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Abstract. In this short note, we formulate three problems relating to nonnegative scalar
curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are
(n − 1)-dimensional Bartnik data

(
Σn−1

i , γi, Hi

)
, i = 1, 2, NNSC-cobordant? (i.e., there is

an n-dimensional compact Riemannian manifold
(
Ωn, g

)
with scalar curvature R(g) ≥ 0 and

the boundary ∂Ω = Σ1 ∪ Σ2 such that γi is the metric on Σn−1
i induced by g, and Hi is

the mean curvature of Σi in
(
Ωn, g

)
). If

(
Sn−1, γstd, 0

)
is positive scalar curvature (PSC)

cobordant to
(
Σn−1

1 , γ1, H1

)
, where

(
Sn−1, γstd

)
denotes the standard round unit sphere

then
(
Σn−1

1 , γ1, H1

)
admits an NNSC fill-in. Just as Gromov’s conjecture is connected with

positive mass theorem, our problems are connected with Penrose inequality, at least in the
case of n = 3. Our third problem is on Λ

(
Σn−1, γ

)
defined below.
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Bartnik data
(
Σn−1, γ,H

)
consists of an (n − 1)-dimensional orientable Riemannian mani-

fold
(
Σn−1, γ

)
and a smooth function H defined on Σn−1 which serves as the mean curvature

of Σn−1. One basic problem in Riemannian geometry is to study: under what conditions is it
that γ is induced by a Riemannian metric g with nonnegative scalar curvature, for example,
defined on Ωn, and H is the mean curvature of Σ in

(
Ωn, g

)
with respect to the outward unit

normal vector? Indeed, this problem was proposed by M. Gromov recently (see [8, Problem A]
and [9, Sections 3.3 and 3.6]).

On the other hand, when n = 3, for each Bartnik data
(
Σ2, γ,H

)
may be associated with

certain quasi-local masses, for instance, when the Gaussian curvature K of γ is positive, (S2, γ)
can be isometrically embedded into R3 with mean curvature H0 (with respect to the outward unit
normal vector of the embedded image in R3), with this embedding we may define Brown–York
mass for

(
S2, γ,H

)
[4, 5] as

mBY

(
S2; γ,H

)
=

1

8π

ˆ
S2

(H0 −H) dσγ .
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If
(
S2, γ,H

)
admits an NNSC fill-in and H > 0, it was shown that mBY

(
S2; γ,H

)
≥ 0 [22].

There are several pieces of interesting work on NNSC fill-ins relating to positivity of Brown–
York mass (for instance see [13, 14]). Obviously, positivity of Brown–York mass is one necessary
condition for the existence of such a fill-in, but it is far from sufficient. It was shown that
for Bartnik data

(
S2, γ,H

)
with positive Gaussian curvature and H > 0, let H0 be the mean

curvature of isometric embedding of
(
S2, γ

)
in R3, if mBY

(
S2; γ,H

)
= 0 and H 6= H0 then there

is a constant ε depending only on
(
S2, γ,H

)
such that for any H̃ > H − ε,

(
S2, γ, H̃

)
admits no

NNSC fill-ins [14, Theorem 3].

If K > −κ2 where κ is a constant, then
(
S2, γ

)
can be isometrically embedded into the hy-

perbolic space with constant sectional curvature −κ2, and we can make use of such embedding
to define a generalized Brown–York mass, moreover if H > 0 we were able to prove its posi-
tivity [25]. Clearly, this positivity of generalized Brown–York mass is also a kind of necessary
condition for the Bartnik data with K > −κ2 and H > 0 to admit NNSC fill-ins.

For Bartnik data
(
Σ2, γ,H

)
, we can define its Hawking mass as following:

mH(Σ, γ,H) =

√
Area(Σ)

16π

(
1− 1

16π

ˆ
Σ
H2 dσγ

)
.

It should be interesting to explore similar relation between Hawking mass or other quasi-local
masses of the Bartnik data with its NNSC fill-ins. Unfortunately, it is not easy to obtain a lower
bound of the Hawking mass which depends only on

(
Σ2, γ

)
.

In the investigation of above Gromov’s NNSC fill-in problem, we often need to deal with
NNSC-cobordisms of Bartnik data which may have its own interests. More specifically, given
Bartnik data

(
Σn−1
i , γi, Hi

)
, i = 1, 2, we say

(
Σn−1

1 , γ1, H1

)
is NNSC-cobordant to

(
Σn−1

2 , γ2, H2

)
if there is an orientable n-dimensional manifold

(
Ωn, g

)
with ∂Ωn = Σn−1

1 ∪ Σn−1
2 , R(g) ≥ 0,

γi = g|Σi, i = 1, 2, H1 is the mean curvature of Σn−1
1 in

(
Ωn, g

)
with respect to inward unit

normal vector, and H2 is the mean curvature of Σn−1
2 in

(
Ωn, g

)
with respect to outward unit

normal vector. Our first problem is:

Problem 1. Given Bartnik data
(
Σn−1
i , γi, Hi

)
, i = 1, 2, when are they NNSC-cobordant?

