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1 Introduction

1.1 Abelian Galois theory via quantum statistical mechanics

The Bost–Connes system [11] provides the original model for the recasting of explicit class field
theory problems in the setting of classical or quantum statistical mechanics.

Basically, it starts with classical Mellin transforms of Dirichlet series of various arithmetic
origins, and represents them as calculations of statistical averages of certain observables as func-
tions of inverse temperature 1/kT (classical systems) or imaginary time it (quantum systems).
Here is a brief description of such systems relevant in the contexts of abelian extensions of
number fields (see [11] and [21, Chapter 3]).

One constructs the arithmetic noncommutative algebra AQ = Q[Q/Z] o N given by a semi-
group crossed product. One then passes to the associated C∗-algebra of observables with the time
evolution (A, σt). The algebra is A = C∗(Q/Z)oN = C

(
Ẑ
)
oN. The time evolution acts trivially

on the abelian subalgebra, σt|C∗(Q/Z) = Id, and nontrivially on the semigroup N: σt(µn) = nitµn,

where µn are the isometries in A corresponding to n ∈ N. The group G = Ẑ∗ acts as symme-
tries of the quantum statistical mechanical system (A, σt). There are covariant representations
π : A → B(H) on the Hilbert space H = `2(N), with eitHπ(a)e−itH = π(σt(a)), for a ∈ A and
t ∈ R, with Hamiltonian H, for which the partition function Z(β) = Tr

(
e−βH

)
= ζ(β) is the

Riemann zeta function. The extremal KMS equilibrium states ϕ ∈ E∞ at zero temperature,
when evaluated on elements of AQ, take values in the maximal abelian extension Qab (generated
by roots of unity) and intertwine the symmetries and the Galois action, θ(γ)ϕ(a) = ϕ(γa), for
γ ∈ Ẑ∗ = GL1

(
Ẑ
)

and ϕ ∈ E∞, with θ : Ẑ∗ → Gal
(
Qab/Q

)
the class field theory isomorphism.
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An interested reader will find much more details and basic references in [21, Chapter 3,
Section 2].

This construction of the Bost–Connes system was then generalized in [22, 36, 46, 63], to
the case of abelian extensions of arbitrary number fields. Given a number field K, there is an
associated quantum statistical mechanical system BCK with the properties that its partition
function is the Dedekind zeta function of K, and its symmetry group is the Galois group of
the maximal abelian extension Gal

(
Kab/K

)
. Moreover, there is an arithmetic subalgebra AK

with the property that evaluations of zero-temperature KMS states on elements of AK take
values in Kab, and intertwine the action of Gal(Kab/K) by symmetries of the quantum statistical
mechanical system with the Galois action on Kab.

Later, it was shown in [24, 25] that the quantum statistical mechanical system BCK completely
determines the number field K. Other generalizations of the Bost–Connes system were developed
for the abelian varieties related to 2-lattices and the Shimura variety of GL2 (see [20]), and for
more general Shimura varieties in [36] and abelian varieties in [62]. See also [21, Chapter 3] for
an overview of these arithmetic quantum statistical mechanical models.

1.2 Non-abelian Galois theory via quantum statistical mechanics

A natural further generalization of this program is a development of quantum statistical me-
chanical models for the action of the non-abelian absolute Galois group Gal

(
Q̄/Q

)
instead of its

abelianization Gal
(
Q̄/Q

)ab
= Gal

(
Qab/Q

)
as in the original Bost–Connes system. This devel-

opment is the main focus of the present paper. We will approach the problem from the point
of view of Belyi’s theorem and Grothendieck’s theory of dessins d’enfant, see [33] and further
articles in the same collection. See also the recent work [8, 32].

More concretely, whereas Gal
(
Q̄/Q

)ab
can be presented in terms of the profinite completion

of the fundamental group of P1 \{0,∞}, according to Grothedieck’s prophetic vision, Gal
(
Q̄/Q

)
might be similarly presented in terms the profinite completion of the fundamental group (or
rather groupoid) of P1 \ {0, 1,∞}. A decisive step in this direction was made by G. Belyi [6].
The semigroup N of the classical Bost–Connes system is replaced here by the semigroup of
Belyi-extending maps of [61].

The relation to the profinite fundamental groups mentioned above can be seen more explicitly

in the following way. The abelianization Gal
(
Q̄/Q

)ab
is isomorphic by the class field theory

isomorphism to Ẑ∗ and acts by automorphisms on the profinite completion Ẑ of the fundamental
group of P1 \ {0,∞}. On the other hand, the absolute Galois group Gal

(
Q̄/Q

)
has a faithful

action by automorphisms on the profinite completion F̂2 of the fundamental group of P1 \
{0, 1,∞}, as in of [41, Proposition 1.6] and Theorem 1 in the Appendix to the same paper. This
action is given on a set of generators x, y of F̂2 by x 7→ xχ(γ) and y 7→ f−1

γ (x, y)yχ(γ)fγ(x, y),

with χ : Gal
(
Q̄/Q

)
→ Ẑ∗ the cyclotomic character and fγ(x, y) are elements in the commutator

subgroup of F̂2 [41, Proposition 1.5]. These two actions are clearly compatible through the
cyclotomic character, since the action α ∈ Ẑ∗ on the profinite fundamental group of P1 \ {0,∞}
is just given by x 7→ xα.

Belyi’s theorem, Grothendieck’s program, and a construction of the respective versions of
Bost–Connes system will be described in the Section 2 of this paper. This section, however,
is mainly concerned with the combinatorics and enumeration of dessins d’enfant, rather than
Galois action upon the fundamental groupoid of P1 \ {0, 1,∞}. However, see Section 2.5 and
the following discussions, making explicit the fact that not all our constructions are purely
combinatorial ones that avoid an explicit use of Galois action upon dessins.

Our main motivation here is the fact that various Bost–Connes systems are practically
equivalent to the relevant enumerations of dessins d’enfant, and their behaviour formally is
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determined by asymptotic properties of the relevant enumerations and their generating func-
tions.

The broad idea behind our generalization of the Bost–Connes system from the abelianized to
the absolute Galois group can be summarized as obtained by replacing the Hopf algebra Q[Q/Z]
on roots of unity by a suitable Hopf algebra on dessins, and the action of the power maps
separating different orbits of roots of unity by the action of a semigroup of Belyi-extending
maps. However, expecting that the resulting quantum statistical mechanical system obtained in
this way will suffice to separate the different Galois orbits of dessins is probably too strong an
expectation, at least in its present form. We will show that one can see some of the new Galois
invariants of dessins introduced in [61] occurring in the low temperature KMS states of the
system, but some technical restrictions on the choice of the Belyi-extending maps, which will be
specified in Section 2, limit the effectiveness of these invariants at separating Galois orbits. It is
possible that using constructions from [8, 32], one may be able to obtain a more refined version
of the quantum statistical mechanical system presented here that bypasses this limitation.

The Hopf algebra formalism of dessins we discuss in Section 2 makes it possible, in principle,
to obtain new Galois invariants of dessins from known ones, by applying the formalism of Birkhoff
factorization, so that the new invariants depend not only on a dessin and its sub-dessins, but
also on associated quotient dessins. We illustrate this principle in Proposition 2.16 in the case
of Tutte and Bollobás–Riordan–Tutte polynomials.

Section 3 is dedicated to the absolute Galois action and its (partial) descriptions. Such de-
scriptions are centred around various versions of the Grothendieck–Teichmüller group. We start
with its formal definition in the Section 3.1, where this group appears together with its action
upon the Bost–Connes algebra and upon the relevant quantum statistical mechanical system.
In this environment, the Bost–Connes statistical mechanics becomes much more sensitive to the
arithmetics of the absolute Galois group, through its relation to the Grothendieck–Teichmüller
group, rather than through its action on dessins as in the choices surveyed in Section 2.

The last Section 3.10 presents, following [16], one of the avatars mGT of the Grothendieck–
Teichmüller group as the symmetry group of the genus zero modular operad introduced in [45]
and much studied afterwards.

Section 4 discusses the relation between the algebras of our quantum statistical mechanical
systems and Drinfeld’s quasi-triangular quasi-Hopf algebras [30, 31]. In particular, we show
that both the Bost–Connes algebra and our Hopf algebra of dessins d’enfant have an associated
direct system of quasi-triangular quasi-Hopf algebras obtained using Drinfeld’s twisted quantum
double construction [29].

2 Dessins and dynamics

Below we will use (with certain laxity) the language of graphs as it was described in [10].
A finite graph τ is a quadruple of data (Vτ , Fτ , δτ , jτ ) of finite sets Vτ of vertices and Fτ of

flags, a map ∂τ : Fτ → Vτ , and an involution jτ : Fτ → Fτ : j2
τ = id. For each vertex v ∈ Vτ , the

graph with flags ∂−1
τ (v) and trivial involution j is called the corolla of v in τ . If a graph has just

one vertex, it is called a corolla itself.
A geometric realisation of graph τ is a topological space of the following structure. If τ

is a non-empty corolla with vertex v, then its geometric realisation is the disjoint union of
segments whose components bijectively correspond to elements of Fτ modulo identification of
all points 0, which becomes the geometric realisation of v. Generally, consider the disjoint union
of geometric realisations of corollas of all vertices of τ , and then identify the endpoints of two
different flags, if these two flags are connected by the involution jτ . Sometimes one considers
the endpoint removed in the case of geometric realisations of all flags that are stationary points
of the involution.
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The pairs of flags, connected by involution, resp. their geometric realisations, are called edges
of τ , resp. their geometric realisations.

In order not to mix free flags with halves of edges, one may call a free flag a leaf, or a tail as
in [45].

The description of graphs in terms of flags with an involution is common especially in contexts
originating from physics where corollas represent possible interactions and one expects graph to
have both internal edges, namely pairs of different flags glued by the involution, and external
edges (leaves or tails), namely flags that are fixed points of the involution.

Among various types of labelings or markings of the sets Vτ , Fτ forming a graph, an important
role is played by orientations of flags. If two flags form an edge, their orientations must agree.
We often use oriented trees, in which one free flag is chosen as a root, and all other leaves are
oriented in such a way, that from each leaf there exists a unique oriented path to the root.

Below we will often pass in inverse direction: from the geometric realization of a graph to its
set-theoretic description. It should not present any difficulties for the reader.

2.1 Belyi maps and dessins d’enfant

Let Σ be a smooth compact Riemann surface. We recall the following definition (see [6, 33]).

Definition 2.1.

(i) A Belyi map f : Σ → P1(C) is a holomorphic map that is unramified outside of the set
{0, 1,∞}.

(ii) Dessin d’enfant D = Df of f is the preimage f−1([0, 1]) embedded in Σ and considered as
a marked graph in the following way.

Its set of vertices V (D) is the union f−1(0) ∪ f−1(1); each point in the preimage V1(D) =
f−1(1), resp. V0(D) = f−1(0), is marked white, resp. black. Such graphs are called bipartite
ones.

Its set of (open) edges E(D) consists of connected components of f−1(0, 1) of the preimage
of the unit interval I.

Each Σ is the Riemann surface of a smooth complex algebraic curve. The role of Belyi maps
in this context is determined by Belyi’s converse theorem [6]: each smooth complex algebraic
curve defined over subfield of algebraic numbers admits a Belyi map.

Grothendieck’s intuition behind introduction of dessins of such maps was the hope, that
action of the absolute Galois group upon the category of such algebraic curves would admit an
explicit description after the transfer of this action to dessins.

More precisely, in terms of branched coverings and Belyi maps f : Σ → P1, we can view the
Galois action of G = Gal

(
Q̄/Q

)
in the following way. In the connected case, consider the finite

extension Q̄(Σ) of the function field Q̄(t). The field Q̄(Σ) is given by Q̄(t)[z]/(P ) where P ∈
Q̄(t)[z] is an irreducible polynomial. An element γ ∈ G maps P 7→ Pγ where Pγ is the polynomial
obtained by action of γ on the coefficients of P (extending the action of γ to Q(t) by the identity
on t). Thus the action ofGmaps the extension Q̄(t)[z]/(P ) to Q̄(Σγ) := Q̄(t)[z]/(Pγ). The action
extends to the case where Σ is not necessarily connected, by decomposing the étale algebra of
the covering into a direct sum of field extensions as above. Correspondingly, the element γ ∈ G
maps the dessin D determined by the branched covering f : Σ → P1, or equivalently by the
extension Q̄(Σ) to the dessin γD determined by Q̄(Σγ).

Therefore we must first trace how the combinatorics of dessins encodes the geometry of their
Belyi maps.
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2.2 Geometry of Belyi maps vs combinatorics of dessins

(a) The number of edges d = #E(D) equals the degree of f : Σ→ P1(C)

(b) The numbers of black and white vertices m = #V0(D) and n = #V1(D) correspond to the
orders of ramification of f at 0 and 1.

(c) The numbers µ1, . . . , µm and ν1, . . . , νn of edges in the corollas around the black, resp.
white vertices, give the ramification profiles of f at 0 and 1. According to the degree sum
formula for bipartite graphs,

∑
i µi = d =

∑
j νj .

(d) In order to keep track of additional data of topology of embedding D = Df into Σ we must
endow D with cyclic ordering of flags at each corolla coming from the canonical orientation
of Σ. In other words, D must be considered as a bipartite ribbon graphs.

(e) The graph D is connected iff the covering is connected, or equivalently iff the étale algebra
of the covering is a field. The degree d is the dimension of the étale algebra of the covering
as a vector space over Q̄(t), in the connected case the degree of the field extension. The
group of symmetries of a connected dessin is the automorphism group of the extension,
which is a finite group of order at most equal to the degree d.

(f) Finally, for each bipartite ribbon graph D one can construct a Belyi map f such that
D = Df .

In order to see that, one can first construct a map of topological surfaces Σ′ → P1(C) with
desired properties, by working locally in a suitable covering of Σ′, and then endow Σ′ with the
complex structure lifted from P1(C).

2.3 Regular and clean dessins

For studying action of the Galois group, two subclasses of dessins d’enfant are especially inte-
resting.

(a) Regular dessins. A dessin is called regular one, if it is connected and if its symmetry group
is as large as possible: its cardinality equals to the degree d.

Regular dessins correspond to Galois field extensions. Geometrically, they correspond to
regular branched coverings where the deck group acts transitively on any fiber. Every connected
dessin admits a regular closure, which corresponds to the smallest extension that is Galois.

(b) Clean dessins. A dessin is called clean, if all its white vertices have valence two.

The clean dessins can be re-encoded to ribbon graphs that are not bipartite, by colouring all
its vertices black and then inserting valence two white vertices in the middle of each edge. This
was the class of dessins originally considered by Grothendieck. In terms of branched coverings
of P1(C) and Belyi maps, the clean dessins correspond to coverings whose ramification profile
over the point 1 is only of type (2, 2, . . . , 2, 1, . . . , 1), that is, they have either simple ramification
or no ramification.

Any dessin, not necessarily connected, whose all connected components are clean, will be
called locally clean.

2.4 Hopf algebras of dessins

(a) Locally clean dessins. We consider first the class CD of locally clean dessins re-encoded as
in Section 2.3(b). Isomorphism classes of such graphs can be used in order to construct
a Hopf algebra, which will serve as a generalization to ribbon graphs [52] of the Connes–
Kreimer Hopf algebra of renormalization in perturbative quantum field theory [19].
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We start by constructing a Hopf algebra HCD of locally clean dessins. As an algebra HCD
is the free commutative Q-algebra freely generated by isomorphism classes of clean dessins.
Locally clean dessins are identified with the monomials given by the products of their connected
components. More generally, if D is a clean design considered as ribbon graph on the black
vertices and δ ⊂ D is its proper subgraph, we can construct the quotient D/δ.

Combining these two constructions, we can construct the map

∆: HCD → HCD ⊗HCD, ∆(D) := D ⊗ 1 + 1⊗D +
∑
δ⊂D

δ ⊗D/δ.

An equivalent description of the coproduct is given in [52] in terms of surfaces. Let Σ denote
the Riemann surface determined by the dessin D. Consider open not necessarily connected
subsurfaces (Riemann surfaces with boundary) σ ⊂ Σ. To each such subsurface σ one can
associate a quotient Σ/σ and a closure σ̄. The quotient is the closed surface obtained by
replacing σ in Σ with a sphere with the same number of holes glued back into Σ in place of σ.
The closure σ̄ is obtained by adding boundary edges so that every sphere with holes in σ̄ has
the same number of boundary edges as it would have in Σ. The coproduct is then equivalently
written in terms of surfaces as [52]

∆(Σ) = Σ⊗ 1 + 1⊗ Σ +
∑
σ⊂Σ

σ̄ ⊗ Σ/σ.

This coproduct is shown in [52] to be coassociative.
The number of edges (which is equal to the degree of the Belyi map) is additive, #E(D) =

#E(δ)+#E(D/δ). One can consider the Hopf algebra as graded by this degree. The antipode on
a connected graded Hopf algebra is defined inductively by the formula S(X) = −X+

∑
S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗X +
∑
X ′ ⊗X ′′ with terms X ′ and X ′′ of lower degree.

(b) General dessins. This construction can be extended from clean dessins to all dessins in
the following way.

Definition 2.2. Let D be a connected dessin. A (possibly non-connected) sub-dessin δ consists
of a (possibly non-connected) subgraph of D which is bipartite.

We consider δ as endowed with internal and external edges: the internal edges are the edges
between vertices of the subgraph and the external edges (flags) are half-edges for each edge in D
with one end on the subgraph δ and the other on some vertex in D r δ. We endow δ with
a ribbon structure where the corolla of each vertex (including both internal and external edges)
has a cyclic orientation induced from the ribbon structure of D.

In the following, with a slight abuse of notation, we will use the notation δ ⊂ D for the
sub-dessin with or without the external edges included, depending on context. In each case the
graph δ is bipartite and with a ribbon structure induced by D. We describe how to obtain a
quotient dessin in this more general case, and we then discuss the corresponding possible choices
of grading of the resulting Hopf algebra.

Lemma 2.3. Let D be a connected dessin and δ ⊂ D a sub-dessin as in Definition 2.2. There
is a quotient bipartite graph D/δ, obtained by shrinking each component of δ to a bipartite graph
with one white and one black vertex and a single edge, for which any choice of a cyclic ordering
of the boundary components of a tubular neighborhood of δ in Σ determines a ribbon structure,
making D/δ a dessin.

Proof. We need to check that the graph D/δ is indeed still a dessin, namely that it is bipartite
and has a ribbon structure, and that these are compatible with those of the initial dessin D and
of the subdessin δ.
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The dessin structure on the quotient D/δ is obtained by the following procedure. First label
all the external half edges of δ with black/white labels according to whether they are attached
to a black or white vertex of δ.

Forgetting temporarily the bipartite structure, consider then the quotient graph, which we
denote by D//δ, obtained by shrinking each connected component of the subgraph δ to a single
vertex, but with the edges of D//δ out of these quotient vertices retaining the black/white labels
coming from the bipartite structure.

Consider a small tubular neighborhood of the subgraph δ on the surface Σ where D is
embedded and consider its boundary components: endow the corollas of the quotient vertices
in D//δ with a cyclic structure obtained by listing the half edges in the order in which they are
met while circling around each of the boundary components (in an assigned cyclic order) in the
direction induced by the orientation of Σ.

Because of the black/white labels of the external edges of δ, the cyclic ordering of half-edges
around each quotient vertex in D//δ can be seen as a shuffle of two cyclically ordered sets of
black and white labelled half-edges: separate out each quotient vertex into a black and a white
vertex connected by one edge, with the cyclically ordered black half-edges attached to the black
vertex and the cyclically ordered white half-edges attached to the white vertex. The resulting
graph D/δ obtained in this way is bipartite and has a ribbon structure, hence it defines a
quotient dessin. The ribbon structure defined in this way depends on the assignment of a cyclic
ordering to the boundary components of a tubular neighborhood of δ in Σ. �

We can again reformulate the construction of the quotient dessins D/δ in terms of the sur-
faces σ and Σ/σ as above [52]. Although the formulation we gave above in terms of graphs is
more explicit, an advantage of the reformulation in terms of surfaces we discuss below is that
it explains the definition of the ribbon structure on D/δ used in Lemma 2.3 in a more natural
way as follows.

Corollary 2.4. The ribbon structure on D/δ can be equivalently described by considering D/δ
embedded in the surface Σ/σ, for σ the sub-surface with boundary σ ⊂ Σ containing δ, with
the external edges of δ cutting through the components of ∂σ. Each cyclic orientation of the
components of ∂σ determines a ribbon structure on D/δ.

Proof. An open subsurface σ of Σ containing δ, with the property that the external edges of δ
pass through the boundary curves ∂σ is equivalent, up to homotopy, to a tubular neighborhood
of δ in Σ with its boundary curves. We can assume for simplicity that δ, hence σ, are connected.
Thus, a choice of a cyclic ordering of the boundary curves of such a tubular neighborhood is
equivalent to the choice of a cyclic ordering of the components of ∂σ. The quotient bipartite
graph D/δ is contained in the surface Σ/σ obtained by gluing a sphere with the same number
of punctures to the boundary ∂(Σ r σ) = ∂σ, with the bipartite graph with one black and one
white vertex and the same external edges of δ contained in this sphere, with the same external
edges cutting through the same boundary components as in the case of δ in σ. If δ has multiple
connected components, and σ has correspondingly multiple components, then the same can
be argued componentwise, when each component of σ is replaced by a sphere with the same
boundary in Σ/σ with each of these spheres containing a bipartite graph with one black and one
white vertex and the number of external edges of the corresponding component of δ. We see in
this way that the procedure for the construction of the ribbon structure on D/γ described in
Lemma 2.3 is the same as the one described here. �

As the result, we obtain another commutative connected Hopf algebra HD with involution,
with a grading that is again expressible in terms of the number of edges (the degree of the
respective Belyi map), as follows.
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Lemma 2.5. Any of the functions defined on connected dessins as follows defines a good grading
of the Hopf algebra HD,

deg(D) =


b1(D) or

#E(D)− 1 or

#V (D)− 2.

