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Abstract. Let
(
M, gTM

)
be a noncompact complete spin Riemannian manifold of even

dimension n, with kTM denote the associated scalar curvature. Let f : M → Sn(1) be
a smooth area decreasing map, which is locally constant near infinity and of nonzero degree.
We show that if kTM ≥ n(n − 1) on the support of df , then inf

(
kTM

)
< 0. This answers

a question of Gromov. We use a simple deformation of the Dirac operator to prove the
result. The odd dimensional analogue is also presented.
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1 Introduction

It is well-known that starting with the famous Lichnerowicz vanishing theorem [5], Dirac opera-
tors have played important roles in the study of Riemannian metrics of positive scalar curvature
on spin manifolds (cf. [3] and [4]). A notable example is Llarull’s rigidity theorem [6] which
states that for a compact spin Riemannian manifold

(
M, gTM

)
of dimension n such that the

associated scalar curvature kTM verifies that kTM ≥ n(n− 1), any (non-strict) area decreasing
smooth map f : M → Sn(1) of nonzero degree is an isometry.

Recently, Gromov states in [2, p. 45] a noncompact extension of the Llarull theorem. Namely,
if
(
M, gTM

)
is an n dimensional noncompact complete spin Riemannian manifold, f : M → Sn(1)

a smooth (non-strict) area decreasing map (which is locally constant near infinity) of nonzero
degree such that kTM ≥ n(n− 1) on the support of df , then

inf
(
kTM

)
≤ 0. (1.1)

The argument used by Gromov for (1.1) relies on the relative index theorem of Gromov–
Lawson [3], which depends on the positivity of kTM near infinity. Gromov then raises the
question that whether the inequality in (1.1) can actually be made strict.

The purpose of this short note is to provide a positive answer to this question when n is even.
That is, (1.1) can indeed be improved to inf

(
kTM

)
< 0. When n is odd, we improve (1.1) to

inf
(
kTM

)
< 0 under the condition that kTM > n(n− 1) on the support of df .

The main idea of the proof, similar to [8, equation (1.11)], is to deform the involved twisted
Dirac operator (constructed as in [6]) on M by a suitable endomorphism of the twisted vector
bundle (cf. (2.8)). The deformed Dirac operator turns out to be invertible near infinity, and one
can then apply the relative index theorem to complete the proof.

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA/Gromov.html
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2 The main results and their proofs

This section is organized as follows. In Section 2.1, we restate the main results of this paper. In
Sections 2.2 and 2.3, we prove the main results stated in Section 2.1.

2.1 The main results

Let
(
M, gTM

)
be an n-dimensional noncompact spin complete Riemannian manifold. Let kTM

be the associated scalar curvature. Let Sn(1) be the standard n-dimensional unit sphere carrying
its canonical metric. Following [3], a smooth map f : M → Sn(1) is called area decreasing if for
any two form α ∈ Ω2

(
Sn(1)

)
, f∗α ∈ Ω2(M) verifies that

|f∗α| ≤ |α|. (2.1)

We now assume that f : M → Sn(1) is a smooth area decreasing map such that it is locally
constant near infinity. That is, it is locally constant outside a compact subset K ⊂M . We also
assume that

deg(f) 6= 0. (2.2)

Let df : TM → TSn(1) be the differential of f . The support of df is defined to be Supp(df) =
{x ∈M : df(x) 6= 0}.

The main result of this short note can be stated as follows.

Theorem 2.1. Under the above assumptions, if n is even and

kTM ≥ n(n− 1) on Supp(df), (2.3)

then one has

inf
(
kTM

)
< 0. (2.4)

When n is odd, we have the following analogue which shows that (2.4) still holds when the
inequality (2.3) holds strictly.

Theorem 2.2. Under the assumptions above Theorem 2.1, if n is odd and

kTM > n(n− 1) on Supp(df),

then (2.4) still holds.

Theorems 2.1 and 2.2 will be proved in Sections 2.2 and 2.3 respectively.