By using surgery arguments (see [10, 21]), it is not difficult to show that if Bartnik data(
Σn−1
i , γi, Hi

)
, i = 1, 2 can be filled in with positive scalar curvature metrics, then

(
Σn−1

1 , γ1,−H1

)
is NNSC-cobordant to

(
Σn−1

2 , γ2, H2

)
. Another possible relevant notion to this is so called “PSC-

concordant”. Namely, two PSC-metrics γ0 and γ1 on Σn−1 are said to be PSC-concordant if there
is a PSC-metric g on the cylinder Σ×I which are the product γ0 +dt2 near Σ×{0} and γ1 +dt2

near Σ×{1} (see [28]), in that case,
(
Σn−1, γ0, 0

)
is NNSC-cobordant to

(
Σn−1, γ1, 0

)
. By index

theory, it is known that there are countable infinity distinct PSC-concordant classes for S4k−1,
for any positive integer k ≥ 2. When two PSC-metrics γ0 and γ1 are isotopic, i.e., they can be
connected by a continuous path γt, t ∈ [0, 1], and for each t ∈ [0, 1], γt is a PSC-metric. Then
we may use quasi-spherical metric to show that if H1 is not too large then

(
S2, γ0, H0

)
is NNSC-

cobordant to
(
S2, γ1, H1

)
, here H0 can be any given smooth positive function (see [1, 22, 23]).

On the other hand, when H1 is large enough we are able to show
(
S2, γi, Hi

)
, i = 0, 1, cannot

be NNSC-cobordant [2].

Let γ0 be a Riemannian metric on S2 with its first eigenvalue λ1(−∆0 + K) > 0, here ∆0

is the Laplacian operator of γ0, then it was shown in [18] that
(
S2, γ0, 0

)
is NNSC-cobordant

to
(
S2, γrou, H

)
provided mH

(
S2, γrou, H

)
>

√
Area(S2,γ0)

16π , here γrou denotes the round metric

on S2. For a generalization to the case of Bartnik data with constant mean curvature surfaces
see [6, Theorem 1.1], and higher-dimensional analogues see [7, Theorems 1.1 and 1.2], and [19,
Proposition 2.1]. An NNSC fill-in by a conformal blow-down argument which may have deep
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relation to Problem 1 please see the proof of Theorem 1.2 in [11]. For deep discussion on PSC-
concordant relation for two PSC-metrics on a manifold from topological point of view, please
see [29, 30] and references therein.

As we mentioned above, one obstruction of the above NNSC fill-in problem is from pos-
itivity of certain quasi-local mass (for instance, Brown–York mass, see [22, 26]). It may be
reasonable to think that there may be a potential obstruction of NNSC-cobordism problem
which is from Penrose-type inequality (for Penrose inequality, see [3, 12], for local Penrose
inequality, see [15, 20, 24, 27]). For instance, we observed that if

(
S2, γ2, H2

)
is with posi-

tive Gaussian curvature and H2 > 0, and
(
Σ2

1, γ1, H1

)
is NNSC-cobordant to

(
S2, γ2, H2

)
, then

mBY

(
S2; γ2, H2

)
≥ mH

(
Σ2

1, γ1, H1

)
provided mH

(
Σ2

1, γ1, H1

)
≤ 0 [2].

To our knowledge, even the following simple case is still unknown:

Problem 2. Given Bartnik data
(
Sn−1, g1, H

)
and

(
Sn−1, g0, 0

)
, both are with positive scalar

curvature, what is the largest inf
Sn−1

H so that
(
Sn−1, g0, 0

)
is NNSC-cobordant to

(
Sn−1, g1, H

)
?

Remark 1.

• By the arguments of [26, Theorem 1.4] and some gluing technique, we are able to show
that for any PSC-metric g1 on Sn−1, no matter whether g1 is PSC-concordant to g0 or
not, there is a constant H so that

(
Sn−1, g0, 0

)
is NNSC-cobordant to

(
Sn−1, g1, H

)
and

the ambient manifold bounded by these Bartnik data is diffeomorphic to Sn−1 × [0, 1]
provided g0 is the standard round metric on Sn−1 [2].

• If g0 is the standard round metric on Sn−1, then by gluing arguments, the largest inf
Sn−1

H

in Problem 2 is the corresponding number for
(
Sn−1, g1, H

)
to admit NNSC fill-ins.1

• As we know,
´

Σ2 H dµ1 and
´

Σ2 H
2 dµ1 are closely related to Brown–York mass and Haw-

king mass respectively, they are also involved in classical Minkowski’s inequality for a con-
vex surface and Willmore functional for a surface in R3, so, it may also be interesting to
ask what the possible largest values of

´
Sn−1 H dµ1 and

´
Sn−1 H

2 dµ1 are, especially for
n = 3.

For an orientable closed null-cobordant Riemannian manifold
(
Σn−1, γ

)
, define Λ

(
Σn−1, γ

)
by

Λ
(
Σn−1, γ

)
= sup

{ˆ
Σ
H dµγ

∣∣∣ (Σn−1, γ,H
)

admits an NNSC fill-in

}
.

In the case of n = 3 and H > 0, the above Λ was introduced in [16, 17], and also some
interesting properties were discussed therein. An open problem on an estimate of Λ

(
Σn−1, γ

)
was proposed in [9, p. 31], and a partial result in the case of H > 0 was obtained in [26,
Theorem 1.3].

Suppose
(
S2, γ

)
is a 2-dimensional surface with positive Gaussian curvature, then it can be

isometrically embedded into R3, let H0 be the mean curvature of the embedding image with
respect to the outward unit normal vector, then we have:

Problem 3. Is Λ
(
S2, γ

)
=
´
S2 H0 dµγ?

The affirmative answer implies the positivity of Brown–York mass without assumption of
positivity of the mean curvature.

1We are grateful to the referee for pointing this fact to us.
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