(2.1)

Proof. The degree defined with any of the options in (2.1) for connected dessins extends ad-
ditively to monomials in HD (multi-connected dessins) so that one obtains, respectively, b1(D),
#E(D) − b0(D), and #V (D) − 2b0(D). With the construction of the quotient dessin D/δ of
a subdessin δ ⊂ D as in Lemma 2.3, we have #V (D) = #V (δ)+#V (D/δ)−2b0(δ) and #E(D) =
#E(δ)+#E(D/δ)−b0(δ), hence b1(D) = 1−#V (D)+#E(D) = 1−#V (δ)−#V (D/δ)+2b0(δ)+
#E(δ)+#E(D/δ)−b0(δ) = b0(δ)+#E(δ)−#V (δ)+1+#E(D/δ)−#V (D/δ) = b1(δ)+b1(D/δ).
Thus, in all three cases of (2.1) we obtain deg(D) = deg(δ) + deg(D/δ). �

The gradings of Lemma 2.5 are the analogs for dessins of the choices of gradings for the
original Connes–Kreimer Hopf algebra of graphs by either loops b1(Γ), or internal edges #E(Γ)
or by #V (Γ) − 1 (for connected graphs, extending to #V (Γ) − b0(Γ) for monomials). Here
all the choices of grading in Lemma 2.5 have a direct interpretation in terms of Belyi maps,
since #E(D) is the degree of the Belyi maps and #V (D) is the sum of the orders of ramification
at 0 and 1.

The coassociativity of the coproduct (2.2) is the only property that needs to be verified to
ensure that indeed we obtain a Hopf algebra, as all the other properties are clearly verified.
The argument for the coassociativity is similar to the case of the Conner–Kreimer Hopf algebra,
with some modifications due to the different definition of the quotient graph that we used in
Lemma 2.3. We present the explicit argument for the reader’s convenience.

Proposition 2.6. As an algebra HD is the commutative polynomial Q-algebra in the connected
dessins. The coproduct on HD is given by

∆(D) = D ⊗ 1 + 1⊗D +
∑
δ⊂D

δ ⊗D/δ, (2.2)

where now the sum is over the sub-dessins defined as in Definition 2.2 and also over all the
possible ribbon structures on the corresponding quotients, defined as in Lemma 2.3. Then HD
is a graded connected Hopf algebra, with the grading by #E(D) − b0(D), where #E(D) is the
number of edges (the degree of the Belyi map).

Proof. We just need to show that ∆ is coassociative. The antipode is then constructed induc-
tively as before. It suffices to check the identity (∆ ⊗ id)∆ = (id ⊗∆)∆ on a single connected
dessin D. We have (∆⊗ id)∆(D) =

∑
δ⊆D

∆(δ)⊗D/δ. If δ is multiconnected, ∆(δ) is the product

of ∆(δj) over the connected components δj , since ∆ is an algebra homomorphism. We have
∆(δ) =

∑
δ′⊆δ

δ′ ⊗ δ/δ′, where in the case where δ has multiple connected components the sub-

dessin δ′ of δ consists of a collection of a subdessin of each component. Similarly, in the quotient
dessin δ/δ′ we can perform the quotient operation of Lemma 2.3 separately on the components
of δ, so that the resulting δ/δ′ is a product of the quotients over each component. The bipartite
and ribbon structure of δ′ are the same with respect to δ as they are with respect to D, since
the set of external edges of δ′ in δ are either external lines in δ or internal edges of δ that define
external lines in δ′ and in each case these would also occur as external lines of δ′ in D. Thus we
have (∆⊗id)∆(D) =

∑
δ′⊆δ⊆D

δ′⊗δ/δ′⊗D/δ. We also have (id⊗∆)∆(D) =
∑
δ′⊆D

δ′⊗∆(D/δ′). As
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subgraphs and quotient graphs we have ∆(D/δ′) =
∑

δ′⊆δ⊆D
δ/δ′ ⊗D/δ (see [21, Theorem 1.27]).

Thus, we need to check that this identification is also compatible with the bipartite and the
ribbon structures. The identification above depends on identifying subgraphs δ̃ ⊆ D/δ′ with
subgraphs δ ⊆ D with δ′ ⊆ δ. Given such a δ with δ′ ⊆ δ ⊆ D one obtains δ̃ from δ with
the quotient procedure described in Lemma 2.3, which determines the bipartite and ribbon
structure on δ̃ and every δ̃ ⊆ D/δ′ is obtained in this way from a unique δ ⊆ D with δ′ ⊆ δ,
with δ̃ = δ/δ′. �

Each of the Hopf algebras H = HCD or HD determines the respective affine group scheme
G = GCD or GD whose Q̄-points are morphisms of Q-algebras H → Q̄ and multiplication is
defined by φ1 ∗ φ2(X) = (φ1 ⊗ φ2)∆(X), with inverse φ−1 = φ ◦ S given by composition with
the antipode.

2.5 Hopf algebra and Galois action

We want to make the construction described above of the Hopf algebra HD of dessins compatible
with the Galois action. This would mean requiring that, for all γ ∈ Gal(Q̄/Q) we have ∆(γD) =∑
γδ⊗ γD/δ. The condition is satisfied if we have an identification of the class of images γδ of

subdessins δ ⊂ D with the class of subdessins of γD and an identification of the images of the
quotient dessins γD/δ with the quotients γD/γδ. When we consider in the construction of the
coproduct ∆(D) of HD all the possible choices of subdessins δ and quotient dessins D/δ, defined
as in Lemma 2.6, we are also including pairs {δ,D/δ} that are not necessarily compatible with the
Belyi map and the Galois action on the Belyi maps, for which the required identifications need
not hold. We can see this by considering the following example, based on of [47, Example 2.2.15].

Lemma 2.7. The dessins A and B shown in the figure are in the same Galois orbit. The
subdessins δA and δB circled in the figure are also in the same Galois orbit (which in this case
consists of a single element). However, the quotients A/δA and B/δB do not belong to the same
Galois orbit.

Proof. The circled subgraph δB of B is the only subdessin in the same Galois orbit of the
subgraph δA of A since the action of the Galois group is trivial on trees with less than five edges.
The quotient dessins A/δA and B/δB, however, are not in the same Galois orbit since they have
different vertex degrees (a Galois invariant). �

This problem can be corrected by only considering, in the construction of the coproduct ∆(D)
of the Hopf algebra, certain pairs {δ,D/δ} of subdessins and quotient dessins that behave well
with respect to the Galois orbit.
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Definition 2.8. A balanced pair {δ,D/δ} for a dessin D is a pair of subdessin and quotient
dessin with the property that for γ ∈ Gal(Q̄/Q) the pair {γδ, γD/δ} is a pair of a subdessin and
a quotient dessin for γD. A subdessin δ ⊂ D is strongly balanced if for all subdessins δ′ ⊆ δ the
pair {δ′, D/δ′} is balanced. Let B(D) denote the set of strongly balanced subsessins.

Example 2.9. The subdessins circled in the figure are an example of strongly balanced sub-
dessins. Both have quotient dessin the bipartite line with three white and three black vertices.
All their subdessins consist of either a single edge with a white and a black vertex, or two edges
with a common black vertex and two white vertices. In the first case the quotient dessin is
just A or B itself and in the second case the quotients are given by two tree dessins on six edges
that are in the same Galois orbit.

Note that the balanced property depends on the entire Galois orbit of D not just on D itself,
hence the set B(D) of strongly balanced pairs is associated to all dessins D in the same orbit.
The coproduct of the Hopf algebra HD is then modified by summing in (2.2) only over the
strongly balanced subdessins δ, with each appearing once in the coproduct,

∆(D) = D ⊗ 1 + 1⊗D +
∑

δ∈B(D)

δ ⊗D/δ. (2.3)

In the following we just write for simplicity of notation ∆(D) =
∑
B(D)

δ⊗D/δ with the primitive

part D ⊗ 1 + 1⊗D implicitly included in the sum.

Lemma 2.10. The restriction (2.3) of the coproduct to the strongly balanced subdessins main-
tains the coassociativity property.

Proof. We have (∆ ⊗ id)∆(D) =
∑

δ∈B(D)

∆(δ) ⊗ D/δ and ∆(δ) =
∑

δ′∈B(δ)

δ′ ⊗ δ/δ′. Because of

the strongly balanced conditions B(D) and B(δ), for δ′ ⊂ δ we have both γD/δ′ = γD/γδ′ and
γδ/δ′ = γδ/γδ′. Thus, the pair (δ/δ′, D/δ′) with D/δ′ = (D/δ)/(δ/δ′) is a balanced pair for D/δ,
and in fact strongly balanced, since any subdessin of δ/δ′ can be identified with a δ/δ′′ for some
subdessin δ′′ ⊂ δ. Thus, the rest of the argument of Proposition 2.6 continues to hold. �

We still denote by G the affine group scheme dual to the Hopf algebra HD endowed with the
coproduct (2.3).

Proposition 2.11. The action of the absolute Galois group G = Gal
(
Q̄/Q

)
passes through the

automorphism group scheme Aut(G) of the affine group scheme G.

Proof. It suffices to show that the G-action on dessins induces an action on H by bialgebra
homomorphisms. The compatibility with the multiplication is clear since on non-connected
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dessins the action of G is defined componentwise, so γ(D1 ·D2) = γD1 · γD2. The compatibility
with comultiplication ∆(γD) =

∑
δ⊆D

γδ⊗γD/δ requires the identification of the class of images γδ

of subdessins δ ⊂ D with the class of subdessins of γD and the identification of the images of
the quotient dessins γD/δ with the quotients γD/γδ. This is ensured by the balanced condition
on the pairs {δ,D/δ} introduced in the coproduct (2.3). Thus, elements γ ∈ G act as bialgebra
homomorphisms on H. The compatibility S ◦ γ = γ ◦ S with the antipode S then follows for
a general bialgebra homomorphism, hence they are automorphisms of the Hopf algebra H and
dually of the affine group scheme G. �

2.6 Rota–Baxter algebras and Birkhoff factorization

Let R be a commutative algebra. A structure of Rota–Baxter algebra of weight −1 on it is given
by a linear operator T : R → R satisfying the Rota–Baxter relation of weight −1:

T (xy) + T (x)T (y) = T (xT (y)) + T (T (x)y). (2.4)

The ring of Laurent series with T given by the projection onto the polar part is the prototype
example of a Rota–Baxter algebra of weight −1. The Rota–Baxter relation (2.4) ensures that
the range R+ = (1 − T )R is a subalgebra of R, not just a linear subspace, and R− = TR as
well.

Consider now R-valued characters of, say, HD.
The Birkhoff factorization φ = (φ− ◦ S) ? φ+ of a character φ ∈ HomAlg(HD,R) is defined

inductively by the formula

φ−(x) = −T (φ(x) +
∑

φ−(x′)φ(x′′)),

φ+(x) = (1− T )(φ(x) +
∑

φ−(x′)φ(x′′)),

where ∆(x) =
∑
x′ ⊗ x′′ in Sweedler notation. The factors φ± are algebra homomorphisms

φ± ∈ HomAlg(HD,R±).
In the case where the Rota–Baxter algebra is an algebra of Laurent power series with the

operator T given by projection onto the polar part, the evaluation at 0 of the positive part φ+ of
the Birkhoff factorization has the effect of killing the polar part, hence it achieves renormaliza-
tion, see [19]. Such a systematic deletion of “divergences” (at least, formal ones) is used in the
Connes–Kreimer algebraic theory of renormalization in quantum field theory [19]. For a general
introduction to Rota–Baxter algebras and their properties see [35]. In our context, formal sums
over dessins d’enfant with weights defining partition functions are only formal series because
“there are too many” such dessins, so that divergences should be deleted by renormalization.
This will be achieved through a deformation of our quantum statistical mechanical system,
which we introduce in Section 2.14, rather than through a Birkhoff factorization procedure.
Birkhoff factorizations, however, have other interesting applications besides the elimination of
divergences in quantum field theory. As shown in [56] in the context of computation, Birkhoff
factorization can be used to enrich invariants of a graph by compatibly combining invariants of
subgraphs and quotient graphs. The reason why we are considering them here is similar to the
applications considered in [56], namely as a method for constructing new Galois invariants of
dessins, as we show in the following.

Lemma 2.12. The action φ 7→ γφ of G = Gal
(
Q̄/Q

)
on the group-scheme GD is compatible

with the Birkhoff factorization, in the sense that (γφ)± = γ · φ±.

Proof. The action of G on GD is determined by the action of G on HD by Hopf algebra
homomorphisms. We have ∆(γx) =

∑
γx′⊗γx′′. Thus we obtain φ±(γx) as either −T or 1−T
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applied to φ(γx) +
∑
φ−(γx′)φ(γx′′). This consistently defines γφ±(x) as φ±(γx) compatibly

with the action of G on Hom(HD,R±).

Lemma 2.13. The action of the Galois group G = Gal
(
Q̄/Q

)
by Hopf algebra homomorphisms

of HD determines a Hopf ideal and a quotient Hopf algebra HD,G.

Proof. Consider the ideal ID,G of the algebra HD generated by elements of the form D−γD for
D ∈ D and γ ∈ G. To see that ID,G is a Hopf ideal notice that we have ∆(D)−∆(γD) =

∑
δ′⊗

δ′′−
∑
γδ′⊗γδ′′ =

∑
(δ′−γδ′)⊗δ′′+

∑
γδ′⊗(δ′′−γδ′′) hence ∆(ID,G) ⊂ ID,G⊗HD+HD⊗ID,G.

Since ID,G is a Hopf ideal, it defines a quotient Hopf algebra HD,G = HD/ID,G. �

Characters in HomAlg(HD,G,R) with R a commutative algebra over Q are R-valued Galois
invariants of dessins that satisfy the multiplicative property φ(D · D′) = φ(D)φ(D′) over con-
nected components. The following is then an immediate consequence of the previous statements.

Proposition 2.14. Given a Galois invariant of dessins φ ∈ HomAlg(HD,G,R), where (R, T )
is a Rota–Baxter algebra of weight −1, the Birkhoff factorization φ = (φ− ◦ S) ? φ+ determines
new Galois invariants φ± ∈ HomAlg(HD,G,R±).

One should regard the Galois invariants φ± constructed in this way as a refinement of the
Galois invariant φ in the sense that they do not depend only on the value of φ on D, but also
inductively on the values on all the subdessins δ and the quotient dessins D/δ, hence for example
they can potentially distinguish between non-Galois conjugate dessins with the same value of φ,
but for which the invariant φ differs on subdessins or quotient dessins.

2.7 New Galois invariants of dessins from Birkhoff factorization

We discuss here a simple explicit example, to show how the formalism of Rota–Baxter algebras
and Bikrhoff factorizations recalled in the previous subsection can be used as a method to
construct new Galois invariants of dessins.

We start by considering a known invariant of dessins with values in a polynomial algebra.
This is given by the 2-variable Tutte polynomial, as well as its 3-variable generalization, the
Bollobás–Riordan–Tutte polynomial of [9] defined for ribbon graphs. Both can be applied to
dessins D and we will show in Lemma 2.15 that both are Galois invariants of dessins. We also
consider some possible specializations of these polynomials, related to the Jones polynomial,
as discussed in [26]. As already discussed in [2, 3] in the context of the Connes–Kreimer Hopf
algebra of Feynman graphs, such invariants derived from the Tutte polynomial can be regarded
as “algebraic Feynman rules”, which simply means characters of the Hopf algebra H: homomor-
phisms of commutative algebras from H to a commutative algebra R of polynomials (Tutte and
Bollobás–Riordan case) or of Laurent polynomials (Jones case).

We then consider a Rota–Baxter structure of weight −1 on the target algebra of polynomials
or of Laurent polynomials and use the Birkhoff factorization formula to obtain new Galois
invariants of dessins.

The main point of this construction in our environment is not just subtraction of divergences:
the intended effect is to introduce new invariants that are sensitive not only to D itself but that
encode in a consistent way (where consistency is determined by the Rota–Baxter operator) the
information carried by all the sub-dessins δ and the quotient dessins D/δ as well.

The Tutte polynomial of a graph is determined uniquely by a deletion-contraction relation
and the value on graphs consisting of a set of vertices with no edges, to which the computation
reduces by repeated application of the deletion-contraction relation. It can also be defined by
a closed “sum over states” formula

PD(x, y) =
∑
δ⊂D

(x− 1)b0(δ)−b0(D)(y − 1)b1(δ), (2.5)
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where here the sum is over all subgraphs δ ⊂ D with the same set of vertices V (δ) = V (D) but
with fewer edges E(δ) ⊂ E(D).

The Bollobás–Riordan–Tutte polynomial is defined for an oriented ribbon graph. It can also
be characterised in terms of a deletion-contraction relation or in terms of a state-sum formula,
which generalizes (2.5) in the form

BRD(x, y, z) =
∑
δ⊂D

(x− 1)b0(δ)−b0(D)(y − 1)b1(δ)zb0(δ)+b1(δ)−f(δ), (2.6)

with f(δ) the number of faces of the surface embedding of δ. Note that here, for consistency
with (2.5), we used y − 1 instead of y in the analogous formula of [9]: switching to the y − 1
variable is also advocated in the last section of [9] for symmetry reasons.

As shown in [26, Theorem 5.4], the specialization of the Bollobás–Riordan–Tutte polynomial

t2−2#V (D)+#E(D)BRD
(
−t4, 1− t−2

(
t2 + t−2

)
,
(
t2 + t−2

)2)
gives the Kauffman bracket (for a link projection whose associated connected ribbon graphs
is D). It is similarly known that the Jones polynomial is obtained from the 2-variable Tutte
polynomial by specializing to PD(−t,−1/t). The specialization to the diagonal PD(t, t) of the
Tutte polynomial, on the other hand, gives the Martin polynomial [59]. Such 1-variable special-
izations, with values in polynomials or Laurent polynomials, are also invariants of dessins D.

Lemma 2.15. The Tutte polynomial PD(x, y) is a Galois invariant of dessins D, namely
PγD(x, y) = PD(x, y) for all γ ∈ G = Gal

(
Q̄/Q

)
. Similarly, the Bollobás–Riordan–Tutte poly-

nomial BRD(x, y, z) is a Galois invariant of dessins D.

Proof. Note that if D is a dessin, then the quantities b0(D), #E(D) = d and #V (D) = m+ n
are Galois invariants and so is b1(D) by the Euler characteristic formula. For γ ∈ G = Gal

(
Q̄/Q

)
we then have

PγD(x, y) =
∑
δ′⊂γD

(x− 1)b0(δ′)−b0(D)(y − 1)b1(δ′).

As in Proposition 2.11, we can argue that the set of subgraphs δ′ ⊂ γD with V (δ′) = V (γD) and
E(δ′) ⊂ E(γD) can be identified with the set of subgraphs γδ where δ ranges over the subgraphs
of D with V (δ) = V (D) and E(δ) ⊂ E(D). Thus, we get

PγD(x, y) =
∑

γδ⊂γD
(x− 1)b0(γδ)−b0(D)(y − 1)b1(γδ) = PD(x, y),

since b0(γδ) = b0(δ) and b1(γδ) = b1(δ). The case of the Bollobás–Riordan–Tutte polynomial
BRD(x, y, z) is similar: we only need to verify that the number of faces f(D) of the embedding
of D in Σ is also a Galois invariant. This is the case (see also Lemma 2.48 below) since by the
Riemann–Hurwitz formula χ(Σ) = −d + m + n + r, where the degree d and the ramification
indices m, n, r at 0, 1, ∞ are all Galois invariants. Writing χ(Σ) = #V (D) −#E(D) + f(D)
then shows f(D) is also a Galois invariant. �

Note that, as shown explicitly by the state-sum formulae (2.5) and (2.6), these invariants are
only sensitive to simple Galois invariants such as b0, b1, for subdessins δ ⊂ D. However, when
we apply to this invariant the Birkhoff factorization procedure we obtain more refined invariants
that also depend on the quotient dessins D/δ.

We now discuss Rota–Baxter structures. In the case of specializations to Kauffman brackets
and Jones polynomials, which take values in the algebra R of one-variable Laurent polynomials,



14 Yu.I. Manin and M. Marcolli

we can use the Rota–Baxter operator T of weight −1 given by projection onto the polar part.
In the case of Tutte and Bollobás–Riordan–Tutte polynomials with values in a multivariable
polynomial algebra, we can consider a Rota–Baxter operator built out of the following Rota–
Baxter structure of weight −1 on the algebra of polynomials, applied in each variable. As shown
in [34], the algebra R = Q[t] with the vector space basis given by the polynomials

πn(t) =
t(t+ 1) · · · (t+ n− 1)

n!
, (2.7)

for n ≥ 1 and π0(t) = 1, is a Rota–Baxter algebra of weight −1 with the Rota–Baxter operator T
given by the linear operator defined on this basis by

T (πn) = πn+1.