2.2 Proof of Theorem 2.1

Let S(TM) = S+(TM) ⊕ S−(TM) be the Z2-graded Hermitian vector bundle of spinors as-
sociated to

(
TM, gTM

)
, carrying the canonically induced Hermitian connection ∇S(TM) =

∇S+(TM) +∇S−(TM) (cf. [4]). And we use similar notation for Sn(1).
Following [6], let E = E+ ⊕ E− be the Z2-graded Hermitian vector bundle

f∗
(
S
(
TSn(1)

))
= f∗

(
S+
(
TSn(1)

))
⊕ f∗

(
S−
(
TSn(1)

))
(2.5)

over M carrying the pull-back Hermitian connection ∇E = ∇E+ +∇E− . Let RE =
(
∇E
)2

be
the curvature of ∇E .
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Let DE : Γ
(
S(TM)⊗̂E

)
→ Γ

(
S(TM)⊗̂E

)
be the canonically defined (twisted by E) Dirac

operator (cf. [4]).1 Then one has the canonical splitting D = D+ +D− with DE
+ : Γ(S+(TM)⊗

E+ ⊕ S−(TM) ⊗ E−) → Γ(S−(TM) ⊗ E+ ⊕ S+(TM) ⊗ E−), while DE
− : Γ(S+(TM) ⊗ E− ⊕

S−(TM)⊗ E+)→ Γ(S−(TM)⊗ E− ⊕ S+(TM)⊗ E+). Moreover, one has formally that(
DE

+

)∗
= DE

−.

Take any p ∈ Sn(1)\f(M \K). Let X ∈ TSn(1) be a smooth vector field on Sn(1) such that
|X| > 0 on Sn(1) \ {p}. Let v = c(X) : S+

(
TSn(1)

)
→ S−

(
TSn(1)

)
be the Clifford action of X.

Let v∗ : S−
(
TSn(1)

)
→ S+

(
TSn(1)

)
be the adjoint of v with respect to the Hermitian metrics on

S±(TSn(1)). Let V : S
(
TSn(1)

)
→ S

(
TSn(1)

)
be the self-adjoint odd endomorphism defined by

V = v + v∗. (2.6)

Then one has

V 2 = |X|2. (2.7)

Thus V is invertible on f(M \K) = f(M \K). Also, f∗V extends to an action on S(TM)⊗̂E
such that for any α ∈ S(TM), u ∈ E, one has (f∗V )

(
α⊗̂u

)
= (−1)deg(α)α⊗̂(f∗V )(u) (cf. [7]).

Let U 1
2
⊂ M be the subset defined by U 1

2
=
{
x ∈ Supp(df) : |df(x)| < 1

2

}
. Let V 1

2
⊂ M be

the open subset defined by V 1
2

=
{
x :
∣∣∧2(df(x))

∣∣ > 1
2

}
, where ∧2(df) is the induced action of

df on the exterior product ∧2(TM). Clearly, U 1
2
∩ V 1

2
= ∅.

Let ϕ : M → [0, 1] be a smooth function such that ϕ = 1 on (M \ Supp(df)) ∪ U 1
2
, while

ϕ = 0 on V 1
2
. The existence of ϕ is clear.

Similar to [8, equation (1.11)], for any ε > 0, let DE
ε : Γ

(
S(TM)⊗̂E

)
→ Γ

(
S(TM)⊗̂E

)
be

the deformed twisted Dirac operator defined by2

DE
ε = DE + εϕf∗V. (2.8)

Let DE
ε,+ : Γ(S+(TM) ⊗ E+ ⊕ S−(TM) ⊗ E−) → Γ(S−(TM) ⊗ E+ ⊕ S+(TM) ⊗ E−) and

DE
ε,− : Γ(S+(TM)⊗E− ⊕ S−(TM)⊗E+)→ Γ(S−(TM)⊗E− ⊕ S+(TM)⊗E+) be the natural

restrictions.
From (2.8), one has(

DE
ε

)2
=
(
DE
)2

+ εc(dϕ)f∗V + εϕ
[
DE , f∗V

]
+ ε2ϕ2f∗

(
V 2
)
, (2.9)

where c(·) is the notation for the Clifford action, [·, ·] is the notation for the supercommutator
in the sense of [7], and we identify dϕ with the gradient of ϕ.

Let e1, . . . , en be an orthonormal basis of
(
TM, gTM

)
. By the definition of the Dirac operator,

DE =
n∑
i=1

c(ei)∇ei , one has (cf. [8])

[
DE , f∗V

]
=

n∑
i=1

c(ei)f
∗(∇S(TSn(1))

f∗(ei)
V
)
. (2.10)

Since by definition ϕ = 1 on M \K, while f is locally constant on M \K, from (2.9) and (2.10)
we see that the following identity holds on M \K,(

DE
ε

)2
=
(
DE
)2

+ ε2f∗
(
V 2
)
. (2.11)

1Here “⊗̂” is the notation for the Z2-graded tensor product (cf. [7]).
2In view of [7], one may regard DE

ε as a “super” Dirac operator.
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As V |f(M\K) is invertible, from (2.11), one sees that there is a constant a > 0 such that for

any s ∈ Γ
(
S(TM)⊗̂E

)
supported in a compact subset of M \K, one has∥∥DE

ε s
∥∥ ≥ εa‖s‖. (2.12)

