}.

Similarly, one has that

O(〈V3〉′) = Rep(A//L3)
′ =

{
χi | Cm(i) ⊆ L3

}
= {χi |m(i) ∈ {0, 1, 3}}.

By description of the function m from equation (5.3) it follows that

O(〈V3〉′) = {χ0, χ1, χ2, χ3}.

Note that for the central linear character χ2 ∈ Z(H∗8 ) one has

L2 := LKerH(V2) = kG(H8) = C0 ⊕ C2 ⊕ C4.

As above, using Theorem 1.2 it follows

O(〈V2〉′) = {χi |m(i) ∈ {0, 2, 4}} = O(Rep(H8)).

On the other hand since 〈V4〉 = Rep(H8) Theorem 2.10 gives that L4 = LKerH8(V ) = k = C0.
Thus, using again Theorem 1.2 it follows that

O(〈V4〉′) = {χi |m(i) = 0} = {χ0, χ2} = O(Rep(H8)
′).

All the four one-dimensional centralize each other. V centralizes only χ2.



Representations and Conjugacy Classes of Semisimple Quasitriangular Hopf Algebras 19

5.11.1 On the first commutator and adjoint subcategory

One has that the first commutator of H8 is given by H ′8 = k〈1, z〉 and moreover, for this Hopf
algebra Cad = Cpt. Thus in this case

Cad′ = 〈V1, V2, V3〉′ =
3⋂
i=0

〈Vi〉′ = Cpt.
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[4] Burciu S., On a symmetry of Müger’s centralizer for the Drinfeld double of a semisimple Hopf algebra,
Math. Z. 279 (2015), 227–240, arXiv:1312.3152.
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