In the case of multivariable polynomials, Rota–Baxter structures of weight−1 can be constructed
using the tensor product in the category of commutative Rota–Baxter algebras described in [13].

Proposition 2.16. Let φ ∈ HomAlgQ(HD,R) be either the Tutte or Bollobás–Riordan–Tutte
polynomial or one of its specializations to Kauffman bracket or Jones polynomial or Mar-
tin polynomial. Let R be endowed with the Rota–Baxter operator T of weight −1 as above.
Then the Birkhoff factorization φ = (φ− ◦ S) ? φ+ determines new Galois invariants φ± ∈
HomAlgQ(HD,G,R±) which depend on both the strongly balanced subdessins δ ⊂ D and their
quotient dessins D/δ.

Proof. We discuss explicitly only the one-variable cases of the Martin polynomial specialization
PD(t, t) and the Jones polynomial specialization PD(−t,−1/t) of the Tutte polynomial. The
other cases are not conceptually different but computationally more complicated. For the Jones
specialization PD(−t,−1/t) is a Laurent polynomial and we use the Rota–Baxter operator T of
projection onto the polar part. We obtain two new invariants PD,± with PD,+(t) a polynomial
in t and PD,−(u) a polynomial in u = 1/t given by

PD,−(1/t) := −T (PD(−t,−1/t) +
∑

δ∈B(D)

Pδ,−(1/t)PD/δ(−t,−1/t)),

PD,+(t) := (1− T )(PD(−t,−1/t) +
∑

δ∈B(D)

Pδ,−(1/t)PD/δ(−t,−1/t)).

In the case of the Martin specialization PD(t, t) of the Tutte polynomial, let πn be the linear
basis of Q[t] as in (2.7) and let

PD(t, t) =
∑
n≥0

an(D)πn(t)

be the expansion in this basis of the Martin polynomial. Let um,n,k ∈ Q be the combinatorial
coefficients satisfying πnπm =

∑
k u(m,n, k)πk. The Rota–Baxter operator in this case is the

linear map T (πn) = πn+1 so that T (PD(t, t)) =
∑
n≥1

an−1(D)πn. In this case, the new invari-

ants PD,±(t) obtained from the Birkhoff factorization are polynomial invariants of the form

PD,±(t) :=
∑
k≥0

a±k (D)πk(t),

a−k (D) := ak−1(D) +
∑
δ

∑
m,n

a−m(δ)an(D/δ)um,n,k−1,

a+
k (D) := (ak(D)− ak−1(D)) +

∑
δ

∑
m,n

a−m(δ)an(D/δ)(um,n,k − um,n,k−1).
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This shows explicitly how passing from the coefficients an(D) to the coefficients a±n (D) incor-
porates the information on the Galois invariants of all the quotient dessins D/δ as well as
sub-dessins δ in a combination dictated by the specific form of the Rota–Baxter operator. �

2.8 The semigroup of Belyi-extending maps

Belyi-extending maps were introduced in [61] as a way to obtain new Galois invariants for the
action of the absolute Galois group on dessins d’enfant. They consist of maps h : P1 → P1, defined
over Q, ramified only at {0, 1,∞}, and mapping {0, 1,∞} to itself. In particular, they have the
property that, if f : Σ→ P1 is a Belyi map, then the composition h ◦ f is still a Belyi map. This
defines an action of the semigroup of Belyi-extending maps on dessins, which commutes with
the action of G = Gal(Q̄/Q).

In the following, we will denote by E the semigroup of Belyi-extending maps with the op-
eration of composition. We define the product in E as η1 · η2 = η2 ◦ η1, for the convenience of
writing semigroup homomorphisms rather than anti-homomorphism later in this section, since
the action of E on Belyi maps will be by composition on the right.

Notice that the semigroup N of self maps of Gm (extended to self maps of P1 ramified
at 0 and ∞), used in [17] for the construction of the Bost–Connes endomotive can be seen as
a subsemigroup of the semigroup E of Belyi-extending maps.

We can in principle consider two different versions of the semigroup E , one as in [61], where
we consider all Belyi-extending maps (mapping the set {0, 1,∞} into itself), and one where
we consider only those Belyi-extending maps that map it to itself. The first choice has the
advantage of giving rise to a larger set of new Galois invariants of dessins. In particular, the
only known example of a Belyi-extending map separating Galois-orbits, as shown in [61], does
not satisfy the more restrictive condition. In the more restrictive class one can always assume,
up to a change of coordinates on P1, that a Belyi-extending map sends the points 0, 1, ∞ to
themselves. In each isomorphism class there is a unique representative with this property. This
assumption is convenient when one considers dynamical properties under compositions, see for
instance [5]. The main construction we discuss works in both settings, but some statements
will depend on choosing the more restrictive class of Belyi-extending maps, as we will see in the
following subsections. We will state explicitly when this choice is needed.

Note that, in principle, one could also consider a larger semigroup EQ̄ consisting of all Belyi
maps of genus zero mapping {0, 1,∞} into itself. The construction of the crossed product system
we outline below would also work in this case, but this choice would have the inconvenient
property that the absolute Galois group Gal

(
Q̄/Q

)
action would involve both the part HD of

the algebra and the semigroup EQ̄, unlike the Bost–Connes case. However, we will include the
case of EQ̄ and subsemigroups in our discussion, because it will be useful in presenting in an
explicit way a method of removal of certain catastrophic everywhere-divergence problems that
can occur in the partition function of the quantum statistical mechanical system. We will discuss
this in Section 2.14 below.

Definition 2.17. Given an element η ∈ E we denote by

Eη = {h ∈ E | ∃h′ ∈ E , h = h′ ◦ η},

the range of precomposition by η. We also denote by Bη the subset of Belyi maps that are in
the range of composition with a given Belyi-extending map η ∈ E , that is,

Bη =
{
f : Σ→ P1 Belyi | ∃ f ′ : Σ→ P1, Belyi : f = η ◦ f ′

}
.

We consider the Hilbert space `2(E) with the standard orthonormal basis {εη} for η ∈ E
ranging over the Belyi extending maps. The semigroup E acts on `2(E) by precomposition,
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µηεη′ = εη′◦η. With the product in E defined as above, this gives a semigroup homomorphism
µ : E → B(`2(E)). We denote by Πη the orthogonal projection of `2(E) onto the subspace
generated by the elements of Eη.

2.9 Developing maps

We review here some general facts about orbifold uniformization and developing maps and apply
them to the studies of multivalued inverses of Belyi maps.

In general (see [64]), an orbifold datum (X,D) consists of a complex manifold X, a divisor
D =

∑
imiYi on X with integer multiplicities mi > 2, and hypersurfaces Yi such that near every

point of X there is a neighborhood U with a branched cover that ramifies along the loci U ∩ Yi
with branching indices mi.

A complex manifold X̃ with a branched covering map f : X̃ → X that ramifies exactly along
Y = ∪iYi with indices mi is called an uniformization of the orbifold datum (X,D).

One might consider the multivalued inverse φ : X → X̃ of the uniformization map f : X̃ → X.
This is usually referred to as the developing map in the cases where X̃ is simply connected, though
we will be using the term “developing map” more generally here for multivalued inverse maps.
Some concrete developing maps are related to certain classes of differential equations, such as
hypergeometric, Lamé, Heun, etc. In particular, the Belyi maps f : Σ → P1 can be seen as
special cases of uniformization of orbifold data

(
P1, D

)
with D supported on {0, 1,∞}, and we

can consider the associated multivalued developing map φ = φf .
In the case where X̃ = H is the upper half-plane and the uniformization map is the quotient

map that realizes an orbifold datum
(
P1, D

)
as the quotient of H by a Fuchsian group, if we

denote by z the coordinate on H and by t the (affine) coordinate on P1(C), a developing map
z = φ(t) (period map) is obtained as the ratio φ(t) = u1(t)/u2(t) of two independent non-trivial
solutions of the differential equation (orbifold uniformization equation, see [64, Proposition 4.2])

d2u

dt2
+

1

2
{z, t}u = 0, (2.8)

where {z, t} = {φ(t), t} = S(φ)(t) is the Schwarzian derivative

S(φ)(t) :=

(
φ′′

φ′

)′
− 1

2

(
φ′′

φ′

)2

=
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2

.

More generally, given a Belyi map f : Σ → P1, we can precompose it with a Fuchsian uni-
formization π : H→ H/Γ = Σ and consider the multivalued inverse of the Belyi map f in terms
of a developing map for f ◦ π.

Riemann surfaces Σ that are obtained from algebraic curves defined over number fields admit
uniformizations Σ = H/Γ by Fuchsian groups that are finite index subrgroups of a Fuchsian
triangle group ∆, hence one can view Belyi maps as maps f : H/Γ = Σ→ H/∆ = P1, see [14].

In the case of a triangle group ∆ the orbifold uniformization equation reduces to a hypergeo-
metric equation, hence the resulting φ(t) can be described in terms of hypergeometric functions.

The classical hypergeometric equation, depending on three parameters a, b, c

t(t− 1)F ′′ + ((a+ b− 1)t− c)F ′ + abF = 0 (2.9)

has the hypergeometric function

F (a, b, c|t) =
∑ (a)n(b)n

(c)n

tn

n!

as a solution, with (x)n = x(x+ 1) · · · (x+ n− 1) the Pochhammer symbol.
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Two linearly independent solutions f1, f2, locally defined in sectors near t = 0, can be
obtained as C-linear combinations of F (a, b, c|t) and t1−cF (a−c+1, b−c+1, 2−c|t). The Schwarz
map φ(t) = f1(t)/f2(t) given by the ratio of two independent solutions maps holomorphically
the upper half plane H to the curvilinear triangle T with vertices φ(0), φ(1), φ(∞) and angles
|1−c|π, |c−a−b|π, and |a−b|π. The equation (2.9) is equivalent to (2.8), for the case of branch
points at 0, 1, ∞ and these angles. Extending the map by Schwarz reflection, one obtains in
this way the developing map, for the uniformization of the orbifold datum

(
P1(C), D

)
, with set

of orbifold points {0, 1,∞} and angles as above, with a tessellation of H (in the hyperbolic case)
by copies of T and the group generated by reflections about the edges of T .

In the case where |1 − c| = m−1
0 , |c − a − b| = m−1

1 , |a − b| = m−1
2 are inverses of positive

integers, the Schwarz function φ(t) can be inverted and the inverse function t = t(z), the
uniformization map, is an automorphic function for the Fuchsian triangle group ∆(m0,m1,m2),
which is related to the problem of computing the Hauptmodul for triangle groups [14, 28]. For
a Belyi map f : Σ = H/Γ→ P1 = H/∆ the uniformization equation can be seen as the pullback
of the equation for H/∆. A formulation of multivalued inverse developing maps of Belyi maps
in terms of log-Riemann surfaces is discussed in [7].

The properties of developing maps for Belyi maps recalled here give us the following conse-
quence, which we will be using in our construction of the quantum statistical mechanical system
based on Belyi-extending maps in the next subsections.

Lemma 2.18. Consider an element η ∈ E, that is, a Belyi map η : P1 → P1, defined over Q,
with η({0, 1,∞}) ⊆ {0, 1,∞}. Let φη be its developing map as above.

If Bη is the subset of Belyi maps introduced in Definition 2.17, then composition φη ◦f of any
f ∈ Bη with the developing map φη gives a map f ′ satisfying η ◦ f ′ = f .

Also, for any η′ ∈ Eη, with Eη as in Definition 2.17, precomposition of η′ with φη gives
a map η′′ with η′′ ◦ η = η′. We put ρη(f) := φη ◦ f for f ∈ Bη.

For more general Belyi maps f we define as above the compositions η′◦ρη(f), for any η′ ∈ Eη.

Proof. Let Γ be the uniformizing group of the source orbifold datum
(
P1, η−1(D)

)
with D =

{0, 1,∞} and let φ̄η(t) :
(
P1, D

)
→
(
P1, η−1(D)

)
, and let π : H → H/Γ = P1 be the uniformiza-

tion map for
(
P1, η−1(D)

)
, with φπ the corresponding developing map.

The multivalued inverse φη for the Belyi-extending map η : P1 → P1 can then be regarded
as the composition π ◦ φ̃η of the developing map φ̃η = φπ ◦ φη for η ◦ π and the uniformization
π : H→ H/Γ of (P1, η−1(D)). Given f ∈ Bη, the composition φη ◦ f is defined and gives a Belyi
map f ′ : Σ → P1 such that η ◦ f ′ = f . Thus, the transformation ρη(f) = φη ◦ f is well defined
on f ∈ Bη.

For η′ ∈ Eη similarly we have η′ = h′ ◦ η for some h′ ∈ E . Thus, the composition η′ ◦ φη is
defined and gives an element in E . Given a Belyi map f : Σ→ P1, a Belyi-extending map η, and
a Belyi-extending map η′ ∈ Eη, with η′ = h′ ◦ η for some h′ ∈ E , we have η′ ◦ ρη(f) given by the
composition η′ ◦ φη ◦ f = h′ ◦ f . �

2.10 Belyi-extending semigroup and Belyi functions operators

Returning to the framework of the end of Section 2.5, recall that isometries µη of `2(E) act upon
the basis elements εη′ as µηεη′ = εη′◦η. We have µ∗ηµη = id.

Clearly, eη := µηµ
∗
η is the projector acting on `2(E) as the orthogonal projector Πη onto the

subspace generated by the basis elements εη′ with η′ ∈ Eη.
Given a Belyi map f : Σ→ P1, let D = Df be the associated dessin. We include here the case

where D may have multiple connected components. This case corresponds to branched coverings
where Σ can have multiple components. Given a Belyi-extending map β ∈ E , we consider the
dessin η(D) corresponding to the Belyi map η ◦ f as in [61].
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Definition 2.19. Let ϕ ∈ GD
(
Q̄
)

= HomAlgQ

(
HD, Q̄

)
be a character of the Hopf algebra of

dessins. Given a Belyi map f : Σ→ P1, we define a linear operator πϕ(f) by setting

πϕ(f)εη = ϕ(η(Df ))εη, (2.10)

for all η ∈ E and with η(Df ) = Dη◦f . For simplicity of notation we shall write ϕ(η ◦ f) :=
ϕ(η(Df )) in the above.

The operator πϕ(f) is bounded if

sup
η∈E
|ϕ(η(Df ))| ≤ Cϕ,f , (2.11)

for some constant Cϕ,f > 0.

2.11 Invariant characters and balanced characters

We will now discuss simple examples of characters ϕ that satisfy this boundedness condition.
Let ι : Q̄ ↪→ C be a fixed embedding. Let λ ∈ Q̄ be an algebraic number of absolute value

|ι(λ)| ≤ 1, with the property that all its Galois conjugates are also contained in the unit disk.
Note that this condition can be easily achieved, for instance by dividing by a large integer, unlike
the more delicate conditions (such as for Pisot and Salem numbers) where one requires one of
the points in the Galois orbit to remain outside of the unit disk.

Proposition 2.20. Let λ ∈ Q̄ be chosen as above, so that ι(γλ) is contained in the unit disk for
all γ ∈ G = Gal

(
Q̄/Q

)
. Consider the Galois invariant of dessins given by ϕ(D) = ι(λ)#E(D) =

ι(λ)d where d is the degree of the Belyi map. This determines a character ϕ ∈ Hom
(
HD, Q̄

)
that descends to a character of the quotient Hopf algebra HD,G of Lemma 2.13.

For a Belyi map f : Σ → P1, the operator πϕ(f) associated to this character satisfies the
boundedness condition. Moreover, for any γ ∈ G the character γ ◦ ϕ ∈ Hom(HD, Q̄) given by
γϕ(D) = γ(λ)#E(D) also gives bounded operators πγϕ(f).

Proof. Consider λ ∈ Q̄ as above. The map ϕ(D) = ι(λ)#E(D) determines an algebra ho-
momorphism ϕ : HD → Q̄, since for a disjoint union D = D1

∐
D2, we have #E(D) =

#E(D1)+#E(D2) hence ϕ(D) = ϕ(D1)ϕ(D2). Since the number of edges of a dessin (degree of
the Belyi map) is a Galois invariant, the character descends to the quotient Hopf algebra HD,G.
Given a Belyi function f : Σ → P1, the operator πϕ(f) acts on the basis εη of the Hilbert
space `2(E) by πϕ(f)εη = ϕ(η(Df ))εη, with η(Df ) = Dη◦f . We know (see [61, Proposition 3.5])
that if Df is the dessin corresponding to a Belyi map f : Σ → P1 and Dη is the dessin corre-
sponding to η : P1 → P1 in E , then the edges of the dessin Dη◦f of the Belyi map η ◦ f : Σ→ P1

are given by E(η(Df )) = E(Df )× E(Dη). Thus, we have

ϕ(η(Df )) = ι(λ)#E(η(Df )) =
(
ι(λ)#E(Df )

)#E(Dη)
.

Under the assumption that |ι(λ)| ≤ 1, hence |ι(λ)#E(Df )| ≤ 1 we have∣∣(ι(λ)#E(Df )
)#E(Dη)∣∣ ≤ ∣∣ι(λ)#E(Df )

∣∣ ≤ 1

for all η ∈ E , hence ‖πϕ(f)‖ ≤ 1. Since we assume that all Galois conjugates are also in the unit
disk, |ι(γ(λ))| ≤ 1 for γ ∈ G, the same holds for the operators πγϕ(f). �

In Proposition 2.20, we constructed a character ϕ ∈ HomAlgQ

(
HD, Q̄

)
that is invariant with

respect to the G-action by Hopf algebra homomorphisms of HD (by automorphisms of the dual
affine group scheme GD) and descends to a character of the quotient Hopf algebra HD,G. We now
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consider a setting that is more interesting for the purpose of obtaining the correct intertwining
of symmetries and Galois action on the zero-temperature KMS states, extending the similar
properties of the Bost–Connes system. To this purpose we focus on characters of the Hopf
algebra HD that are not G-invariant, but that satisfy the expected G-equivariance condition
intertwining the G-action on the source HD with the G-action on the target Q̄.

Definition 2.21. A character ϕ ∈ HomAlgQ

(
HD, Q̄

)
is called balanced if it satisfies the identity

ϕ(γD) = γϕ(D), (2.12)

for all γ ∈ G = Gal
(
Q̄/Q

)
and all dessins D, where D 7→ γD is the G-action on dessins and

ϕ(D) 7→ γϕ(D) is the Galois action on Q̄.

The following example shows that the set of balanced characters is non-empty, although the
example constructed here is not computationally feasible, since it assumes an a priori choice of
a set of representatives of the G-orbits on the set D of dessins, which in itself requires an explicit
knowledge of these orbits. The question of constructing an explicit map D 7→ ϕ(D) of dessins
to Q̄ that intertwines the Gal

(
Q̄/Q

)
actions remains a very interesting problem.

Lemma 2.22. Let R = {D} be a set of representatives of the G-orbits on the set of dessins.
Let {λD} be a set of algebraic numbers with |ι(γλD)| ≤ 1 for all γ ∈ G and deg(λD) = #Orb(D).
Then the formula

ϕ(γD) = (γλD)#E(D)

determines a balanced character of HD, with the property that the linear operators πϕ(γf)
on `2(E) are bounded for any Belyi function f and all γ ∈ G.

Proof. Let dD = #Orb(D) be the length of the corresponding orbit. By the orbit-stabilizer
theorem this is also the cardinality of the set of cosets dD = #G/Stab(D). For each D ∈ R,
choose an algebraic number λD ∈ Q̄ with the property that #Orb(λD) = deg(λD) = [Q(λD) : Q]
satisfies deg(λD) = dD. We then set

ϕ(γD) = γ(λD)#E(D).

Since #Orb(D) = #Orb(λD) and we can identify the action of G on Orb(D) with the left
multiplication on the cosets G/Stab(D), the map ϕ bijectively maps Orb(D) to Orb(λD) in

such a way that by construction ϕ(γD) = (γ(λD))#E(D) = γ
(
λ

#E(D)
D

)
, hence ϕ is a balanced

character.

Possibly after dividing by a sufficiently large integer, we can assume that λD and all its Galois
conjugates lie inside the unit disk, so that the sequence

{
γ(λD)n

}
n∈N is bounded in the `∞-

norm, for all γ ∈ G. Consider then the operators πϕ(f) associated to the character ϕ, for Belyi
maps f . These act on `2(E) by πϕ(f)εη = ϕ(η(D))εη, where D = Df is the dessin associated to
the Belyi map.

Since all the Belyi-extending maps η ∈ E are defined over Q, we have γη(D) = η(γD) for all
γ ∈ G and ηOrb(D) = Orb(η(D)). If we take η(D) as the representative for Orb(η(D)), we can
write

πϕ(f)εη = λ
#E(η(D))
η(D) εη.

Since the algebraic numbers γλη(D) lie in the unit disk, for all γ ∈ G, all D ∈ D and all η ∈ E ,
the operators πϕ(γf) are all bounded. �
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2.12 Quantum statistical mechanics of Belyi-extending maps

We will now proceed to the construction of a quantum statistical mechanical system associated
to dessins with the G-action and Belyi-extending maps.

Lemma 2.23. Let f : Σ → P1 a Belyi map and η ∈ E a Belyi-extending map. Denote by
ση(f) = η ◦ f the action of the semigroup E on Belyi maps by composition.