From (2.12), one sees that one can apply the relative index theorem in [3] to DE
ε,+ (com-

pare with [1, Section 64
5 ]). In particular, one gets, by similar computations as in [3] and [4,

Proposition III.11.24],

ind
(
DE
ε,+

)
= deg(f)

〈
ch
(
S+
(
TSn(1)

))
− ch

(
S−
(
TSn(1)

))
,
[
Sn(1)

]〉
= (−1)

n
2 deg(f)χ

(
Sn(1)

)
= 2(−1)

n
2 deg(f). (2.13)

By the Lichnerowicz formula [5] for DE (cf. [4]), one has(
DE
)2

= −∆E +
kTM

4
+

1

2

n∑
i,j=1

c(ei)c(ej)R
E(ei, ej), (2.14)

where −∆E ≥ 0 is the corresponding Bochner Laplacian.
From [6, equation (4.6)], one knows that

1

2

n∑
i,j=1

c(ei)c(ej)R
E(ei, ej) ≥ −

n(n− 1)

4

∣∣∧2(df)
∣∣. (2.15)

From (2.1), (2.3), (2.9), (2.14) and (2.15), one has that near any x ∈ V 1
2
,(

DE
ε

)2
+ ∆E ≥ 0. (2.16)

Near any x ∈ Supp(df) \ V 1
2
, by (2.3), (2.9), (2.14) and (2.15), one has(

DE
ε

)2
+ ∆E ≥ n(n− 1)

8
+ εc(dϕ)V + εϕ

[
DE , f∗V

]
+ ε2ϕ2f∗

(
V 2
)
. (2.17)

From (2.9), (2.10), (2.14) and (2.15), one has that near any x ∈M \ Supp(df),(
DE
ε

)2
+ ∆E ≥ kTM

4
+ ε2f∗

(
V 2
)
. (2.18)

Now assume that (2.4) does not hold. Then one has over M that

kTM ≥ 0. (2.19)

From (2.10), (2.11), (2.16)–(2.19) and the compactness of Supp(df), we see that when ε > 0
is small enough, there is a smooth nonnegative endormorphism aε of S(TM)⊗̂E such that

aε > 0 on (M \K) ∪ U 1
2

(2.20)

and that one has on M that(
DE
ε

)2 ≥ −∆E + aε. (2.21)

From (2.20) and (2.21), one finds that the relative index of DE
ε,+ verifies that

ind
(
DE
ε,+

)
= 0,

which contradicts (2.2) and (2.13). This completes the proof of Theorem 2.1.

Remark 2.3. In view of (2.12) and [1, Section 64
5 ], one sees that the above proof fits with

Gromov’s suggestion in [2, p. 45] that one may use the Callias type index arguments to deal
with (2.4). Also, from the above proof one sees that (2.3) can be weakened to

kTM ≥ n(n− 1)
∣∣∧2(df)

∣∣ on Supp(df), (2.22)

with the inequality being strict on Supp(df) \ {x ∈ M : df(x) 6= 0}. With (2.22) the condi-
tion (2.1) is no longer needed.
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2.3 Proof of Theorem 2.2

In view of Remark 2.3, we will state and prove the following refined version of Theorem 2.2.

Theorem 2.4. Let
(
M, gTM

)
be a noncompact spin complete Riemannian manifold of odd

dimension n, and f : M → Sn(1) be a smooth map which is locally constant near infinity and of
nonzero degree. If we assume that the scalar curvature kTM of gTM verifies that

kTM > n(n− 1)
∣∣∧2(df)

∣∣ on Supp(df), (2.23)

then one has

inf
(
kTM

)
< 0. (2.24)

Proof. For any R > 0, let S1(R) be the round circle of radius R, with the canonical met-
ric dt2. Let M ×S1(R) be the complete Riemannian manifold of the product metric gTM ⊕ dt2.
Following [6], we consider the chain of maps

M × S1(R)
f× 1

R−−−→ Sn(1)× S1(1)
h−→ Sn+1(1),

where 1
R : S1(R) → S1(1) is the standard shrinking map, and h is a suspension map of degree

one such that |dh| ≤ 1. Let fR = h ◦
(
f × 1

R

)
: M × S1(R)→ Sn+1(1) denote the composition.

