Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 017, 33 pages      arXiv:1908.08978      https://doi.org/10.3842/SIGMA.2020.017
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs

Legendrian DGA Representations and the Colored Kauffman Polynomial

Justin Murray a and Dan Rutherford b
a)  Department of Mathematics, 303 Lockett Hall, Louisiana State University, Baton Rouge, LA 70803-4918, USA
b)  Department of Mathematical Sciences, Ball State University, 2000 W. University Ave., Muncie, IN 47306, USA

Received August 28, 2019, in final form March 10, 2020; Published online March 22, 2020

Abstract
For any Legendrian knot $K$ in standard contact ${\mathbb R}^3$ we relate counts of ungraded ($1$-graded) representations of the Legendrian contact homology DG-algebra $(\mathcal{A}(K),\partial)$ with the $n$-colored Kauffman polynomial. To do this, we introduce an ungraded $n$-colored ruling polynomial, $R^1_{n,K}(q)$, as a linear combination of reduced ruling polynomials of positive permutation braids and show that (i) $R^1_{n,K}(q)$ arises as a specialization $F_{n,K}(a,q)\big|_{a^{-1}=0}$ of the $n$-colored Kauffman polynomial and (ii) when $q$ is a power of two $R^1_{n,K}(q)$ agrees with the total ungraded representation number, $\operatorname{Rep}_1\big(K, \mathbb{F}_q^n\big)$, which is a normalized count of $n$-dimensional representations of $(\mathcal{A}(K),\partial)$ over the finite field $\mathbb{F}_q$. This complements results from [Leverson C., Rutherford D., Quantum Topol. 11 (2020), 55-118] concerning the colored HOMFLY-PT polynomial, $m$-graded representation numbers, and $m$-graded ruling polynomials with $m \neq 1$.

Key words: Legendrian knots; Kauffman polynomial; ruling polynomial; augmentations.

pdf (886 kb)   tex (351 kb)  

References

  1. Beliakova A., Blanchet C., Skein construction of idempotents in Birman-Murakami-Wenzl algebras, Math. Ann. 321 (2001), 347-373, arXiv:math.QA/0006143.
  2. Bennequin D., Entrelacements et équations de Pfaff, Astérisque 107 (1983), 87-161.
  3. Birman J.S., Wenzl H., Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249-273.
  4. Bourgeois F., Ekholm T., Eliashberg Y., Effect of Legendrian surgery, Geom. Topol. 16 (2012), 301-389, arXiv:0911.0026.
  5. Brion M., Representations of quivers, in Geometric Methods in Representation Theory. I, Sémin. Congr., Vol. 24, Soc. Math. France, Paris, 2012, 103-144.
  6. Chekanov Yu., Differential algebra of Legendrian links, Invent. Math. 150 (2002), 441-483, arXiv:math.GT/9709233.
  7. Chekanov Yu., Pushkar' P., Combinatorics of fronts of Legendrian links and the Arnol'd 4-conjectures, Russian Math. Surveys 60 (2005), 95-149.
  8. Dipper R., Hu J., Stoll F., Symmetrizers and antisymmetrizers for the BMW-algebra, J. Algebra Appl. 12 (2013), 1350032, 22 pages, arXiv:1109.0342.
  9. Ekholm T., Etnyre J.B., Ng L., Sullivan M.G., Knot contact homology, Geom. Topol. 17 (2013), 975-1112, arXiv:1109.1542.
  10. Etnyre J.B., Ng L., Legendrian contact homology in ${\mathbb R}^3$, arXiv:1811.10966.
  11. Etnyre J.B., Ng L., Sabloff J.M., Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002), 321-367, arXiv:math.SG/0101145.
  12. Franks J., Williams R.F., Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108.
  13. Fuchs D., Chekanov-Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003), 43-65.
  14. Fuchs D., Ishkhanov T., Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004), 707-717.
  15. Fuchs D., Tabachnikov S., Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997), 1025-1053.
  16. Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, Vol. 109, Cambridge University Press, Cambridge, 2008.
  17. Heckenberger I., Schüler A., Symmetrizer and antisymmetrizer of the Birman-Wenzl-Murakami algebras, Lett. Math. Phys. 50 (1999), 45-51, arXiv:math.QA/0002170.
  18. Henry M.B., Connections between Floer-type invariants and Morse-type invariants of Legendrian knots, Pacific J. Math. 249 (2011), 77-133, arXiv:0911.1735.
  19. Henry M.B., Rutherford D., Ruling polynomials and augmentations over finite fields, J. Topol. 8 (2015), 1-37, arXiv:1308.4662.
  20. Leverson C., Rutherford D., Satellite ruling polynomials, DGA representations, and the colored HOMFLY-PT polynomial, Quantum Topol. 11 (2020), 55-118, arXiv:1802.10531.
  21. Murakami J., The representations of the $q$-analogue of Brauer's centralizer algebras and the Kauffman polynomial of links, Publ. Res. Inst. Math. Sci. 26 (1990), 935-945.
  22. Ng L., Computable Legendrian invariants, Topology 42 (2003), 55-82, arXiv:math.GT/0011265.
  23. Ng L., A skein approach to Bennequin-type inequalities, Int. Math. Res. Not. 2008 (2008), rnn116, 18 pages, arXiv:0709.2141.
  24. Ng L., Rutherford D., Satellites of Legendrian knots and representations of the Chekanov-Eliashberg algebra, Algebr. Geom. Topol. 13 (2013), 3047-3097, arXiv:1206.2259.
  25. Ng L., Rutherford D., Shende V., Sivek S., Zaslow E., Augmentations are sheaves, arXiv:1502.04939.
  26. Ng L., Sabloff J.M., The correspondence between augmentations and rulings for Legendrian knots, Pacific J. Math. 224 (2006), 141-150, arXiv:math.SG/0503168.
  27. Ng L., Traynor L., Legendrian solid-torus links, J. Symplectic Geom. 2 (2004), 411-443, arXiv:math.SG/0407068.
  28. Rudolph L., A congruence between link polynomials, Math. Proc. Cambridge Philos. Soc. 107 (1990), 319-327.
  29. Rutherford D., Thurston-Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond, Int. Math. Res. Not. 2006 (2006), 78591, 15 pages, arXiv:math.GT/0511097.
  30. Rutherford D., HOMFLY-PT polynomial and normal rulings of Legendrian solid torus links, Quantum Topol. 2 (2011), 183-215, arXiv:1006.3285.
  31. Sabloff J.M., Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. 2005 (2005), 1157-1180, arXiv:math.SG/0409032.
  32. Tabachnikov S., Estimates for the Bennequin number of Legendrian links from state models for knot polynomials, Math. Res. Lett. 4 (1997), 143-156.
  33. Traynor L., Generating function polynomials for Legendrian links, Geom. Topol. 5 (2001), 719-760, arXiv:math.GT/0110229.

Previous article  Next article  Contents of Volume 16 (2020)