For ρη defined as in Lemma 2.18, we have ρη(ση(f)) = f for all Belyi maps f and ση(ρη(f))
= f for f ∈ Bη.

Let πϕ(f) be as in (2.10) satisfying the boundedness condition (2.11). For any Belyi map f ,
the operator πϕ(ρη(f)) acts on the range of the projection eη in `2(E) as

πϕ(ρη(f))eηεη′ =

{
ϕ(η′ ◦ φη ◦ f)εη′ , η′ ∈ Eη,
0, otherwise.

The operators πϕ(f) of (2.10) satisfy the relations

µ∗ηπϕ(f)µη = πϕ(ση(f)) and µηπϕ(f)µ∗η = πϕ(ρη(f))eη.

Definition 2.24. Let HD be the Hopf algebra of dessins, seen as a commutative algebra over Q.
Denote by AHD,E the non-commutative algebra over Q generated by HD as a commutative alge-
bra (that is, by the dessins D, or equivalently by the Belyi functions f) and by the isometries µη,
with the relations µ∗ηµη = 1, µ∗ηfµη = ση(f) and µηfµ

∗
η = ρη(f)eη with eη = µηµ

∗
η.

We will construct a time evolution on the algebra AHD,E using invariants of Belyi-extending
maps that behave multiplicatively under composition. The following result follows directly from
the construction of the algebra AHD,E in Definition 2.24.

Lemma 2.25. Let Υ: E → N be a semigroup homomorphism. Then setting σt(µη) = Υ(η)itµη
and σt(D) = D for all η ∈ E and all D ∈ D defines a time evolution σ : R → Aut(AHD,E).
Given a character ϕ ∈ HomAlgQ

(
HD, Q̄

)
such that the operators πϕ(f) are bounded for all Belyi

maps f , the time evolution σt is implemented in the resulting representation of AHD,E on `2(E)
by the Hamiltonian Hεη = log Υ(η)εη, with partition function given by the (formal) Dirichlet
series

Z(β) = Tr
(
e−βH

)
=
∑
η∈E

Υ(η)−β =
∑
n≥1

#{η ∈ E |Υ(η) = n}n−β. (2.13)

Proof. The σt defined as above gives a time evolution on AHD,E because of the multiplicative
property of Υ under composition in E . A character ϕ with the boundedness condition on the
operators πϕ(f) determines a representations πϕ of the algebra AHD,E by bounded operators on
the Hilbert space `2(E), where the generators D act as πϕ(f) with f the Belyi map associated to
the dessin D and the isometries µη act as shifts on the basis, µηεη′ = εη′◦η. In this representation
we see directly that the time evolution is implemented by the Hamiltonian H with the partition
function given by the formal Dirichlet series (2.13). �

Remark 2.26. Note that for any given choice of a subsemigroup E ′ ⊂ E of the semigroup
of Belyi-expanding maps, one can adapt the construction above and obtain an algebra AHD,E ′
generated byHD and the isometries µη with η ∈ E ′ and its representation on `2(E ′). A semigroup
homomorphism Υ: E ′ → N then determines a time evolution with partition function as in (2.13)
with the summation over η ∈ E ′.

The reason for considering such restrictions to subsemigroups E ′ ⊂ E of the system (AHD,E , σt)
is this: we will be able to obtain from the system of Definition 2.24 and Lemma 2.25 a speciali-
zation that recovers the original Bost–Connes system.
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Proposition 2.27. Let EBC ⊂ E be the subsemigroup of Belyi-extending maps η such that
η : 0 7→ 0 and the ramification is maximal at 0, that is, m = 1 and n = d. Consider the subalgebra
of AHD,E obtained by restricting the semigroup to EBC and restricting the Belyi functions f : Σ→
P1 in HD to maps ramified only at 0 and ∞.

Let Υ: E → N be the semigroup homomorphism given by the degree d of the Belyi-expanding
map, and let σt be the associated time evolution. There is a choice of a balanced character
ϕ : HD → Q̄ such that the restriction of the resulting time evolution to this subalgebra is the
original Bost–Connes quantum statistical mechanical system.

Proof. Choose a balanced character ϕ : HD → Qab ⊂ Q̄ constructed as in Proposition 2.22,

with λ
#E(D)
D = ζd given by a primitive root of unity of order d = #E(D), when D is the dessin

of a Belyi function ramified only at 0 and ∞.
These Belyi functions have g(Σ) = 0 and up to a change of coordinates on P1 we can assume

they map 0, 1, ∞ to themselves. By the Riemann–Hurwitz formula, the ramification points 0
and ∞ have maximal ramification, f−1(0) = {0} and f−1(∞) = {∞}, so m = 1 while n =
#f−1(1) = d. Similarly, for a Belyi-extending map with m = #η−1(0) = 1 so that η−1(1) =
deg(η) = d. Thus, when restricting the system to this subset of Belyi maps and the subgroup EBC
of Belyi-extending maps, the multiplicity of Υ(η) = d is one, since for these maps the dessin D
or Dη is the unique bipartite tree with a single white colored vertex and d black colored vertices
attached to the white vertex.

We can then identify the basis εη of `2(E) with the basis εd of `2(N) on which the operators
associated to these Belyi maps act as πϕ(f)εd = ζddeg(f)εd and the isometries µη act as the
isometries µdeg(η)εd = εddeg(η) of the Bost–Connes system, satisfying the relations of the Bost–
Connes algebra, after identifying ζd = α(e(1/d)) for {e(r)}r∈Q/Z the generators of the Bost–

Connes algebra and α ∈ Ẑ∗ = Aut(Q/Z) a chosen embedding of Q/Z in C. �

In the statement of Lemma 2.25 above we have regarded the partition function purely as a
formal Dirichlet series. In order to proceed to the consideration of Gibbs states and limiting
zero-temperature states, however, we need a setting where this Dirichlet series converges for suf-
ficiently large β > 0. As we discuss in detail in the next subsection, due to the particular nature
of semigroup homomorphisms Υ: E → N from the semigroup of Belyi-expanding maps to the in-
tegers, the Dirichlet series (2.13) tends to be everywhere divergent, except in the case where the
system is constructed using the subsemigroup EBC of E that recovers the Bost–Connes system.

After discussing semigroup homomorphisms from the semigroup of Belyi-expanding maps,
we return to the construction of the quantum statistical mechanical system and we show how
Definition 2.24 and Proposition 2.25 can be modified to avoid this divergence problem.

2.13 Semigroup homomorphisms of Belyi-extending maps

We discuss here semigroup homomorphisms with source the semigroup of Belyi-extending maps
with the operation of composition. In particular, we calculate the behaviour of the multiplicities
associated to these semigroup homomorphisms, namely the size of the level sets.

As a simple illustration of the most severe type of divergence one expects to encounter in the
partition functions, we consider first the case of the larger semigroup EQ̄ of Belyi maps of genus
zero mapping {0, 1,∞} into itself, and the subsemigroup EQ̄,0 of Belyi polynomials, which have
bipartite planar trees as dessins.

Lemma 2.28. The map Υ: EQ̄ → N given by the degree Υ(η) = deg(η) is a semigroup homo-
morphism. The level sets of its restriction to EQ̄,0 are given by

EΥ,d := {η ∈ E | deg(η) = d} = {bipartite trees T |#E(T ) = d},
#EΥ,d = 2(d+ 1)d−1.
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Proof. The degree of a Belyi map η ∈ E is deg(η) = #E(Dη), the number of edges of its
dessin. For Belyi maps η : P1 → P1 in EQ̄,0 the dessin Dη is a bipartite tree. Since the bipartite
structure on a tree is uniquely determined by assigning the color of a single vertex, the number
of elements in EΥ,d can be identified with twice the number of trees on d edges, which is equal
to (d+ 1)d−1. �

Remark 2.29. For Υ: EQ̄,0 → N given by the degree Υ(η) = deg(η), the formal Dirichlet
series (2.13)

2
∑
d≥1

(d+ 1)d−1d−β

is everywhere divergent.

When we restrict ourselves to the subsemigroup E ⊂ EQ̄ of Belyi-extending maps and to the
corresponding E0 ⊂ EQ̄,0, the multiplicities decrease, since many bipartite trees do not correspond
to Belyi maps defined over Q. One can see that there are choices of subsemigroups E ′ of the semi-
group E of Belyi-extending maps for which the partition function does not have this dramatic
everywhere-divergence problem. We give an example of such a subsemigroup in Lemma 2.31
below. In such cases, we can just use the quantum statistical mechanical system constructed in
Section 2.12 above as the correct generalization of the Bost–Connes system. However, subsemi-
groups of E with this property tend to be too small to achieve separation of Galois orbits. For this
reason, we want to allow larger semigroups of Belyi maps and we need to introduce an appropri-
ate method that will cure possible everywhere-divergence phenomena in the partition function.

In the example above we have considered the degree homomorphism. One can obtain other
semigroup homomorphisms Υ: EQ̄ → N (with restrictions Υ: E → N) by composing the de-
gree homomorphism with an arbitrary semigroup homomorphism Ψ: N → N. Since N is the
free abelian semigroup generated by primes, a homomorphism Φ can be obtained by assigning
to each prime p a number Ψ(p) ∈ N. It is easy to check, however, that any homomorphism
Ψ ◦ Υ obtained in this way will not compensate for the everywhere divergence problem of Re-
mark 2.29. This leads to the natural question of whether there are other interesting semigroup
homomorphism with source E that do not factor through the degree map. If one restricts to
the subsemigroup EQ̄,0 as in Lemma 2.28, for which the dessins are trees, then the length of the
unique path in the tree from 0 to 1 is an example of such a morphism. We focus here below on
a semigroup homomorphism to a non-abelian semigroup of matrices.

In particular, we will be observing more closely how other combinatorial data of dessins be-
have under the composition of maps, such as the number of W/B vertices in the bipartition
(the ramification indices m and n of the map at the points 0 and 1). This will identify some
interesting (non-abelian) semigroup laws, and resulting semigroup homomorphisms.

Proposition 2.30. Consider the subsemigroup E ′Q̄ of Belyi maps of genus zero mapping the

points 0, 1, ∞ to themselves. The map Υ: E ′Q̄ →M+
2 (Z) given by

Υ(η) =

(
d m− 1
0 1

)
, (2.14)

where d = deg(η) and m = #η−1(0), is a semigroup homomorphism. The same holds for the
map Υ: E ′Q̄ →M+

2 (Z) as above, with m replaced by n = η−1(1) and for the map Υ: E ′Q̄ →M+
3 (Z)

Υ(η) =

d m− 1 n− 1
0 1 0
0 0 1

 .
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The level sets of the map (2.14) restricted to the subsemigroup EQ̄,0 of tree dessins are given by

E ′Υ,d,m :=

{
η ∈ EQ̄,0 |Υ(η) =

(
d m− 1
0 1

)}
=

{
bipartite trees T | #E(T ) = d,

#V0(T ) = m

}
,

#E ′Υ,d,m = md+1−m(d+ 1−m)m−1. (2.15)

Proof. We will discuss the map (2.14): the other cases are analogous. In restricting to the
subsemigroup E ′Q̄ of EQ̄ we are considering the more restrictive condition on the Belyi maps,

that map the set {0, 1,∞} to itself rather than into itself, and after a change of coordinates
on P1, we are assuming that the points 0, 1, ∞ are mapped to themselves by these Belyi maps.

For a composition η′ ◦ η of two such Belyi maps, the preimage (η′ ◦ η)−1(0) consists of the
preimage (η′)−1(0) of the point 0 in the preimage η−1(0) and of the preimages (η′)−1(u) for each
of the remaining m − 1 points u ∈ η−1(0). The first set (η′)−1(0) consists of m′ points while
the second set consists of d′(m− 1) points. Thus, we have #(η′ ◦ η)−1(0) = d′(m− 1) +m′. It
remains to check that the product in the semigroup M+

2 (Z)(
d′ m′ − 1
0 1

)
·
(
d m− 1
0 1

)
=

(
d′d d′(m− 1) +m′ − 1
0 1

)
is equal to Υ(η′ ◦ η). When restricting to the subsemigroup EQ̄,0, the counting of the size of the
level sets is based on the number of bipartite trees with m white and n black vertices, which is
equal to mn−1nm−1 and the fact that the total number of vertices is m+ n = d+ 1. �

The semigroup homomorphism (2.14) therefore captures the semigroup law satisfied by
the ramification indices m and n. Note that the determinant homomorphism of semigroups
det : M+

2 (Z)→ N produces the semigroup homomorphism given by the degree

det ◦Υ(η) = deg(η).

We can use the semigroup homomorphism constructed above to identify choices of sufficiently
small subsemigroups E ′ of E that do not have everywhere-divergence phenomena in the partition
function. The following shows that the genus zero single cycle normalized Belyi maps considered
in [5] provide an example of such a semigroup.

Lemma 2.31. Consider genus zero Belyi maps η : P1 → P1, normalized so that they fix the
points 0, 1, ∞, such that the corresponding dessin Dη has a single cycle. They form a sub-
semigroup E ′ ⊂ E of the semigroup of Belyi-extending maps with the property that the partition
function (2.13)

Z(β) =
∑
η∈E ′

Υ(η)−β

of the associated quantum statistical mechanical system for the degree homomophism Υ(η) =
deg(η) is convergent for β > 2.

Proof. The normalized genus zero single cycle Belyi maps are a particular case of the more
general class of conservative (or critically fixed) rational maps [23], where one assumes that the
critical points are also fixed points. The genus zero and single cycle condition correspond to
requiring that the ramification indices m, n, r at 0, 1, ∞ satisfy 2d + 1 = m + n + r. One
can see that these maps form a semigroup using the semigroup law of Proposition 2.30 for
the ramification indices. Indeed, for a composition η ◦ η′ of two such maps we have 2dd′ + 1 =
d(m′−1)+m+d(n′−1)+n+d(r′−1)+r = 2dd′+d−3d+2d+1. As observed in [5] it is known that
all the normalized genus zero single cycle Belyi maps are defined over Q, so this is a subsemigroup
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of the semigroup E of Belyi-extending maps. The number of normalized genus zero single cycle
Belyi maps of a given degree d is computed in [5, Corollary 2.8 and Remark 2.9] and is of the form

N(d) =
1

12

(
d2 + 4d− c

)
,

where the constant c takes one of the following values

c =


5, d ≡ 1 mod 6,

8, d ≡ 4 mod 6,

9, d ≡ 3, 5 mod 6,

12, d ≡ 0, 1 mod 6.

Thus, the partition function (2.13) for the semigroup E ′ for the degree homomorphism Υ(η) =
deg(η)

Z(β) =
∑
η∈E ′

Υ(η)−β =
∑
d≥1

#{η ∈ E ′ | deg(η) = d}d−β =
∑
d≥1

N(d)d−β

is convergent for β > 2. �

As in [61], given a dessin D with Belyi function f : Σ→ P1 and a Belyi-extending map η ∈ E ,
we denote by η(D) the dessin of the composite function η ◦ f .

Corollary 2.32. Let E ′ ⊂ E be a subsemigroup of Belyi-extending maps for which the partition
function Z(β) =

∑
η∈E ′ Υ(η)−β is convergent for sufficiently large β. Consider the quantum

statistical mechanical system of Section 2.12 with ϕ ∈ HomAlgQ

(
HD, Q̄

)
a character satisfying

the boundedness condition. Then all the invariants ϕ(η(D)), for η ∈ E ′ and dessins D, occur as
values of zero-temperature KMS states.

Proof. If E ′ is a subsemigroup of Belyi-extending maps with partition function that converges
for large β, as in the case of Lemma 2.31, then the quantum statistical mechanical system of
Section 2.12 has low temperature KMS states of the form

ψβ,ϕ(X) = Z(β)−1
∑
η∈E ′

〈
εη, Xe−βHεη

〉
,

for elements X of the crossed product algebra AHD,E ′ and in particular

ψβ,ϕ(D) = Z(β)−1
∑
η∈E ′

〈
εη, πϕ(f)e−βHεη

〉
= Z(β)−1

∑
η∈E ′

ϕ(η(D))Υ(η)−β,

where f is the Belyi map with dessin D and ϕ ∈ HomAlgQ

(
HD, Q̄

)
is a character satisfying the

boundedness condition. The zero-temperature KMS states are then given by

ψ∞,ϕ(X) = lim
β→∞

ψβ,ϕ(X) = ϕ(X)

for X ∈ AHD,E ′ . In particular, we consider elements of the form X = µ∗ηπϕ(f)µη for which we
have

ψ∞,ϕ(µ∗ηπϕ(f)µη) = 〈εid, πϕ(f)εid〉 = ϕ(η(D)). �
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In [61] the Belyi-extending maps are used to construct new Galois invariants of dessins, in
the form of invariants of the form ϕ(η(D)), where D is a given dessin, ϕ is a Galois invariant,
and η ∈ E ranges over the Belyi-extending maps. In our setting, these invariants occur as values
of zero-temperature KMS states. However, if the subsemigroup E ′ is too small (as in the case of
Lemma 2.31) one does not expect that the invariants ϕ(η(D)) would have good properties with
respect to separating different Galois orbits of dessins. Thus, it is preferable to develop a way
to extend the construction of Section 2.12 to obtain a quantum statistical mechanical system
that can be used in cases of larger semigroups of Belyi-extending maps, for which the partition
function (2.13) may have the type of everywhere-divergence problem encountered in the case of
Remark 2.29.

This observation was suggested to us by Lieven Le Bruyn: examples include the case where
one restricts to the trees of dynamical Belyi polynomials. This semigroup contains several free
subsemigroups, such as all Belyi polynomials of fixed degree d > 2 that form a free semigroup.
It is possible to take 1 as a leaf-vertex, and consider the subsemigroup of such dynamical Belyi
polynomials having the same Julia set. (If two polynomials have different Julia sets, then their
forward orbit is dense in the plane by [60].) Then this subsemigroup acts on the inverse images
of 1 like the action of the power maps on the roots of unity. However, even this subsemigroup
is likely to be too large.

To the purpose of analyzing how to treat the everywhere divergent cases, we return to a con-
sideration of the model case of the semigroup EQ̄,0 of Belyi maps with composition considered
in Lemma 2.28 and Remark 2.29, for which we know that everywhere-divergence occurs. This
semigroup can be equivalently seen as a semigroup of bipartite trees with a product operation
that reflects the composition of maps, see [1].

2.14 Extended system, partial isometries, and partition function

In this subsection we present a method for curing the type of everywhere-divergence problems
in the partition function (2.13) that occur in the example of the semigroup EQ̄,0 in Remark 2.29.
For the purpose of clarity, we illustrate how the method works in the case of this semigroup.
A similar method, mutatis mutandis, can be applied to other semigroups with similar divergence
phenomena in the partition function.

We use the semigroup homomorphism (2.14) in order to modify the quantum statistical
mechanical system of Proposition 2.25 in such a way that the Dirichlet series of the resulting
partition function becomes convergent for large β > 0.

In the process, we will have to slightly modify our algebra: the isometries µη with µ∗ηµη = 1
and µηµ

∗
η = eη will be replaced by partial isometries (which we will still call µη) with µηµ

∗
η = eη

and µ∗ηµη = ẽη where both eη and ẽη are projectors.

Actually, we will construct the one-parameter family of such systems, depending on a parame-
ter θ > 0 with θ ∈ RrQ. We can think of this additional parameter as a regularization parameter
for the original system (AHD,E , σt) that eliminates the divergence of the partition function.

Definition 2.33. Given a θ ∈ R∗+ r Q∗+, let Ωθ denote the set Ωθ = Nθ + Z+ = {aθ + b | a ∈
N, b ∈ Z+}.

Lemma 2.34. Let the semigroup be chosen as E = EQ̄,0. Consider the Hilbert space `2(E ×Ωθ)
with the standard orthonormal basis {εη,ω}η∈E,λ∈Ωθ . Let µη be the operators

µηεη′,λ =

{
εη′◦η,α−1

η (λ), if α−1
η (λ) ∈ Ωθ,

0, otherwise
(2.16)
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where

αη =

(
d m− 1
0 1

)
is the image of η under the semigroup homomorphism (2.14), with d = deg(η) and m = #η−1(0),
and the matrix acts on λ by fractional linear transformations.

The µη are partial isometries with µηµ
∗
η = eη (the projector defined as before), and µ∗ηµη = ẽη

is another projector defined by

ẽηεη′,λ =

{
εη′,λ, if α−1

η (λ) ∈ Ωθ,

0, otherwise.

Proof. The matrix αη maps Ωθ to itself by the action by fractional linear transformations,
λ 7→ αη(λ) = dλ+m− 1. The inverse α−1

η is given by the matrix

α−1
η =

(
d−1 d−1(1−m)
0 1

)
.

The condition that for a given λ = aθ + b ∈ Ωθ, we have α−1
η (λ) = d−1aθ + d−1(b+ 1−m) also

in Ωθ is satisfied if d|a, b+1−m ≥ 0, and d|(b+1−m). Thus, it is on this subset Ωθ(η) ⊂ Ωθ that
the operation α−1

η (θ) is defined with values in Ωθ. The projector ẽη is given by the characteristic
function of this subset. The adjoint µ∗η of the operator µη of (2.16) is given by µ∗ηεη′,λ =
εη′◦φη ,αη(λ) if η′ ∈ Eη and zero otherwise. Thus, µη and µ∗η satisfy the relations as stated. �

Now, given a Belyi function f : Σ → P1 and a character ϕ ∈ Hom
(
HD, Q̄

)
, consider the

operators πϕ(f) defined as before, acting as πϕ(f)εη,λ = ϕ(η(D))εη,λ.