Then one has3

deg(fR) = deg(f) 6= 0. (2.25)

Let p ∈ Sn+1(1) be any regular value of fR. Let X ∈ TSn+1(1) be a smooth vector field on
Sn+1(1) such that |X| > 0 on Sn+1(1) \ {p}. Let v = c(X) : S+

(
TSn+1(1)

)
→ S−

(
TSn+1(1)

)
be

the Clifford action of X. Let V : S
(
TSn+1(1)

)
→ S

(
TSn+1(1)

)
be defined as in (2.6). Then (2.7)

holds and V is invertible on Sn+1(1) \ {p}. In particular, there is δ > 0 such that

V 2 ≥ δ on fR((M \ Supp(df))× S1(R)). (2.26)

For simplicity, denote MR = M × S1(R). Let ER = f∗R
(
S
(
TSn+1(1)

))
be the Z2-graded

Hermitian vector bundle over MR as in (2.5). Let DER : Γ
(
S(TMR)⊗̂ER

)
→ Γ

(
S(TMR)⊗̂ER

)
denote the canonical twisted Dirac operator.

As in (2.8), for any ε > 0, let DER
ε : Γ

(
S(TMR)⊗̂ER

)
→ Γ

(
S(TMR)⊗̂ER

)
be the deformed

twisted Dirac operator defined by4

DER
ε = DER + εf∗RV.

Let DER
ε,+ : Γ(S+(TMR)⊗ER,+⊕S−(TMR)⊗ER,−)→ Γ(S−(TMR)⊗ER,+⊕S+(TMR)⊗ER,−)

be the natural restriction.
The analogue of (2.9) now takes the form(

DER
ε

)2
=
(
DER

)2
+ ε
[
DER , f∗RV

]
+ ε2f∗R

(
V 2
)
. (2.27)

Let K be a compact subset of M such that f : M → Sn(1) is locally constant on M \K.
From (2.10) and the definition of fR, one finds on (M \K)× S1(R) that

[
DER , f∗RV

]
= O

(
1

R

)
. (2.28)

3The degree of fR is well-defined as fR has no regular point near infinity.
4There is no need here to introduce the function ϕ as in (2.8), as the inequality in (2.23) is strict.
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From (2.26), (2.27) and (2.28), one sees that for any ε > 0, there exist R0 > 0 and b > 0
such that when R ≥ R0, for any s ∈ Γ

(
S(TMR)⊗̂ER

)
supported in a compact subset of

(M \K)× S1(R), one has∥∥DER
ε s

∥∥ ≥ εb‖s‖. (2.29)

One can then apply the relative index theorem [3] to DER
ε,+ and get as in (2.13) that

ind
(
DER
ε,+

)
= 2(−1)

n+1
2 deg(fR). (2.30)

Let e1, . . . , en+1 be an orthonormal basis of TMR. The Lichnerowicz formula (2.14) now
takes the form

(
DER

)2
= −∆ER +

π∗Rk
TM

4
+

1

2

n+1∑
i,j=1

c(ei)c(ej)R
ER(ei, ej), (2.31)

where πR : M × S1(R)→M denotes the natural projection.

By [6, p. 68], one has at any (x, y) ∈M × S1(R) that

1

2

n+1∑
i,j=1

c(ei)c(ej)R
ER(ei, ej) ≥ −

n(n− 1)

4

∣∣∧2(df(x))
∣∣+ |df(x)|O

(
1

R

)
. (2.32)

From (2.10), (2.23), (2.32) and the compactness of Supp(df) ⊂ M , one sees that there is
η > 0 such that when ε > 0 is small enough, the following formula holds on (Supp(df))×S1(R),

π∗Rk
TM

4
+

1

2

n+1∑
i,j=1

c(ei)c(ej)R
ER(ei, ej) + ε

[
DER , f∗RV

]
≥ η + (π∗R|df |)O

(
1

R

)
. (2.33)

Now we observe that (2.28) indeed holds on (M \ Supp(df))× S1(R).

From (2.26), (2.27), (2.28) and (2.31)–(2.33), one finds that if (2.24) does not hold, then
one can first take ε > 0 small enough, and then take R > 0 large enough to get a positive
endomorphism aε,R of S(TMR)⊗̂ER such that in addition to (2.29), the following formula also
holds,(

DER
ε

)2 ≥ −∆ER + aε,R. (2.34)

From (2.34), one gets

ind
(
DER
ε,+

)
= 0,

which contradicts (2.25) and (2.30). This completes the proof of Theorem 2.4. �
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https://doi.org/10.1007/s10107-010-0354-x
https://arxiv.org/abs/1908.10612
https://doi.org/10.1007/BF02953774
https://doi.org/10.1007/s002080050136
https://doi.org/10.1016/0040-9383(85)90047-3
https://doi.org/10.1007/978-3-030-34953-0_22
https://arxiv.org/abs/1703.04313

	1 Introduction
	2 The main results and their proofs
	2.1 The main results
	2.2 Proof of Theorem 2.1
	2.3 Proof of Theorem 2.2

	References

