Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 036, 34 pages      arXiv:1902.05207      https://doi.org/10.3842/SIGMA.2020.036

Note on the Retarded van der Waals Potential within the Dipole Approximation

Tadahiro Miyao
Department of Mathematics, Hokkaido University, Sapporo, Japan

Received February 27, 2019, in final form April 14, 2020; Published online April 26, 2020

Abstract
We examine the dipole approximated Pauli-Fierz Hamiltonians of the nonrelativistic QED. We assume that the Coulomb potential of the nuclei together with the Coulomb interaction between the electrons can be approximated by harmonic potentials. By an exact diagonalization method, we prove that the binding energy of the two hydrogen atoms behaves as $R^{-7}$, provided that the distance between atoms $R$ is sufficiently large. We employ the Feynman's representation of the quantized radiation fields which enables us to diagonalize Hamiltonians, rigorously. Our result supports the famous conjecture by Casimir and Polder.

Key words: retarded van der Waals potential; non-relativistic QED; Pauli-Fierz Hamiltonian; dipole approximation.

pdf (655 kb)   tex (198 kb)  

References

  1. Anapolitanos I., Lewin M., Roth M., Differentiability of the van der Waals interaction between two atoms, arXiv:1902.06683.
  2. Anapolitanos I., Sigal I.M., Long-range behavior of the van der Waals force, Comm. Pure Appl. Math. 70 (2017), 1633-1671, arXiv:1205.4652.
  3. Arai A., Hirokawa M., On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal. 151 (1997), 455-503.
  4. Bach V., Fröhlich J., Sigal I.M., Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Comm. Math. Phys. 207 (1999), 249-290.
  5. Bordag M., Mohideen U., Mostepanenko V.M., New developments in the Casimir effect, Phys. Rep. 353 (2001), 1-205, arXiv:quant-ph/0106045.
  6. Casimir H.B.G., Polder D., The influence of retardation on the London-van der Waals forces, Phys. Rev. 73 (1948), 360-372.
  7. Craig D.P., Thirunamachandran T., Molecular quantum electrodynamics: An introduction to radiation-molecule interactions, Dover Publications, New York, 1998.
  8. Feynman R.P., Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950), 440-457.
  9. Glimm J., Jaffe A., The $\lambda \big(\Pi^{4}\big)_{2}$ quantum field theory without cutoffs. II. The field operators and the approximate vacuum, Ann. of Math. 91 (1970), 362-401.
  10. Griesemer M., Lieb E.H., Loss M., Ground states in non-relativistic quantum electrodynamics, Invent. Math. 145 (2001), 557-595, arXiv:math-ph/0007014.
  11. Keller O., Quantum theory of near-field electrodynamics, Springer-Verlag, Berlin - Heidelberg, 2011.
  12. Koppen M., Van der Waals forces in the context of non-relativistic quantum electrodynamics, Ph.D. Thesis, Technische Universität München, 2011.
  13. Levin F.S., Micha D.A. (Editors), Long-range Casimir forces. Theory and experiments on atomic systems, Springer, New York, 1993.
  14. Lőrinczi J., Hiroshima F., Betz V., Feynman-Kac-type theorems and Gibbs measures on path space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, Vol. 34, Walter de Gruyter & Co., Berlin, 2011.
  15. Lieb E.H., Thirring W.E., Universal nature of van der Waals forces for Coulomb systems, Phys. Rev. A 34 (1986), 40-46.
  16. London F., Zur Theorie und Systematik der Molekularkräfte, Z. Phys. 63 (1930), 245-279.
  17. Loudon R., The quantum theory of light, Oxford University Press, Oxford, 2000.
  18. Martin P.A., Bünzli P.R., The Casimir effect, Acta Phys. Polon. B 37 (2006), 2503-2559, arXiv:cond-mat/0602559.
  19. Milonni P.W., The quantum vacuum. An introduction to quantum electrodynamics, Academic Press, Boston, 1994.
  20. Miyao T., Spohn H., The retarded van der Waals potential: revisited, J. Math. Phys. 50 (2009), 072103, 19 pages, arXiv:0901.3678.
  21. Miyao T., Spohn H., Scale dependence of the retarded van der Waals potential, J. Math. Phys. 53 (2012), 095215, 15 pages, arXiv:1205.1091.
  22. Morgan III J.D., Simon B., Behavior of molecular potential energy curves for large nuclear separations, Int. J. Quantum Chem. 17 (1980), 1143-1166.
  23. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, 2nd ed., Academic Press Inc., New York, 1980.
  24. Spohn H., Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge, 2004.

Previous article  Next article  Contents of Volume 16 (2020)