Lemma 2.35. Let ση(f) = f ◦ η as before, for all Belyi maps f ∈ B and all η ∈ E. Also let
ρη(f) = f ◦ φη for f ∈ Bη be the partial inverses. With the partial isometries µη and µ∗η as in
Lemma 2.34 we have

µ∗ηπϕ(f)µη = πϕ(ση(f))eη ẽη, µηπϕ(f)µ∗η = πϕ(ρη(f))eη ẽη. (2.17)

Proof. We have µ∗ηπϕ(f)µηεη′,λ = ϕ(η′η(D))eη ẽηεη′,λ = πϕ(ση(f))eη ẽηεη′,λ. The other case is
similar. �

Definition 2.36. Let the semigroup be chosen as E = EQ̄,0. For a fixed θ ∈ R∗+ r Q∗+
and a character ϕ ∈ Hom

(
HD, Q̄

)
as above, for which the operators πϕ(f) are bounded,

the extended quantum statistical mechanical system of dessins is given by the C∗-subalgebra
AHD,E,θ ⊂ B

(
`2(E × Ωθ)

)
generated by the πϕ(f), with f : Σ→ P1 ranging over the Belyi func-

tions and the partial isometries µη, µ
∗
η, with the relations µηµ

∗
η = eη and µ∗ηµη = ẽη and (2.17).

The time evolution on AHD,E,θ is again given by σt(µη) = deg(η)itµη.

Modifying the isometries µη on `2(E) to partial isometries on `2(E × Ωθ) by introducing the
projection ẽη will make it possible to extend the Hamiltonian determined by the degree map
to an operator (2.18) for which e−βH is trace class for large β > 0. However, this changes
significantly some of the properties of the algebra of observable as follows.

Remark 2.37. Unlike what happens in the original Bost–Connes system, in our case the par-
tial isometries µη and µ∗η are not physical creation-annihilation operators. Indeed, the ground
state εid,θ is in the kernel of both the range projections eη = µηµ

∗
η and the source projec-

tions ẽη = µ∗ηµη, since the identity map does not factor through another Belyi-extending map,
hence eηεid,θ = 0, and θ does not satisfy α−1

η (θ) ∈ Ωθ, since for a > 1 and b ≥ 0 we have
α−1
η (θ) = a−1(θ − b) < θ, hence ẽηεid,θ = 0 as well.
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Definition 2.38. Consider a family of densely defined unbounded linear operators H on `2(E ×
Ωθ) given by

Hεη,λ =

{
(F (αη(λ)− F (θ)) log(deg(η))εη,λ if η 6= id,

(F (λ)− F (θ))εη,λ if η = id,
(2.18)

where F is a real valued function on the set Ωθ.

The specific form of the function F and the conditions on the choice of the parameter θ will
be determined in Propositions 2.39 and 2.41 below.

Proposition 2.39. Let the semigroup be chosen as E = EQ̄,0. We choose θ ∈ R∗+ r Q∗+ to be

an algebraic number such that
{

1, θ, θ2
}

are linearly independent over Q. Let F (λ) = λ2. Then,
for d 6= 1, the multiplicity M(d,m, λ) of an eigenvalue (F (dλ + m − 1) − F (θ)) log(d) of the
operator H is equal to

M(d,m, λ) = 2 + #Td,m, (2.19)

where #Td,m is the number of bipartite trees with d edges and m white vertices, given by (2.15).
For d = 1, each eigenvalue F (λ)− F (θ) of H has multiplicity one.

Proof. Suppose that εη,λ and εη′,λ′ , with η, η′ 6= id, are in the same eigenspace of H. We have,
for d = deg(η), d′ = deg(η′), m = #η−1(0), and m′ = #(η′)−1(0),

(F (dλ+m− 1)− F (θ)) log(d) = (F (d′λ′ +m′ − 1)− F (θ)) log(d′),

where λ = aθ+ b, λ′ = a′θ+ b′ ∈ Ωθ. By our choice of F , it takes values F (λ) ∈ Q̄ for all λ ∈ Ωθ.
Recall that if we have algebraic numbers α1, α2, β1, β2 such that log(α1) and log(α2) are lin-

early independent over Q, then β1 log(α1)+β2 log(α2) 6= 0. This shows that, for d, d′ with log(d),
log(d′) linearly independent over Q we have F (dλ+m− 1) log(d)−F (d′λ′+m′− 1) log(d′) 6= 0.
So we only need to check the dependent case.

Two logarithms of integers log(d), log(d′) are linearly dependent over Q, if dα = (d′)β for
some α, β ∈ Q∗+ (hence d and d′ have the same prime factors). Thus we can write d = δk, d′ = δ`

for δ ∈ R∗+ and k, ` ∈ Q∗+. We are then looking at the relation

k(F (dλ+m− 1)− F (θ)) = `(F (d′λ′ +m′ − 1)− F (θ)). (2.20)

By our choice of θ and of the function F , a relation of the form k(F (uθ + v) − F (θ)) =
`(F (u′θ + v′)− F (θ)) for some k, ` ∈ Q∗+, some u, u′ ∈ N, and some v, v′ ∈ Z+ gives

k
(
(uθ + v)2 − θ2

)
= `
(
(u′θ + v′)2 − θ2

)
,

that is,

k
(
u2θ2 + 2uvθ + v2 − θ2

)
= `
(
(u′)2θ2 + 2u′v′θ + (v′)2 − θ2

)
.

The independence of {1, θ, θ2} over Q implies relations

k
(
u2 − 1

)
= `
(
(u′)2 − 1

)
, kuv = `u′v′, kv2 = `(v′)2.

The last one gives v′ =
√
k/`v, which substituted in the second one gives u′ =

√
(k/`)u.

The first one then gives k
(
u2 − 1

)
= `

(
(k/`)u2 − 1

)
, hence k = `, so that d = d′, u = u′

and v = v′. Thus, we obtain that the relation (2.20) is satisfied for k = ` (hence d = d′) and
daθ + db+m− 1 = da′θ + db′ +m′ − 1 which gives a = a′ and db+m− 1 = db′ +m′ − 1. The
latter equality gives b− b′ = (m′ −m)/d.
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We have both 1 ≤ m ≤ d and 1 ≤ m′ ≤ d so that 0 ≤ |m′−m| ≤ d−1 and (m′−m)/(d−1) ∈ Z
for either m = m′ (so b = b′) or for either m = 1 and m′ = d or m = d and m′ = 1. In the
first of these two cases b′ = b− 1 and in the other b′ = b+ 1. In each of the cases where m = 1
and m′ = d or m = d and m′ = 1 the number of bipartite trees T with fixed d = #E(T ) and
with either one or d = #V (T ) − 1 white vertices is just one, consisting of the single vertex of
the different color and d edges from it to the remaining vertices all of the other color. Thus, in
both of these cases the multiplicity is equal to one, while in the remaining case with m = m′

and b = b′ the multiplicity is the number of bipartite trees with d edges and m white vertices.
Thus, we obtain that the overall multiplicity of the eigenvalue F (dλ + m − 1) log(d) of H

is equal to Md,m,λ = 2 + #Td,m as in (2.19). For d = 1, we have η = id and the condition
F (λ) = F (λ′) implies λ = λ′, so all these eigenspaces are one-dimensional. In particular, the
kernel of the operator H is one-dimensional, spanned by the vector εid,θ. �

Proposition 2.40. Consider the operator H of (2.18). The operators eitH for t ∈ R deter-
mine a covariant representation of the quantum statistical mechanical system (AHD,E,θ, σt) of
Definition 2.36 on the Hilbert space `2(E × Ωθ).

Proof. The covariance condition prescribes that the time evolution σt on AHD,E,θ is imple-
mented by the Hamiltonian H in the representation on `2(E × Ωθ),

eitHXe−itHεη,λ = σt(X)εη,λ,

for all basis elements εη,λ. We check this on the generators µη, µ
∗
η and πϕ(f) of the algebra. For

X = µη we have

σt(µη)εη′,λ = deg(η)itεη′◦η,η−1(λ)

or zero if η−1(λ) /∈ Ωθ. On the other hand, for η′ 6= id, we have

eitHµηe
−itHεη′,λ = eitHµηe

−itF (αη′ (λ)) deg(η′)−itεη′,λ

= eitHe−itF (αη′ (λ)) deg(η′)−itεη′◦η,η−1(λ)

or zero if η−1(λ) /∈ Ωθ. In the non-zero case it is then equal to

eitF (αη′◦η(α−1
η (λ)) deg(η′ ◦ η)ite−itF (αη′ (λ)) deg(η)−itεη′◦η,η−1(λ).

Because Υ(η) = αη is a semigroup homomorphism and so is the degree, we have F (αη′◦η(α
−1
η (λ)))

= F (αη′(λ)) and the above gives

eitHµηe
−itHεη′,λ = deg(η)itµηεη′,λ.

On the vectors ε1,λ we have

eitHµηe
−itHε1,λ = e−it(F (λ)−F (θ))eitHεη,η−1(λ)

= e−it(F (λ)−F (θ)) deg(η)iteit(F (αη◦η−1 (λ)−F (θ)εη,η−1(λ) = deg(η)itµηε1,λ,

for η−1(λ) ∈ Ωθ, and zero otherwise. So eitH implements the time evolution on the partial
isometries µη. In the case of their adjoints we similarly have for eitHµ∗ηe

−itHεη′,λ the expression

e−it(F (αη′ (λ))−F (θ)) deg(η′ ◦ φη)it deg(η′)−ite
it(F (αη′◦φη◦η(λ)−F (θ))

εη′◦φη ,η(λ),

when η′ ∈ Eη with η′ ◦ φη = h′ ∈ E , and zero otherwise. Here we have

deg(η′ ◦ φη) = deg(h′) =
deg(η′)

deg(η)
,
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so we obtain deg(η)−itεη′◦φη ,η(λ) = σt(µ
∗
η)εη′,λ. When η′ = id we have η′ /∈ Eη for η 6= id, hence

µ∗ηε1,λ = 0. In the case where X = πϕ(f) we have

eitHπϕ(f)e−itHεη′,λ = ϕ(η′(D))εη′,λ = πϕ(f)εη′,λ.

So indeed the operator H gives a covariant representation of (AHD,E,θ, σt) on the Hilbert space
`2(E × Ωθ). �

Proposition 2.41. Let H be the operator of (2.18), with F and θ chosen as in Proposition 2.39.
We also assume that θ > 1. Then the partition function for the semigroup E = EQ̄,0

Z(β) = Tr
(
e−βH

)
=

∑
η∈E,λ∈Ωθ

Mdeg(η),m(η),λe−βF (αη(λ)) deg(η)−β (2.21)

converges for β > 1.

Proof. By Proposition 2.39, the partition function takes the form

Z(β) =
∑

d,a≥1,b≥0

∑
1≤m≤d

M(d,m, λ)e−β(F (d(aθ+b)+m−1)−F (θ))d−β

=
∑

a≥1,b≥0

e−β(F (aθ+b)−F (θ)) +
∑

d>1,a≥1,b≥0

∑
1≤m≤d

(2 + #Td,m)e−βF (d(aθ+b)+m−1)d−β.

The first series, which corresponds to the case d = 1 (hence m = 1) is, up to a multiplicative
factor eβθ

2
the series

∑
a≥1,b≥0

e−β(aθ+b)2 . Since we chose θ > 1, we have (aθ + b)2 > aθ + b for

all a ≥ 1 and b ≥ 0 and we can estimate first sum by the series
∑
a,b

e−β(aθ+b) =
∑
a≥1

e−βθa
∑
b≥0

e−βb

which is convergent for all β > 0.
Thus, it remains to check that the series∑

d,a,b

∑
1≤m≤d

md+1−m(d+ 1−m)m−1e−β(d(aθ+b)+m−1)2d−β

converges for sufficiently large β > 0. We can estimate the terms of this series as follows. For
m = 1 we have #Td,1 = 1 and the sum reduces to the form∑

d,a,b

e−β(d(aθ+b))2d−β ≤
∑
a,b

e−β(aθ+b)2
∑
d

d−β,

which is convergent for β > 1. Equivalently, we can estimate this sum in terms of the Jacobi
theta constant and the series

∑
d θ3

(
0, e−βd

2)
d−β. Since θ3(0, q)→ 1 for q → 0, the behavior of

the series then depends on the behavior of
∑

d d
−β that is convergent for β > 1. More generally

the multiplicity #Td,m = md+1−m(d+ 1−m)m−1 satisfies #Td,m ≤ d2d since 1 ≤ m ≤ d. Since
θ > 1 we have Ωθ = Nθ + Z+ ⊂ (1,∞). For m > 1 we estimate the sum by∑

d,a,b

∑
1<m≤d

d2de−β(d(aθ+b)+m−1)2d−β ≤
∑
d

d2de−βd
2
d−β

∑
a,b

∑
m>1

e−β(m−1)2e−β(aθ+b)(m−1)

≤
∑
d

d2de−βd
2
d−β

∑
a,b

e−β(aθ+b)
∑
`≥1

e−β`
2
.

The series
∑

a≥1,b≥0

e−β(aθ+b) and
∑

a≥1,b≥0

e−β(aθ+b)2 are convergent for all β > 0, and so is the

series
∑̀
≥1

e−β`
2
. The series

∑
d≥1

d2de−βd
2
d−β =

∑
d≥1

e2d log(d)−β(d2+log(d)) is also convergent. �
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2.15 Gibbs KMS states and zero-temperature states

In this subsection we show what the KMS states look like for a modified system of the kind
introduced in the previous subsection. We find that again the invariants ϕ(η(D)) appear in the
low temperature KMS states, in the form of a weighted sum of the ϕ(η(D)), with η ranging over
the chosen semigroup of Belyi maps. Unlike the case of Corollary 2.32, however, in this case the
invariants ϕ(η(D)) do not occur individually as values of zero-temperature states on elements
µ∗ηπϕ(f)µη of the algebra. As in the previous subsection, we only discuss here explicitly the
case of the semigroup E = EQ̄,0 so that we can use the explicit form of the quantum statistical
mechanical system constructed above.

Consider a character ϕ ∈ HomAlgQ

(
HD, Q̄

)
that satisfies the boundedness condition for the

operators πϕ(f), and let H be as in (2.18), with F and θ as in Proposition 2.41, for the semi-
group E = EQ̄,0. In the range β > 1 where the series (2.21) is convergent, the low temperature
Gibbs KMS states of the quantum statistical mechanical system are given by

ψβ,ϕ(X) = Z(β)−1
∑
η,λ

〈
εη,λ, Xe−βHεη,λ

〉
,

for all X ∈ AHD,E,θ. We are interested here in the values of these Gibbs states on the arithmetic
abelian subalgebra HD of AHD,E,θ. These are given by

ψβ,ϕ(D) = Z(β)−1

( ∑
η∈Er{id},λ∈Ωθ

ϕ(η(D))e−β(F (αη(λ))−F (θ)) deg(η)−β (2.22)

+ ϕ(D)
∑
λ∈Ωθ

e−β(F (λ)−F (θ))

)
. �

Lemma 2.42. Let H be as in (2.18), with F and θ as in Proposition 2.41, with the semigroup
E = EQ̄,0. In the zero-temperature limit where β → ∞, the ground states, evaluated on the
rational subalgebra HD are given by the limits

ψ∞,ϕ(D) = lim
β→∞

ψβ,ϕ(D) = ϕ(D).

Proof. The ground state of the Hamiltonian H of (2.18), with the choice of F and θ as in
Proposition 2.41, corresponds to d = 1 and m = 1 and to λ = θ, and is spanned by the
vector εid,θ. In the limit where β →∞ the expression (2.22), which is the normalized trace

ψβ,ϕ(D) =
Tr
(
πϕ(f)e−βH

)
Tr
(
e−βH

) = Z(β)−1
∑
η,λ

〈
εη,λ, πϕ(f)e−βHεη,λ

〉
converges to 〈ηid,θ, πϕ(f)ηid,θ〉 = ϕ(D). �

In the case of this quantum statistical mechanical system all the values ϕ(η(D)) for η ∈ EQ̄,0
(or another semigroup for which a similar system can be constructed) are built into the Gibbs
states evaluated on the elements of the rational subalgebra, as the expression (2.22) shows.
However, one cannot extract an individual term ϕ(η(D)) from the Gibbs states by taking the
zero-temperature limit, because of the observation in Remark 2.37. Indeed, the zero-temperature
states evaluate trivially on elements of the form µ∗ηπϕ(f)µη since we have ψ∞,ϕ(µ∗ηπϕ(f)µη) =
〈εid,θ, µ∗ηπϕ(f)µηεid,θ〉, but µηεid,θ = 0 since η−1(θ) /∈ Ωθ.

On the other hand, we can still obtain the intertwining of symmetries and Galois action for
zero-temperature KMS states evaluated on the arithmetic subalgebra.
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Proposition 2.43. Suppose that E is a semigroup of Belyi-extending maps for which the con-
struction of the extended quantum statistical mechanical system (AHD,E , σt) can be applied. Let
ϕ ∈ HomAlgQ

(
HD, Q̄

)
be a balanced character as in Definition 2.12. Then the KMS Gibbs

state ψ∞,ϕ at zero temperature evaluated on the rational subalgebra HD intertwines the action
of G = Gal

(
Q̄/Q

)
by symmetries of the quantum statistical mechanical system (AHD,E , σt) with

the Galois action of G on Q̄.

Proof. First note that the G-action on dessins gives an action of G by symmetries of the
quantum statistical mechanical system (AHD,E,θ, σt), namely by automorphisms of the alge-
bra AHD,E,θ compatible with the time evolution: γ ◦ σt = σt ◦ γ, for all t ∈ R and all γ ∈ G.
Here it is convenient to assume that E is a semigroup of Belyi-extending maps rather than a
more general subsemigroup of EQ̄, so that the Galois group acts only on HD and fixes the partial
isometries µη.

Indeed, since in the case of Belyi-extending maps G acts on the abelian subalgebra HD by
the action of Proposition 2.11 and acts trivially on the partial isometries µη, µ

∗
η while the time

evolution acts on the µη, µ
∗
η and acts trivially on HD, the two actions commute. (Note, however,

that if the semigroup homomorphism Υ generating the time evolution is itself Galois invariant,
then the same argument applies to more general subsemigroups of EQ̄.)

Evaluating the zero-temperature KMS state ψ∞,ϕ on an element D of HD gives ψ∞,ϕ(D) =
ϕ(D). Since ϕ is a balanced character, it also satisfies ϕ(γD) = γϕ(D) which gives the inter-
twining of the G-actions. �

Below we consider some variants of quantum statistical mechanical systems associated to
dessins d’enfant.

Generally, in number theory many natural Dirichlet series appear as Euler products whose
p-terms encode the results of counting problems (e.g., counting points of a Z-scheme modp, and
subsequent twisting them by additive or multiplicative characters.

In the examples below, the attentive reader will find analogs of prime decomposition and
twisting by characters, but the central role is taken by counting/enumeration problems them-
selves.

As a result, we obtain again some formal partition functions/Dirichlet series such as (2.25)
and (2.26). Typically they suffer from the same divergence problem that we have already dis-
cussed in the main part of this section and would require a similar modification of the underlying
algebra of observables and representation. We will not discuss this further in this paper.

2.16 Enumeration problems for dessins d’enfant

The enumeration problem for Grothendieck dessins d’enfant was considered in [43, 65]. In [65]
it is shown that the generating function for the number of dessins with assigned ramification
profile at ∞ and given number of preimages of 0 and 1 satisfy the infinite system of PDEs
given by the Kadomtsev–Petviashvili (KP) hierarchy. In [43] it is shown that this generating
function satisfies the Eynard–Orantin topological recursion. Moreover in [4] it is shown that
the generating function of the enumeration of dessins d’enfant with fixed genus, degree, and
ramification profile at ∞ is the partition function of a matrix model, which in the case of clean
dessins agrees with the Kontsevich–Penner model of [12]. We see here that it is also, in an
immediate and direct way, the partition function of a quantum statistical mechanical system
with algebra of observables given by the (Hopf) algebra H constructed above.

Another interesting aspect of the enumeration problem for dessins d’enfant is addressed
in [38], namely a piecewise polynomiality result and a wall crossing phenomenon. More pre-
cisely, the enumeration of (not necessarily connected) dessins d’enfant corresponds to the case
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of “double strictly monotone Hurwitz numbers” considered in [38]. In that case, the counting is
given by

hg;µ,ν =
∑
φ

1

#Aut(φ)
(2.23)

of all isomorphism classes of branched coverings φ : Σ→ P1 of genus g, branched over {0, 1,∞}
with assigned ramification profiles µ = (µ1, . . . , µm) and ν = (ν1, . . . , νn) over 0 and ∞, with

degree
∑

i µi = d =
∑

j νj . Let H(m,n) =
{

(v, w) ∈ Nm × Nn |
m∑
i=1

vi =
n∑
j=1

wj

}
and let

W(m,n) ⊂ H(m,n) be the hyperplane arrangement given by the equations
∑
i∈I

vi =
∑
j∈J

wj

with I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n}. The branching profiles µ, ν, subject to the constraint∑
i µi =

∑
j νj , define a point in H(m,n). It is shown in [38, Theorem 4.1] that in each

chamber C of the complement ofW(m,n) there is polynomial Pg,C(µ, ν) of degree 4g−3+m+n
in m + n variables (µ, ν) such that hg;µ,ν = Pg,C(µ, ν). The behavior in different chambers is
regulated by a wall crossing formula relating the corresponding polynomials.

2.17 Additive invariants and partition function

Consider the Hilbert space `2(D) generated by the set D of all (not necessarily connected)
dessins d’enfant, with the standard orthonormal basis {εD}D∈D and with the action of the
algebra HD by D · εD′ = εD·D′ . Since HD is also a Hopf algebra, we have also an adjoint action
of the Hopf algebra on itself, of the form D : D′ 7→

∑
δ′D′S(δ′′) where in Sweedler notation

∆(D) =
∑
δ′⊗δ′′, with S the antipode, given by the recursive formula S(δ′′) = −δ′′+

∑
S(δ′′1)·δ′′2

for ∆(δ′′) =
∑
δ′′1 ⊗ δ′′2 . Given an element X =

∑
i aiDi with ai ∈ C and Di ∈ D, we write εX

for the vector εX =
∑

i aiεDi in `2(D). We can then set D ·∆ εD′ := ε∑ δ′D′S(δ′′).
Let N be an additive invariant of dessins d’enfant, that is, an invariant of isomorphism

classes of dessins with the property that it is additive on connected components, N (D ·D′) =
N (D) +N (D′). This is the case for invariants such as the genus, the degree, the ramification
indices.

Lemma 2.44. An R+-valued additive invariant N of dessins d’enfant determines a time evo-
lution of the algebra HD,C := HD ⊗QC of the form σt(D) = eitN (D)D, implemented on `2(D) by
the Hamiltonian HεD = N (D)εD. The partition function is given by the generating function of
dessins with assigned invariant N (D).

Proof. We have eitHDe−itHεD′ = e−itN (D′)eitN (D·D′)εD·D′ = σt(D)εD′ , since N (D · D′) =
N (D) +N (D′). The partition function is given by

Z(β) = Tr
(
e−βH

)
=

∑
λ∈N (D)

#{D ∈ D |N (D) = λ}e−βλ. (2.24)

With the change of variables t = e−β, this can be identified with the generating function for the
counting of dessins D ∈ D with assigned value of N (D). �

Note that in (2.24), in order to identify the series with the partition function of the quantum
statistical mechanical system, one assumes that the invariant N is such that the series is conver-
gent for sufficiently large β > 0, while the generating function can be regarded more generally
as a formal power series.

Corollary 2.45. If the additive invariant N of dessins d’enfant also satisfies N (D) = N (δ) +
N (D/δ), for any subdessin δ and quotient dessin D/δ, then the time evolution σt of Lemma 2.44
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is a one-parameter family of Hopf algebra homomorphisms of HD,C. Moreover, the representa-
tion on `2(D) induced by the adjoint action of the Hopf algebra on itself D : D′ 7→

∑
δ′D′S(δ′′)

is also covariant with respect to this time evolution.

Proof. It suffices to check that σt(D) = eitN (D)D is a bialgebra homomorphism, since the
compatibility with the antipode σt(S(D)) = S(σt(D)) is then automatically satisfied. We have
∆(σt(D)) = eitN (D)∆(D) = eitN (δ)eitN (D/δ)

∑
δ ⊗ D/δ. The compatibility with the antipode,

which is a linear antiautomorphism, gives σt(S(D)) = eitN (D)S(D), hence under the action
D·∆εD′ := ε∑ δ′D′S(δ′′) we have eitHDe−itH ·∆εD′ =

∑
eitN (D′)eitN (δ′)eitN (δ′′)e−itN (D′)εδ′D′S(δ′′) =

eitN (D)ε∑ δ′D′S(δ′′) = σt(D) ·∆ εD′ , using again the property that N (D) = N (δ′) +N (δ′′) for all
the terms in the coproduct. �

Suppose given a finite set of integer-valued additive invariants N = (N1, . . . ,Nk), with
Ni(D) ∈ Z+ for all D ∈ D and all i = 1, . . . , k. Let λ = (λ1, . . . , λk) be a chosen set of
λi ∈ R∗+ that are linearly independent over Q. Consider the R∗+-valued additive invariant
Nλ(D) = λ1N1(D) + · · · + λkNk(D), and the time evolution σt determined by Nλ on HD,C as
in Lemma 2.44. If each Ni also satisfies Ni(D) = Ni(δ) +Ni(D/δ) for all sub-dessins then σt is
also a Hopf algebra homomorphism as in Corollary 2.45.

Lemma 2.46. For a given set of additive invariants N = (N1, . . . ,Nk) and a choice of coef-
ficients λ = (λ1, . . . , λk) as above, the partition function of the time evolution σt computes the
generating functions of dessins d’enfant with fixed invariants Ni for i = 1, . . . , k.

Proof. We have

Z(β) = Tr
(
e−βH

)
=

∑
α∈Nλ(D)

#{D ∈ D |Nλ(D) = α}e−βα,

where α ∈ Nλ(D) means that α =
∑

i λini with ni ∈ Ni(D). Since the λi are linearly indepen-
dent over Q, this determines the ni and we can write the sum above as∑

n1,...,nk

#{D ∈ D |Ni(D) = ni}e−βλ1n1 · · · e−βλknk .

Upon setting ti = e−λi , we identify this series with the generating function for dessins with fixed
values of the invariants Ni(D) for i = 1, . . . , k. �

In particular, we see from this simple general fact that we can reinterpret as partition functions
the generating functions of [43] and [65] for the number of dessins with assigned ramification
profile at∞ and given number of preimages of 0 and 1, as well as the generating function of [38]
of dessins of genus g with assigned ramification profiles over 0 and ∞.

While this system recovers the correct partition function that encodes the counting problem
for dessins, since the representation of the algebra D ·εD′ = εD·D′ on the Hilbert space is a simple
translation of the basis elements, we do not have an interesting class of low temperature KMS
states, unlike the case we discussed in the previous subsections.

2.18 Fibered product structure on dessins

This subsection together with the subsequent Sections 2.19 and 2.20 contain a short digression
on a construction of dynamics and partition functions based on different product structures on
dessins.

We describe here a possible variant of the construction presented in the previous subsection,
where instead of considering the (Hopf) algebra HD of not necessarily connected dessins, where
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the multiplication is given by the disjoint union, we consider a commutative algebra of dessins
based on a different product structure built using the fibered product of the Belyi maps. The
resulting construction of an associated quantum statistical mechanical system is similar to the
previous case, but the associated partition function will have here the structure of a Dirichlet
series rather than the usual power series generating function for the counting of dessins.

A product operation on dessins induced by the fibered product of the Belyi maps was discussed
in [58]. Let D1 and D2 be two dessins with fi : Xi → P1(C) the associated Belyi maps. Let Y
denote the desingularization of the fibered product Ỹ = X1 ×P1(C) X2, fibered along the Belyi
maps fi, and let f : Y → P1(C) denote the resulting branched covering map. Consider the
graph D given by the preimage f−1(I) in Y . The graph D can be combinatorially described
in terms of D1 and D2, with bipartite set of vertices V0(D) = V0(D1) × V0(D2) and V1(D) =
V1(D1) × V1(D2) and with set of edges given by all pairs of edges (e1, e2) ∈ E(D1) × E(D2)
with endpoints in V (D). We denote the fibered product of dessins by D = D1 ? D2. We
correspondingly write f = f1 ? f2 for the fibered product of the Belyi maps. Under this fibered
product operations, the degree is multiplicative d = d1d2, and so are the ramifications m =
#V0(D) = m1m2 and n = #V1(D) = n1n2 and the ramification profiles µi = µi,1µi,2 and
νj = νj,1νj,2.

Let AQ be the algebra over Q generated by the dessins D with the fibered product as above.
Equivalently we think of elements of AQ as functions with finite support a : D → Q from the
set D of dessins, with the convolution product a1?a2(D) =

∑
D=D1?D2

a1(D1)a2(D2). The resulting

convolution algebra AQ is commutative. We let AC = AQ⊗QC be the complex algebra obtained
by change of coefficients. The generators of the algebra AQ are those dessins D that admit no
non-trivial fibered product decomposition D = D1 ? D2, which we refer to as “indecomposible
dessins”.

2.19 Arrangements and semigroup laws

We now consider the commutative semigroups S := ⊕n≥1Nn and S ⊕ S, with the product of
(µ, ν) ∈ Nm ⊕ Nn and (µ′, ν ′) ∈ Nm′ ⊕ Nn′ given by (µµ′, νν ′) with (µµ′ = (µiµ

′
i′)(i,i′), νν

′ =

(νjν
′
j′)) ∈ Nmm′ ⊕Nnn′ . We restrict this semigroup law to the arrangements H(m,n) considered

in [38].

Lemma 2.47. Given m,n ∈ N let H(m,n) =
{

(µ, ν) ∈ Nm ⊕ Nn |
m∑
i=1

µi =
n∑
j=1

µj

}
. The

arrangements H(m,n) determine a subsemigroup Hdeg ⊂ S ⊗ S.

Proof. With Hdeg = ⊕m,nH(m,n) ⊂ S ⊗ S we see that for (µ, ν) ∈ H(m,n) and (µ′ν ′) ∈
H(m′, n′) we have (µµ′, νν ′) ∈ H(mm′, nn′) with

∑
(i,i′) µiµ

′
i′ = d · d′ =

∑
(j,j′) νjν

′
j”, where∑

i µi = d =
∑

j νj and
∑

i′ µ
′
i′ = d′ =

∑
j′ ν
′
j′ . �

This simple fact shows that the data of the ramification profiles at two of the three ramification
points, say at 0 and ∞, of the dessins can be arranged as a multiplicative semigroup structure.
This semigroup operation is consistent with the algebra operation in AQ given by the fibered
product.

Lemma 2.48. The degree, the ramification profiles and the ramification indices over the points
{0, 1,∞} are multiplicative with respect to the fibered product operation of Belyi functions f : Σ→
P1. If µ = (µ1, . . . , µm) and ν = (ν1, . . . , νn) are the ramification profiles over 0 and ∞, then the
ramification index r at 1 satisfies r = χ(Σ)−χ(D), where χ is the topological Euler characteristic.

Proof. We have already seen in the construction of the fibered product dessin D = D1 ? D2

in the previous subsection that the ramification indices and the ramification profiles behave
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multiplicatively. By the Riemann–Hurwitz formula the Euler characteristic χ(Σ) satisfies

χ(Σ) = d · χ
(
P1
)
−
∑
P∈Σ

(eP − 1),

where the sum is taken over the ramification points with the corresponding ramification index,
so we have

χ(Σ) = 2d+
m∑
i=1

(µi − 1) +
n∑
j=1

(νj − 1) +
r∑

k=1

(ρk − 1) = −d+m+ n+ r,

where ρ = (ρk)
r
k=1 is the ramification profile over the point 1. Since m + n = #V (D) and

d = #E(D) we have −d+m+ n = χ(D). �

The relation between the ramification index r and the Euler characteristics χ(Σ) and χ(D)
shows that the enumeration of dessins with fixed µ, ν, g as in [38] can be reformulated as
the enumeration of dessins with fixed µ, ν, r. The advantage of this formulation is that the
assignment of the data (µ, ν, r) is multiplicative with respect to the fibered product operation
on Belyi functions.

2.20 Multiplicative invariants and partition function

Let Υ be a multiplicative invariant of dessins d’enfant, that is, an invariant with the property
that Υ(D ?D′) = Υ(D) ?Υ(D′), where D ?D′ is the fibered product. We assume that Υ takes
values in a group, a semigroup, or an algebra.

As in the previous subsections, we consider the Hilbert space `2(D). The algebra AQ acts by
bounded operators with D · εD′ = εD?D′ .

Lemma 2.49. An N-valued multiplicative invariant Υ of dessins d’enfant determines a time
evolution on the algebra AQ⊗QC of the form σt(D) = Υ(D)itD, implemented by the Hamiltonian
HεD = log(Υ(D))εD. The partition function of this quantum statistical mechanical system is
a Dirichlet series with coefficients enumerating dessins with assigned invariant Υ(D).

Proof. We have eitHDe−itHεD′ = Υ(D′)−itΥ(D ? D′)itεD?D′ = σt(D)εD′ , by the multiplicative
property. The partition function is given by the formal Dirichlet series

Z(β) = Tr
(
e−βH

)
=
∑
n≥1

#{D ∈ D |Υ(D) = n}n−β. � (2.25)

In particular, since the ramification profiles, ramification indices and degree behave multi-
plicatively with respect to the fibered product of dessins, we obtain a partition function as above,
associated to the counting problem of [38], where the multiplicative invariants take values in the
semigroup Hdeg of Lemma 2.47.

Proposition 2.50. The partition function (2.25) associated to the counting problem of [38] is
given by∑

m,n,r

∑
(µ,ν)∈H(m,n)

hg;µ,νr
−sµ−s11 · · ·µ−smm ν−σ11 · · · ν−σnn (2.26)

with the hg;µ,ν as in (2.23) and with H(m,n) =
{

(µ, ν) ∈ Nm × Nn |
∑

i µi =
∑

j νj
}

.
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Proof. First observe that by Lemma 2.48 we can express the genus g as a function of the
multiplicative invariants d, r, m, n, hence we can identify the counting function hg;µ,ν of (2.23)
with a function hr;µ,ν . The piecewise polynomiality result of [38] shows that the hr;µ,ν are
polynomials Pd,r,C(µ, ν) in the variables (µ, ν) of degree 2d + 1 − 2r − m − n, for all (µ, ν)
in a fixed chamber C of the arrangement H(m,n). Let α1, . . . , αm and κ1, . . . , κn and λ be
coefficients in R∗+ such that, for all integers r, ai, bj > 1 with

∑
i ai =

∑
j bj , the products

rλaα1
1 · · · aαmm bκ11 · · · bκnn 6= 1. Then given multiplicative invariants (µ, ν) ∈ Hdeg we can form

a single multiplicative invariant

Υm,n(D) :=

m∏
i=1

µi(D)αi
n∏
j=1

νj(D)κj ,

such that
{
D |Υm,n(D) = rλaα1

1 · · · aαmm bκ11 · · · bκnn
}

= {D |µi(D) = ai, νj(D) = bj}. Given
a sequence {αi, κj} that satisfies the property above for given d, m, n we obtain a time evolution
σt(D) = Υm(D),n(D)(D)itD on AC = AQ ⊗Q C with partition function given by the formal
Dirichlet series

Z(β) =
∑
D∈D

Υm(D),n(D)(D)−β =
∑
r,m,n

hr,m,n;µ,νr
−βλµ−βα1

1 · · ·µ−βαmm ν−βκ11 · · · ν−βκnn .

This agrees with (2.26) for s = βλ, si = βαi and σj = βκj . �

3 Bost–Connes crossed product algebras
and the Grothendieck–Teichmüller groupoid

The basic object of combinatorial topology related to the set of Belyi maps f : Σ → P1, is the
fundamental groupoid of P1 \ {0, 1,∞} classifying (modulo homotopy) oriented paths between
pairs of, say, algebraic points of P1(C) \ {0, 1,∞}.

For studying its interactions with the absolute Galois group, it is convenient to restrict the
set of base points to Deligne’s base points at 0, 1 and ∞ that is, real tangent directions to these
points, as explained in [40, 41], and earlier, although in a less explicit form, in [31].

This groupoid can be visualized via the Grothendieck–Teichmüller group: product of two
cyclic sugroups generated by loops around 0 and 1 respectively, and connecting them involution
generated by a path from 0 to 1. We will sometimes refer to this involution as hidden symmetry,
or else Drinfeld–Ihara involution.

This section is dedicated to the constructions of quantum statistical mechanical systems
associated to the absolute Galois group G = Gal(Q̄/Q). They transfer to the Grothendieck–
Teichmüller environment versions of the Bost–Connes algebras considered in [55].

We will start with a description of the combinatorial version of the (profinite) Grothendieck–
Teichmüller group mGT as the automorphism group of the genus zero modular operad, as was
done in [16].

3.1 Bost–Connes algebra with Drinfeld–Ihara involution

The group mGT was defined in [16] in the following way. One starts with the same projective
limit as in the Bost–Connes endomotive ([17, Section 3.3], and [55, Section 2.1]). Put Xn =
Spec(Q[Z/nZ]) with projections Xn → Xm when m|n ordered by divisibility, and consider first
the limit X = lim←−nXs = Spec(Q[Q/Z]).

We then enrich the action of the automorphism group Ẑ∗ on X and on the Bost–Connes
algebra Q[Q/Z] o N corresponding to the actions of the groups Z/nZ∗ of the Xn, with the
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further symmetries θn of Xn. Concretely, the map θn is the involution of Xn = {0, . . . , n − 1}
given by k 7→ n− k + 1.

The non-abelian group mGTn is defined as the subgroup of the symmetric group Sn generated
by Z/nZ∗ and θn. One defines the group mGT = lim←−n mGTn

Lemma 3.1. The involutions θn : Xn → Xn are compatible with the maps σm : Xnm → Xn

of the projective system of the Bost–Connes endomotive, namely σm ◦ θnm = θn ◦ σm. They
determine an involution θ : X → X on the projective limit.

Proof. If we identify Xn with the set of roots of unity of order n, this involution can be
equivalently written as θn(ζ) = ζn · ζ−1, where ζn = exp(2πi/n). Also, identifying the set Xn

with roots of unity of order n, the maps σm : Xnm → Xn are given by raising to the m-th power,
σm(ζ) = ζm. Thus, we have σm(θnm(ζ)) = ζmnm ·

(
ζ−1
)m

= θn(ζm) = θn(σm(ζ)). �

We refer to the map θ : X → X as the Drinfeld–Ihara involution of the Bost–Connes endo-
motive mentioned above. The following reformulation of this involution in terms of its action
on the Bost–Connes algebra then follows directly.

Proposition 3.2. The involution θ : X → X described above induces a self-map of the arith-
metic Bost–Connes algebra Q[Q/Z]oN, which acts by θ(e(r)) = e

(
1−a
b

)
on generators e(r) with

r ∈ Q/Z, r = a/b for integers with (a, b) = 1.
The group mGT acts on the Bost–Connes quantum statistical mechanical system compatibly

with the time evolution and preserving the arithmetic subalgebra.

Proof. The first statement follows directly from Lemma 3.1, which determines the action of θ
on the generators e(r) of the abelian subalgebra Q[Q/Z]. The action on the arithmetic Bost–
Connes algebra Q[Q/Z]oN is then determined by letting θ act as the identity on the remaining
generators µn.

This action extends to an action on the Bost–Connes C∗-algebra C∗(Q/Z)oN, which preserves
the arithmetic subalgebra. This action is compatible with the time evolution since the action is
trivial on the generators µn so that θ ◦ σt = σt ◦ θ.

The group mGT is generated by elements of Ẑ∗ and the Ihara involution θ. In fact, we can
write arbitrary elements in mGT as sequences θε0γ1θγ2θ · · · θγnθε1 for ε0, ε1 ∈ {0, 1} and with
the γk ∈ Ẑ∗. The group Ẑ∗ acts by automorphisms of the Bost–Connes quantum statistical
mechanical system with γ ◦ σt = σt ◦ γ, preserving the abelian subalgebra. Since the action
of θ also has these properties, we obtain an action of mGT as symmetries of the Bost–Connes
quantum statistical mechanical system. �

To be more precise, the effect of enlarging the group of symmetries from Ẑ∗ to mGT implies
that we can consider a larger family of covariant representations of the Bost–Connes system on
the same Hilbert space `2(N), parameterized by elements of mGT, by setting, for α ∈mGT,

πα(e(r))εn = α(ζr)
nεn,

where ζr is the image of r ∈ Q/Z under a fixed embedding of the abstract roots of unity Q/Z
in C∗. The isometries µn from [55] act in the usual way, µmεn = εnm. This change does not affect
the generating Hamiltonian of the time evolution, nor the corresponding partition function given
by the Riemann zeta function. The low temperature Gibbs states are still given by polylogarithm
functions evaluated at roots of unity, normalized by the Riemann zeta function. However, when
evaluating zero temperature KMS states on elements of the arithmetic subalgebra, we now have
an action of the larger group mGT on the values in Qab. This action by a non-abelian group
no longer has a Galois interpretation as an action on roots of unity, hence it does not directly
give us a way to extend the Bost–Connes system to non-abelian Galois theory.
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In the remaining part of this section, we will show that there are other possible ways of
incorporating the Drinfeld–Ihara involution in a construction generalizing the Bost–Connes al-
gebra that lead to more interesting changes to the structure of the resulting quantum statistical
mechanical system.

3.2 Crossed product algebras and field extensions

The variant of the Bost–Connes quantum statistical mechanical system constructed in [55] was
aimed at merging two different aspects of F1-geometry: the relation described in [18] of the
integral Bost–Connes algebra to the extensions F1m of [42], and the analytic functions over F1

constructed in [53]. The modified Bost–Connes algebra considered in [55] involves an action of
endomorphisms on the Habiro ring of [37].

We consider here a simpler variant of the algebra of [55], which will enable us to present
naturally the transition from abelian to non-abelian Galois groups in a form that recovers the
embedding of the absolute Galois group in the Grothendieck–Teichmüller group as described by
Ihara in [41].

Let FQ = Q[tr; r ∈ Q∗+] be the polynomial algebra in rational powers of a variable t. For
s ∈ Q∗+ let σs denote the action σs(f)(t) = f(ts) for f ∈ FQ. Thus, we can form the group
crossed product algebra FQ oQ∗+.

The subsemigroup N of the group Q∗+ induces an action by endomorphisms on the subalgebra
PQ = Q[t] by σn(f)(t) = f(tn). Note that, unlike the morphisms σn of the Bost–Connes system,
acting by endomorphisms of Q[Q/Z], which are surjective but not injective, in this case the
morphisms σn acting on PQ are injective.

Consider, as in the case of the original Bost–Connes algebra, generators µn and µ∗n, for n ∈ N,
satisfying the relations µnµm = µnm, µ∗nµ

∗
m = µ∗nm, µ∗nµn = 1, and in the case where (n,m) = 1

also µnµ
∗
m = µ∗mµn. Consider the algebra generated by PQ and the µn, µ∗n with the relations

µ∗nf = σn(f)µ∗n and fµn = µnσn(f). The elements πn = µnµ
∗
n satisfy π2

n = πn = π∗n and
πnf = fπn for all f ∈ PQ and all n ∈ N.

Unlike the Bost–Connes case, the πn are not elements of the algebra PQ on which the semi-
group is acting.

Denote by ρn the endomorphisms ρn(f) := µnfµ
∗
n. They satisfy the relations σn(ρn(f)) = f

and ρn(σn(f)) = πnf . The map that sends µnfµ
∗
n to f(t1/n) identifies the direct limit of the

injective maps σn : PQ → PQ with FQ on which the action of the σn becomes an action by
automorphisms. This leads to the crossed product algebra FQ oQ∗+.

Furthermore, in [55] there was considered the inverse limit F̂Q = lim←−N FQ/JN with respect

to the ideals JN generated by (tr)N = (1− tr) · · ·
(
1− trN

)
for r ∈ Q∗+, which is modelled on the

Habiro ring construction of [37]. Here instead we replace FQ and PQ with the Q-algebras AQ̄ =

Q̄{{t}}, given by the algebraically closed field of formal Puiseux series Q̄{{t}} = ∪N≥1Q̄
((
t1/N

))
,

and the field of rational functions BQ = Q̄(t), respectively.

3.3 The Drinfeld–Ihara hidden symmetry involution

The involution t 7→ 1 − t maps isomorphically Q̄{{t}} → Q̄{{1 − t}}, and as in [41] we denote
by M and M ′, the maximal Galois extensions of Q̄(t) unramified outside of {0, 1,∞} inside
Q̄{{t}} and in Q̄{{1 − t}}, respectively, with the involution mapping M → M ′. The absolute
Galois groupGQ = Gal(Q̄/Q) acts on Q̄{{t}} and Q̄{{1−t}} by acting on the Puiseux coefficients
and induces actions on M and M ′. Moreover, as discussed in [41], the Galois group Gal

(
M/Q̄(t)

)
can be identified with the profinite fundamental group F̂2 = π̂1

(
P1 r {0, 1,∞}, (0, 1)

)
, where

F2 = π1

(
P1 r {0, 1,∞}, (0, 1)

)
is the free group on two generators.
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As observed in [41], the maximal abelian subextension of Q̄(t) in M is generated by all the
elements t1/N and (1−t)1/N . Thus, we can view a slightly modified version of the construction of
the crossed product algebra FQoQ∗+ mentioned above as a construction of this maximal abelian
extension, just like the original Bost–Connes system can be regarded as a noncommutative
geometry construction of the maximal abelian extension of Q.

3.4 Semigroup action and maximal abelian extension

More precisely, we need to modify the above crossed product algebra construction to account
for the missing involution t ↔ 1 − t. This can be done by replacing the polynomial algebra
PQ = Q[t] with BQ = Q̄(t) and, in addition to the endomorphisms σn(f)(t) = f(tn) considering
an extra generator τ(f)(t) = f(1− t).

Definition 3.3. Denote by S the non-abelian semigroup given by the free product S = N?Z/2Z.
Its elements can be written in the form

µs = F ε0µn1Fµn2F · · ·FµnkF
ε1 ,

with s = s(ε0, ε1, n) for ε0, ε1 ∈ {0, 1} and n = (n1, . . . , nk).

Denote by S0 and S1 the two abelian sub-semigroups given, respectively, by S0 = N and
S1 = FNF = {µ̃n := FµnF |n ∈ N}.

The following statement is obtained by directly adapting the original argument of [55] as
discussed in the subsection 3.2 above.

Lemma 3.4. The sub-semigroups S0 and S1 define the action of endomorphisms σn and σ̃n
upon BQ = Q̄(t), with partial inverses ρn and ρ̃n respectively.

The direct limits with respect to injective endomorphisms σn and σ̃n can be identified, respec-
tively, with the crossed product algebras BQ,0 oQ∗+ and BQ,1 oQ∗+, where BQ,0 = Q̄(tr; r ∈ Q∗+)
and BQ,1 = Q̄((1− t)r; r ∈ Q∗+).

Proof. The elements µ̃n = FµnF , with µ̃∗n = Fµ∗nF , satisfy µ̃∗nfµ̃n = σ̃n(f). Here σ̃n = τ◦σn◦τ
is the semigroup action σ̃nm = σ̃n ◦ σ̃m given by σ̃n(f)(t) = f

(
1 − (1 − t)n

)
. Correspondingly

we have µ̃nfµ̃
∗
n = ρ̃n(f) with ρ̃n(f)(t) = f

(
1− (1− t)1/n

)
. �

Together with the description of [41] of the maximal abelian subextension of Q̄(t) in M as
generated by all the elements t1/N and (1 − t)1/N (see also [51]), we then obtain this maximal
abelian subextension in the following way.

Proposition 3.5. Consider the algebras BQ,0 and BQ,1 of Lemma 3.4 as subalgebras of M . They
together generate the maximal abelian subextension of M .

3.5 Semigroup action and non-abelian extensions

We now consider the semigroup action of the full S = N ? Z/2Z and the endomorphisms σs of
BQ = Q̄(t), given by σs(f) = µ∗sfµs with partial inverses ρs(f) = µsfµ

∗
s.

Lemma 3.6. Consider the Q̄-algebra generated by the field of rational functions BQ = Q̄(t)
and an additional generator F satisfying relations F = F ∗, F 2 = Id, and FfF = τ(f), for all
f ∈ Q̄(t).

The resulting algebra is a group crossed product B̃Q = BQ o Z/2Z, where the Z/2Z action is
the Drinfeld–Ihara involution t 7→ 1− t.
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Proof. The generator F is a sign operator since it satisfies F = F ∗, F 2 = Id, and it implements
the Drinfeld–Ihara involution by the relation FfF = τ(f), hence we obtain the action of BQ o
Z/2Z as superalgebra. �

Consider now the Q̄-algebra generated by the field of rational functions BQ = Q̄(t) and a set
of generators µn, µ∗n with relations

µnµm = µnm, µ∗nµ
∗
m = µ∗nm, µ∗nµn = 1

for all n ∈ N, as well as

µnµ
∗
m = µ∗mµn

for (n,m) = 1, and

µ∗nf = σn(f)µ∗n, fµn = µnσn(f)

for all f ∈ Q̄(t) and all n ∈ N. Moreover, include an additional generator F satisfying

F = F ∗, F 2 = Id, FfF = τ(f)

for all f ∈ Q̄(t).
This Q̄-algebra contains the group crossed product BQ o Z/2Z of Lemma 3.6 and the full

semigroup S = N?Z/2Z. In fact the same argument as in Section 3.2 shows that we can describe
this algebra in terms of a direct limit over the endomorphisms σs acting on BQ, where the action
in the limit becomes implemented by automorphisms, so that the resulting algebra is a group
crossed product by Υ = Q∗+ ? Z/2Z.

Lemma 3.7. For an element s ∈ S and for f(t) = t consider the function ρs(t). This de-
termines a curve Σs which is a branched covering of P1 branched at {0, 1,∞}, with field of
functions Q̄(Σs) given by the smallest finite Galois extension of Q̄(t)) unramified outside of
{0, 1,∞} that contains ρs(t), with Galois group Gs := Gal

(
Q̄(Σs)/Q̄(t)

)
.

Proof. Using notation of the Definition 3.3, we can write s in the form s = s(ε0, ε1, n) for
some ε0, ε1 ∈ {0, 1} and some n = (n1, . . . , nk). Then the element z = ρs(t) is given by ρs(t) =
τ ε0ρn1τρn2 · · · τρnkτ ε1 . It satisfies a polynomial equation of the form τ ε0σn1τ · · · τσnkτ ε1(z) = t.

For example, for s = µnFµmF we have z = ρs(t) = 1−
(
1−t1/n

)1/m
satisfying

(
1−(1−z)m

)n
= t,

while for s = µnFµm we have z = ρs(t) =
(
1 − t1/n

)1/m
with

(
zm − 1

)n
= t. Thus, the

element ρs(t) detemines a branched covering of P1 with branch locus in the set {0, 1,∞}.
Any finite field extension of C(t) unramified outside of {0, 1,∞} determines a compact com-

plex Riemann surface Σs with a branched covering of P1 unramified outside of these three points.
Such Σs is defined over a number field and descends to an algebraically closed fields (see the
descent technique described in [51, Section 2.1]). This gives the required result for the field of
functions Q̄(Σs). �

Proposition 3.8. The fields Q̄(Σs) form a direct system over the semigroup S ordered by
divisibility. The direct limit Q̄(ΣS) := lim−→s∈S Q̄(Σs), with symmetries GS = lim←−s∈S Gs, contains

all functions of the form (1 − tr)r
′

for r, r′ ∈ Q∗+. The resulting action of S on the direct
limit Q̄(ΣS) becomes invertible and extends to an action of the enveloping group Υ = Q∗+?Z/2Z.

Proof. For all s ∈ S, the morphisms σs acting on BQ are injective. This can be seen by
explicitly writing

σs(f) = τ ε0σn1τσn2 · · · τσnkτ
ε1(f),
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for an element s = s(ε0, ε1, n) ∈ S, where both the involution τ and the endomorphisms σni
are injective. The map f 7→ σs(f) gives an embedding of Q̄(t) inside Q̄(Σs). Thus, on the
limit Q̄(ΣS) the morphisms σs become invertible and the field Q̄(ΣS) contains all the ρs(f)
for all f ∈ Q̄(t). In particular, it then contains all the functions of the form (1 − tr)r

′
for

r, r′ ∈ Q∗+. �

Remark 3.9. By viewing Q̄(Σs) as a subfield of Q̄{{t}} (or of Q̄{{1 − t}}), we can identify
elements in Q̄(Σs) with analytic functions on the region (0, 1)C = C r ((−∞, 0] ∪ [1,∞)) con-
sidered in [41], with a convergent Puiseux series expansion on (0, 1), where all the (1− tr)r′ , for
r, r′ ∈ Q∗+, are assumed to be positive real for t ∈ (0, 1).

3.6 Quantum statistical mechanics of Q∗
+

The definition of a quantum statistical mechanical system associated to this construction, relies
on the general setting for a quantum statistical mechanics for the group Q∗+ described in [57],
which we recall briefly here, adapted to our environment.

Let H = `2(Q∗+) be the Hilbert space with canonical orthonormal basis {εr}r∈Q∗+ . For r =

pn1
1 · · · p

nk
k the prime decomposition of r ∈ Q∗+ with pi distinct primes and ni ∈ Z, consider the

densely defined unbounded linear operator

Hεr = (|n1| log(p1) + · · ·+ |nk| log(pk))εr. (3.1)

The operator e−βH is trace class for β > 1 with

Tr
(
e−βH

)
=
ζ(β)2

ζ(2β)
=
∑
n≥1

2ω(n)

nβ
.

Here ζ(β) is the Riemann zeta function, and ω(n) denotes the number of pairwise distinct prime
factors of n.

Consider the algebra C∗r (Q∗+) acting via the left regular representation on `2(Q∗+). The
smallest sub-C∗-algebra A(Q∗+) of B

(
`2(Q∗+)

)
that contains C∗r (Q∗+) and is preserved by the time

evolution σt(X) = e−itHXeitH , withH as above, is generated by C∗r (Q∗+) and the projections Πk,`

with Πk,`εa/b = εa/b when k|a and `|b, for (a, b) = 1, and zero otherwise. The spectral projections
of H belong to this C∗-algebra, hence the time evolution acts by inner automorphisms, see [57]
for a more detailed discussion.

3.7 Quantum statistical mechanics of S and Υ

In our setting, we consider first the semigroup S = N?Z/2Z. It acts upon the Hilbert space `2(S)
via the left regular representation. Thus, for {εs}s∈S the standard orthonormal basis of `2(S)
and for a given s′ ∈ S we have µs′εs = εs′s.

Lemma 3.10. Consider the semigroup C∗-algebra C∗r (S) acting on `2(S) by the left regular
representation. The transformations σt(µs) = nitµs, where n = n1 · · ·nk for s = s(ε0, ε1, n)
with n = (n1, . . . , nk), define a time evolution σ : R → Aut(C∗r (S)). Consider then the densely
defined unbounded linear operator on the Hilbert space `2(S) given by

Hεs = log(n1 · · ·nk)εs,

for s = s(ε0, ε1, n) with ε0, ε1 ∈ {0, 1} and n = (n1, . . . , nk), with ni ∈ N, ni > 1. The operator H
is the Hamiltonian that generates the time evolution σt on the C∗-algebra C∗r (S). The partition
function of the Hamiltonian H is given by

Z(β) = Tr
(
e−βH

)
=

4

2− ζ(β)
,

where ζ(β) is the Riemann zeta function.
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Proof. In order to check that σt(µs) = nitµs defines a time evolution as above, we first no-
tice that the assignment n : s 7→ n(s) = n1 · · ·nk for s = s(ε0, ε1, n) with n = (n1, . . . , nk) is
a semigroup homomorphism S → N.

In order to see that the operator H is the infinitesimal generator of this time evolution we
check that, for all s ∈ S and for all t ∈ R, we have σt(µs) = eitHµse

−itH as operators in B(`2(S)).
Indeed, both sides act on a basis element εs′ as n(ss′)itn(s′)−itεss′ = n(s)itεss′ . The multipli-

city of an eigenvalue log n of the Hamiltonian H is 4Pn, where the factor 4 accounts for the four
choices of ε0, ε1 ∈ {0, 1} and Pn is the total number of ordered factorizations of n into nontrivial
positive integer factors.

Thus, the partition function equals

Z(β) = Tr
(
e−βH

)
= 4

∑
n

Pnn
−β = 4

(
1 +

∞∑
k=1

∞∑
n=2

n−β
∑

n=n1···nk

1

)

= 4

1 +
∑
k≥1

k∏
i=1

∑
ni≥2

n−βi

 = 4
∞∑
k=0

(ζ(β)− 1)k =
4

2− ζ(β)
. �

We now consider the enveloping group Υ = Q∗+ ? Z/2Z. We proceed as in the quantum
statistical mechanics of Q∗+ described in [57] and recalled above. For a positive rational number
r ∈ Q∗+ with prime decomposition r = pa11 · · · p

a`
` where pi a pairwise distinct primes and ai ∈ Z,

ai 6= 0, let

n(r) = p
|a1|
1 · · · p|a`|` . (3.2)

Lemma 3.11. Consider on `2(Υ) the densely defined unbounded linear operator

Hευ = log(n(r1) · · ·n(rk))ευ, (3.3)

for an element υ = υ(ε0, ε1, r) with ε0, ε1 ∈ {0, 1} and r = (r1, . . . , rk) with ri ∈ Q∗+, ri 6= 1. The
operator e−βH satisfies

Z(β) = Tr
(
e−βH

)
=

4ζ(2β)

2ζ(2β)− ζ(β)2
.

Proof. The eigenvalue log n of H has multiplicity 4
∑

n=n1···nk
2ω(n1)+···+ω(nk) where the factor of

4 accounts for the choices of ε0, ε1 ∈ {0, 1} and each factor 2ω(ni), with ω(ni) the number of
distinct prime factors of ni, accounts for all the ri ∈ Q∗+ with n(ri) = ni.

Thus, we obtain

Tr
(
e−βH

)
= 4

1 +
∑
k≥1

∑
n=n1···nk

2ω(n1)+···+ω(nk)n−β


= 4

1 +
∑
k≥1

k∏
i=1

∑
ni≥2

2ω(ni)

nβi

 = 4

(
1 +

∑
k

ζ(β)2

ζ(2β)
− 1

)k
=

4

2− ζ(β)2

ζ(2β)

. �

As in the case of the quantum statistical mechanics of Q∗+, the time evolution on B
(
`2(Υ)

)
ge-

nerated by the Hamiltonian H of (3.3), no longer preserves the reduced group C∗-algebra C∗r (Υ)
acting on `2(Υ) through the left regular representation, since we have n(rr′)=n(r)n(r′)(b, u)(a, v)
for r = u/v with (u, v) = 1 and r′ = a/b with (a, b) = 1. This implies the following behavior of
the time evolution on the generators of C∗r (Υ).
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Lemma 3.12. For m = (m1, . . . ,mk) and ` = (`1, . . . , `k), let Πm,` denote the projection
on `2(Υ) given by Πm,`µυ = µυ if υ = υ(ε0, ε1, r) with r = (r1, . . . , rk) where ri = ai/bi, and
(ai, bi) are coprime integers such that ki|bi and `i|ai.

The sub-C∗-algebra AΥ of B(`2(Υ)) generated by C∗r (Υ) and by the projections Πm,` is stable
under the time evolution σt : X 7→ eitHXe−itH on B

(
`2(Υ)

)
. This time evolution acts on AΥ by

inner automorphisms.

Proof. Consider an element s = s(ε0, ε1, r) with r = (r1, . . . , rk) and ri = ai/bi where ui, vi ∈ N
with (ui, vi) = 1. We have

eitHµse
−itHεs′ = n(ss′)itn(s′)−itµsεs′ =

∑
mi|ui,`i|vi

n(s)it(m1 · · ·mk)
it(`1 · · · `k)itµsΠm,`.

This shows that the sub-C∗-algebra of B(`2(Υ)) generated by C∗r (Υ) and by the projections Πm,`

is stable under the time evolution σt. As in the case of Q∗+ discussed in [57] the spectral
projections of H are in the algebraAΥ hence the time evolution is acting by inner automorphisms
on AΥ. �

3.8 Quantum statistical mechanics and the Drinfeld–Ihara embedding

We now consider the crossed product algebra Q̄(ΣS) o Υ introduced in Proposition 3.8, and its
quantum statistical properties.

By Remark 3.9, elements h ∈ Q̄(ΣS) determine analytic functions hC in the region (0, 1)C
with convergent Puiseux series.

Definition 3.13. Given a function h ∈ Q̄(ΣS) and the choice of a point τ ∈ (0, 1), we define
a linear operator πτ (h) on `2(Υ) by setting

πτ (h)ευ = συ(h)C(τ)ευ, (3.4)

where for υ = υ(ε0, ε1, r), with r = (r1, . . . , rk), we put

συ(h) = τ ε0 ◦ σr1 ◦ τ ◦ · · · ◦ τ ◦ σrk ◦ τ
ε1(h).

Remark 3.14. If the analytic function hC is bounded on the unit interval, then for any choice
of τ ∈ (0, 1) the operator of (3.4) is bounded, πτ (h) ∈ B

(
`2(Υ)

)
.

Lemma 3.15. For any choice of a point τ ∈ (0, 1), the operators πτ (h) from (3.4) determine
an action of the crossed product algebra Q̄(ΣS) o Υ on the Hilbert space `2(Υ).

Proof. We let the generators µυ with υ ∈ Υ of the algebra act on the Hilbert space through the
left regular representation µυευ′ = ευυ′ . It is then sufficient to check that the operators πτ (h)
of (3.4) satisfy the relations

µ∗υπτ (h)µυ = πτ (συ(h)) and µυπτ (h)µ∗υ = πτ (ρυ(h)).

We have ευυ′ = µυευ′ and

πτ (h)µυευ′ = h(συυ′(τ))ευυ′ = µυσυυ′(h)(τ)ευ′ = µυπτ (συ(h))ευ′ .

The other relation is checked similarly. �

The same argument as in Lemma 3.12 then gives the following.
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Lemma 3.16. The time evolution σt(X) = eitHXe−itH on B(`2(Υ)) generated by the Hamil-
tonian H of (3.3) induces a time evolution on the algebra generated by Q̄(ΣS) o Υ and the
projections Πk,` of Lemma 3.12. This time evolution acts as the identity on Q̄(ΣS).

Lemma 3.17. Let AQ,ΣS ,Υ denote the algebra generated by Q̄(ΣS)oΥ and the projections Πk,`,
with the time evolution σt generated by the Hamiltonian of (3.3). The absolute Galois group
G = Gal(Q̄/Q) acts by symmetries of the dynamical system (AQ,ΣS ,Υ, σt).

Proof. The absolute Galois group G = Gal
(
Q̄/Q

)
acts on Q̄(ΣS) through the morphism G→

GS = Gal
(
Q̄(ΣS)/Q

)
. Extending this action by the trivial action on the generators µυ and Πk,`,

we get an action on the algebra AQ,ΣS ,Υ with the property that γ ◦ σt = σt ◦ γ, for all γ ∈ G
and all t ∈ R. �

For h ∈ Q̄(ΣS) we consider as in Remark 3.9 the associated analytic function hC on (0, 1)C.
Then, proceeding as in [41], one can consider the action of G on Q{{t}} and on Q̄{{1− t}} via
the action on the Puiseux coefficients. Given an element h ∈ Q̄(ΣS), it can be seen as an element
in Q{{t}} or as an element in Q̄{{1 − t}}, since the function hC can be expanded in Puiseux
series in t or in 1− t with coefficients in Q̄. Given an element γ ∈ G one acts on hC with γ−1,
through the action on the Puiseux coefficients at t = 0, then takes the expansion in 1 − t of
the resulting element and acts by γ on the Puiseux coefficients at t = 1 of this function. The
function obtained in this way is then again expanded in t. The transformation constructed in
this way is the element fγ in π̂1

(
P1 r {0, 1,∞}, (0, 1)

)
considered by Drinfeld and Ihara.

3.9 Gibbs states

We discuss here some functions associated to the evaluation of low temperature KMS states
(Gibbs states) of the time evolutions defined earlier in this section. We start with a simpler case
based on the quantum statistical mechanics of Q∗+ of [57], and then we move to the dynamics
considered in Lemma 3.16.

Lemma 3.18. Consider the Hilbert space `2(N) with the Hamiltonian Hεn = log(n)εn. Let hC
be an analytic function in the region (0, 1)C, which is bounded on the unit interval and with
convergent Puiseux series hC(τ) =

∑
k akτ

k/N for some N , at all τ ∈ (0, 1). Let πτ (h) be the
linear operator on `2(N) defined by πτ (h)εn = σn(hC)(τ)εn = hC(τn)εn. The corresponding
Gibbs state is given by

ϕτ,β(h) :=
Tr
(
πτ (h)e−βH

)
Tr
(
e−βH

) =
1

ζ(β)

∑
k

akLiβ
(
τk/N

)
.

Proof. We have

ϕτ,β(h) :=
Tr
(
πτ (h)e−βH

)
Tr
(
e−βH

) =
1

ζ(β)

∑
n≥1

hC(τn)n−β.

Under the assumption on hC, the series
∑

k∈Z, k≥−M
akτ

kn/N is absolutely convergent at τ and we

can write the above as

1

ζ(β)

∑
k

ak
∑
n

τkn/Nn−β =
1

ζ(β)

∑
k

akLiβ
(
τk/N

)
.

We are considering here the polylogarithm function Lis(z) in the range where z ∈ (0, 1) and
s > 1, hence we have its integral description of the form

Lis(z) =
1

2
z + z

∫ ∞
0

sin(s arctan t− t log z)(
1 + t2

)s/2(
e2πt − 1

) dt.
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We can estimate the integral by∫ 1

0

sin(s arctan t− t log z)(
1 + t2

)s/2(
e2πt − 1

) dt ≤
∫ 1

0

(s− log z)(
1 + t2

)s/2
2π

dt,∫ ∞
1

sin(s arctan t− t log z)(
1 + t2

)s/2(
e2πt − 1

) dt ≤
∫ ∞

1

dt(
1 + t2

)s/2(
e2πt − 1

) .
Thus, for some positive Aβ, Bβ > 0, we obtain, in our range β > 1 and z ∈ (0, 1), the estimate
Liβ
(
τk/N

)
≤ Aβτk/N−Bβτk/N log τk/N . For τ ∈ (0, 1), the entropy function −τ log τ is maximal

at τ = 1/e with value 1/e. Thus, we further estimate

−Bβτk/N log τk/N =
−Bβ

(1− η)
τkη/Nτk(1−η)/N log τk(1−η)/N ≤

Bβ
e(1− η)

τkη/N .

If 0 < η < 1 is chosen close to 1 and so that τη/N is still within the domain of convergence of∑
kakτ

ηk/N , then we obtain from this estimate the convergence of the series
∑

kakLiβ
(
τk/N

)
. �

We now consider the effect of extending the previous setting from `2(N) to `2(Q∗+), with the
Hamiltonian of (3.1).

Lemma 3.19. Consider the Hilbert space `2(Q∗+) with the Hamiltonian H of (3.1). Let hC be as
in Lemma 3.18 and let πτ (h) denote the linear operator on `2(Q∗+) defined by πτ (h)εr = hC(τ r)εr.
The corresponding Gibbs state is given by

ϕτ,β(h) :=
Tr
(
πτ (h)e−βH

)
Tr
(
e−βH

) =
ζ(2β)

ζ(β)2

∑
k

akLiβ
(
τk/N

)
.

Proof. We have

ϕτ,β(h) :=
Tr
(
πτ (h)e−βH

)
Tr
(
e−βH

) =
ζ(2β)

ζ(β)2

∑
n

2ω(n)∑
j=1

hC(τ rj )n−β,

where ω(n) is the number of pairwise distinct prime factors of n = pk11 · · · p
kω(n)
ω(n) and the rj run

over all the 2ω(n) possible choices of ± signs in p±k11 · · · p±kω(n)ω(n) . By the assumptions on hC, the

Puiseux series
∑

k akτ
rk/N is absolutely convergent at τ , hence we can write the summation in

the expression above as

∑
k

ak
∑
n

2ω(n)∑
j=1

τ rjk/Nn−β.

We have min{rj | j = 1, . . . , ω(n)} = 1/n, and τ rjk/N ≤ τ
k
nN for all j = 1, . . . , ω(n), hence we

can give an upper bound for this∑
k

ak
∑
n

2ω(n)τ
k
nN

nβ
.

Where the absolute convergence holds we have∑
n

2ω(n)τk/(nN)

nβ
=
∑
n≥1

2ω(n)
∑
`≥0

log`
(
τk/N

)
`!nβ+`

=
∑
`≥0

log`
(
τk/N

)
`!

ζ(β + `)2

ζ(2(β + `))
.

Since ζ(s)2/ζ(2s) is decreasing for a real variable s > 1, the convergence of the series above is
controlled by the convergence of the Puiseux series

∑
k akτ

k/N . �
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The more general case is less explicit, but the case above serves as a model for the expected
behavior of the Gibbs states. On the Hilbert space `2(Υ) with the Hamiltonian H of (3.3) and
the operators πτ (h) of (3.4), the Gibbs states have the form

ϕτ,β(h) =
Tr
(
πτ (h)e−βH

)
Tr
(
e−βH

) =
∑
υ∈Υ

συ(h)(τ)n(υ)−β,

where for υ = υ(ε0, ε1, (r)) with r = (r1, . . . , rk) we write n(υ) := n(r1) · · ·n(rk) with n(rj)
as in (3.2). As before, for a fixed positive integer n, we have min{r |n(r) = n} = 1/n and
max{r |n(r) = n} = n. We have συ(h) = τ ε0σr1τ · · · τσrkτ ε1(h), where σrj (t) = trj . Using

estimates of terms of the form (1−τ r)r′ by terms
(
1−τn(r)

)1/n(r′)
we can estimate the convergence

of the series above in terms of a series

h(τ) +
∑
k

∑
n=n1···nk

2ω(n1)+···+ω(nk)h(Pn1,...,nk(τ)), n−β,

where Pn1,...,nk(τ) is the expression obtained as above, majorizing συ(h)(τ) with the σrj replaced
by either σnj or σ1/nj . One can then, in principle, obtain convergence estimates in terms of
Puiseux series in t and 1− t.

3.10 The group mGT and the symmetries of genus zero modular operad

In this subsection we show very briefly, following [15] and [16], how the Grothendieck–Teichmüller
group mGT acts upon the family of modular spaces of genus zero curves with marked points,
compatibly with its operadic structure.

Let S be a finite set of cardinality |S| ≥ 3. The smooth manifold M0,S is the moduli space of
stable curves of genus zero with |S| pairwise distinct non-singular points on it bijectively marked
by S. The group of permutations of S acts by smooth automorphisms (re-markings) upon M0,S

and in fact, is its complete automorphism group.
The group mGT appears naturally if we restrict ourselves (as we will do) by finite subsets

of roots unity in C∗. The operadic morphisms in which S can be varied in a controlled way and
are only subsets of roots of unity, are also compatible with re-markings defining the family of
all componentwise automorphisms groups.

For further details, see [16].
In [48] and [54] it was shown that the endomorphisms σn and ρn of the Bost–Connes algebra

lift to various equivariant Grothendieck rings and further to the level of assemblers and homotopy
theoretic spectra. The symmetries of the Bost–Connes system, given by Ẑ∗ in the original
version, or by mGT according to Proposition 3.2 above, also can be lifted to these categorical
and homotopy theoretic levels in a similar manner. The relation between the group mGT and
the symmetries of the modular operad suggests that the same type of Bost–Connes structure,
consisting of endmorphisms σn with partial inverse ρn and symmetries given by mGT may also
have a possible lift at the level of the modular operad. This question remains to be investigated.

4 Quasi-triangular quasi-Hopf algebras

In this section we consider a different point of view, based on quasi-triangular quasi-Hopf al-
gebras. The results of Drinfeld [31] showed that the Grothendieck–Teichmüller group GT acts
by tranformations of the structure (associator and R-matrix) of quasi-triangular quasi-Hopf al-
gebras, hence the absolute Galois group also acts via its embedding into GT . We show here
that there are systems of quasi-triangular quasi-Hopf algebras naturally associated to the con-
structions we discussed in the previous section. In particular, we show that the Bost–Connes
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endomorphisms σn, ρn on the group algebra C[Q/Z] determine a system of quasi-triangular
quasi-Hopf algebras. We also show that there is a system of quasi-triangular quasi-Hopf alge-
bras associated to our previous construction of the Hopf algebra of dessins d’enfant.

4.1 Twisted quantum double and quasi-triangular quasi-Hopf algebras

Recall the following notions from [30]. A quasi-Hopf algebra H over a field K is a unital asso-
ciative algebra over K with multiplication m : H ⊗H → H, endowed with a counit ε : H → K,
a comultiplication ∆: H → H ⊗H, an invertible element Φ ∈ H ⊗ H ⊗ H (the associator), as
well as an antihomomorphism S : H → H and two distinguished elements α, β ∈ H such that

1. Φ satisfies the pentagon identity

(∆⊗ 1⊗ 1)Φ(1⊗ 1⊗∆)Φ = (Φ⊗ 1)(1⊗∆⊗ 1)Φ(1⊗ Φ).

2. ∆ is quasi-associative

(1⊗∆)∆(x) = Φ−1(∆⊗ 1)∆(x)Φ, ∀x ∈ H.

3. Φ and the counit ε satisfy

(1⊗ ε⊗ 1)Φ = 1.

4. The antipode S satisfies the relations

• m(S ⊗ α)∆(x) = ε(x)α and m(1⊗ βS)∆(x) = ε(x)β, for all c ∈ H,

• m(m⊗ 1)(S ⊗ α⊗ βS)Φ = 1 and m(m⊗ 1)(1⊗ βS ⊗ α)Φ−1 = 1.

The structure of quasi-triangular quasi-Hopf algebra upon H is given by an invertible element
R ∈ H⊗H such that ∆t(x) = R∆(x)R−1, where ∆t is the coproduct ∆ with swapped order of
the two factors in H⊗H.

The Drinfeld quantum double construction of [29] assigns to a finite dimensional Hopf alge-
bra H a quasi-triangular Hopf algebra D(H) = H⊗H∗, where H∗ is the linear dual of H with the
Hopf algebra structure with coproduct corresponding to the product of H and viceversa. The
quasi-triangular structure is determined by the element R obtained by considering the image of
the identity in Hom(H,H) under the identification of the latter with H⊗H∗,

R =
∑
a

ea ⊗ 1⊗ 1⊗ ea,

where {ea} is a basis of H and {ea} is the dual basis.
The construction of the Drinfeld quantum double can be extended from Hopf algebras to

quasi-Hopf algebras, in such a way that it assigns to a quasi-Hopf algebra a quasi-triangular
quasi-Hopf algebra. This can be done in a categorical way, as shown in [50]. Namely, the Drin-
feld quantum double construction has a categorical formulation (see [29]) by considering the
rigid monoidal category MH of modules over a Hopf algebra H and associating to it a braided
tensor category D(MH) which can be identified with the category of modules MD(H) over the
Drinfeld quantum double D(H) quasi-triangular Hopf algebra. Since by the Tannaka reconstruc-
tion theorem for Hopf algebras, there is a bijection between Hopf algebras and rigid monoidal
categories with a forgetful functor to finite dimensional vector spaces, the categorical formulation
of the Drinfeld quantum double can be seen as a construction that assigns to a rigid monoidal
category C a braided tensor category D(C) called the Drinfeld double or the Drinfeld center.
Using Tannaka reconstruction, C determines a Hopf algebra and D(H) determines its double
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quasi-triangular Hopf algebras. It is shown in [50] that the same kind of categorical argument
can be applied starting with a quasi-Hopf algebra H, by considering its category of modules
and then obtaining from the Drinfeld center construction D(MH) a quasi-triangular quasi-Hopf
algebra, D(H), the twisted Drinfeld double, by applying the Tannaka reconstruction theorem
for quasi-Hopf algebras proven in [49].

The categorical formulation of Drinfeld quantum doubles can also be used to show func-
toriality properties. Indeed, the functoriality of the Drinfeld center was proved in [44], as
a functor with source a category whose objects are tensor categories and whose morphisms are
bimodules and target a category whose objects are braid tensor categories with morphisms given
by monoidal categories obtained from a suitable tensoring operation of the source and target
braid tensor categories, see [44] for more details.

In particular, we are interested here in the twisted Drinfeld double Dω(G) of a finite group
G. It is a quasi-triangular quasi-Hopf algebra, obtained by applying the Drinfeld quantum
double construction of [29] to the quasi-Hopf algebra obtained by twisting the Hopf algebra
associated to G by a 3-cocycle ω ∈ H3(G,Gm). More precisely, the group algebra C[G] of G has
a Hopf algebra structure with the coproduct of group-like elements given by ∆(g) = g ⊗ g, and
product given by the convolution product of the group algebra, while CG has coproduct given
by the convolution product ∆(eg) =

∑
g=ab

ea ⊗ eb and product given by the pointwise product

of functions, egeh = δg,he
g. One considers then the product CG ⊗ C[G] with basis eg of C[G]

and eg of CG. A 3-cocycle ω ∈ Z3(G,U(1) for a finite group G satisfies the cocycle identity

ω(y, s, t)ω(x, ys, t)ω(x, y, s) = ω(s, y, st)ω(xy, s, t)

and ω(x, e, y) = 1 for e the identity element in G. The choice of a 3-cocycle ω has the effect
of twisting the Hopf algebra CG into a quasi-Hopf algebra CGω , with associator Φ given by
Φ =

∑
a,b,c∈G

ω(a, b, c)−1ea ⊗ eb ⊗ ec. The twisted quantum double Dω(G) = CGω ⊗ C[G] is the

extension CGω → Dω(G) → C[G] with the first map given by eg 7→ eg ⊗ 1 and the second by
eg⊗ eg′ 7→ δg,1eg′ . The quasi-Hopf algebra structure of Dω(G) is determined by the product and
coproduct

(eg ⊗ eh)(eg
′ ⊗ eh′) = θg(h, h

′)δh−1gh,g′e
g ⊗ hh′,

∆(eg ⊗ eh) =
∑
g=ab

γh(a, b)ea ⊗ eh ⊗ eb ⊗ eh

where θg(h, h
′) and γh(a, b) are given by

θg(h, h
′) =

ω(g, h, h′)ω
(
h, h′, (hh′)−1ghh′

)
ω
(
h, h−1gh, h′

) ,

γh(a, b) =
ω(a, b, h)ω

(
h, h−1ah, h−1bh

)
ω
(
a, h, h−1bh

) .

The quasi-triangular structure on Dω(G) is given by

R =
∑
a∈G

(ea ⊗ 1)⊗ (1⊗ ea).

This construction of a quasi-triangular quasi-Hopf algebra associated to a finite group was
introduced in [27] in the context of RCFT orbifold models and 3-dimensional topological field
theory. The compatibility between the direct construction described in [27] and the general
categorical formulation of the twisted Drinfeld double mentioned above is discussed in detail
in [50].



Quantum Statistical Mechanics of the Absolute Galois Group 49

4.2 A Bost–Connes system of quasi-triangular quasi-Hopf algebras

We show here that there is a direct system of quasi-triangular quasi-Hopf algebras naturally
associated to the Bost–Connes datum, by which we mean the datum of the algebra C[Q/Z]
together with the endomorphisms σn(e(r)) = e(nr) and ρn(e(r)) = n−1

∑
s : ns=r

e(s). We also

write ρ̃n(e(r)) =
∑

s : ns=r
e(s) for the correspondences considered in the integral Bost–Connes

system of [18].
Consider the tensor product C[Q/Z]⊗CQ/Z. Using the Bost–Connes notation we write e(r)

for the basis of C[Q/Z] for r ∈ Q/Z and we write er for the dual basis of CQ/Z. In particular,
for a fixed level n ∈ N, we consider the tensor product C[Z/nZ] ⊗ CZ/nZ and we still use the
same notation e(r) and er for the dual bases.

The choice of a 3-cocycle ω for Z/nZ is given by the choice of a representative in

H3(Z/nZ, U(1)) ' Z/nZ.

An explicit description of the representatives is given in [39, Proposition 2.3] as

ωa(gi1 , gi2 , gi3) = ζai1[(i2+i3)/3]
m , 0 ≤ a ≤ m,

for ζm a primitive root of unity of order m. The twisted Drinfeld double Dω(Z/nZ) of a finite
cyclic group, with ω chosen as one of the representatives of H3(Z/nZ, U(1)) ' Z/nZ above, is
then obtained as recalled in the previous subsection.

Proposition 4.1. The Bost–Connes endomorphisms σn and ρn determine a direct system of
quasi-triangular quasi-Hopf algebras Dωn(Z/nZ) indexed by the positive integers n ∈ N ordered by
divisibility, with associators related by ωnm = σn(ωm) and R-matrices related by Rnm = ρ̃n(Rm).

Proof. The Bost–Connes maps σn : Z/nmZ � Z/mZ map roots of unity of order nm to their
n-th power. They organize the roots of unity into a projective system with lim←−n Z/nZ = Ẑ. By
identifying Xn = Spec(C[Z/nZ]) with Z/nZ, the maps above induce morphisms σn : C[Z/mZ]→
C[Z/nmZ] that determine the limit algebra C[Q/Z] as a direct limit of the C[Z/nZ]. On CZ/nZ

the morphisms σn : Z/nmZ � Z/mZ act by precomposition, σn : CZ/mZ → CZ/nmZ with f 7→
σn(f) = f◦σn. The group cohomology is a contravariant functor with respect to group homomor-
phisms, with the restriction map σn : H3(Z/mZ, U(1))→ H3(Z/nmZ, U(1)). Consider then the
R-matrix of the quasi-triangular structure, given by the elementRm =

∑
a∈Z/mZ

(ea⊗1)⊗(1⊗e(a)).

The image of Rm under the map ρ̃n is given by

ρ̃n(Rm) =
∑

a∈Z/mZ

∑
b : nb=a

(eb ⊗ 1)⊗ (1⊗ e(b)) =
∑

b∈Z/nmZ

(eb ⊗ 1)⊗ (1⊗ e(b)) = Rnm. �

4.3 Dessins d’enfant and quasi-triangular quasi-Hopf algebras

We now consider a similar construction of a system of quasi-triangular quasi-Hopf algebras
associated to the Hopf algebra of dessins d’enfant of Proposition 2.6.

Proposition 4.2. The Hopf algebra of dessins d’enfant of Proposition 2.6 determines an asso-
ciated system of quasi-triangular quasi-Hopf algebras Dωd(Gd).

Proof. The construction of the quasi-triangular quasi-Hopf algebras Dωd(Gd) is similar to the
one we have seen in Proposition 4.1 associated to the Bost–Connes datum, and relies in a simi-
lar way on the twisted Drinfeld quantum double. By construction, the Hopf algebra HD of
dessins d’enfant of Proposition 2.6 is a connected commutative Hopf algebra, with grading as
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in Lemma 2.5 related to the degree of the Belyi maps, HD = ⊕d≥0HD,d with HD,0 = Q. Thus,
the dual affine group scheme G is a pro-unipotent affine group scheme, G = lim←−d Gd. We work
here with complex coefficients, with HD,C = HD ⊗Q C. For a fixed d ∈ N consider the product
HD,C,d ⊗ C[Gd]. We can use this to construct a twisted Drinfeld quantum double Dωd(Gd),
given the choice of a 3-cocycle ω ∈ H3(Gd, U(1)). The functoriality of the Drinfeld quantum
double via the functoriality of the Drinfeld center [44], together with the functoriality of the
group cohomology and the categorical construction of the twisted Drinfeld quantum double
of [50] then show that the projective system of group homomorphisms between the Gd and
corresponding dual direct system of Hopf algebras HD,C,d induce a system of quasi-triangular
quasi-Hopf algebras Dωd(Gd). �

We then have two actions of the absolute Galois group G = Gal
(
Q̄/Q

)
on the quasi-triangular

quasi-Hopf algebras Dωd(Gd). On the one hand, the action of G by Hopf algebra automor-
phisms of HD restricts to an action on the HD,d since the degree is a Galois invariant, hence G
acts by automorphisms of Gd. On the other hand we also have the embedding of G into the
Grothendieck–Teichmüller group GT , which acts on the quasi-triangulated quasi-Hopf structure
of the Dωd(Gd), by transforming the pair (Φ,R) of the associator and the R-matrix as in [31].
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