Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 093, 22 pages      arXiv:1906.00134      https://doi.org/10.3842/SIGMA.2019.093
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety

Richárd Rimányi a, Andrey Smirnov ab, Alexander Varchenko ac and Zijun Zhou d
a) Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
b) Institute for Problems of Information Transmission, Bolshoy Karetny 19, Moscow 127994, Russia
c) Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia
d) Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

Received July 08, 2019, in final form November 18, 2019; Published online November 28, 2019

Abstract
Let $X$ be a holomorphic symplectic variety with a torus $\mathsf{T}$ action and a finite fixed point set of cardinality $k$. We assume that elliptic stable envelope exists for $X$. Let $A_{I,J}= \operatorname{Stab}(J)|_{I}$ be the $k\times k$ matrix of restrictions of the elliptic stable envelopes of $X$ to the fixed points. The entries of this matrix are theta-functions of two groups of variables: the Kähler parameters and equivariant parameters of $X$. We say that two such varieties $X$ and $X'$ are related by the 3d mirror symmetry if the fixed point sets of $X$ and $X'$ have the same cardinality and can be identified so that the restriction matrix of $X$ becomes equal to the restriction matrix of $X'$ after transposition and interchanging the equivariant and Kähler parameters of $X$, respectively, with the Kähler and equivariant parameters of $X'$. The first examples of pairs of 3d symmetric varieties were constructed in [Rimányi R., Smirnov A., Varchenko A., Zhou Z., arXiv:1902.03677], where the cotangent bundle $T^*\operatorname{Gr}(k,n)$ to a Grassmannian is proved to be a 3d mirror to a Nakajima quiver variety of $A_{n-1}$-type. In this paper we prove that the cotangent bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads to nontrivial theta-function identities.

Key words: equivariant elliptic cohomology; elliptic stable envelope; 3d mirror symmetry.

pdf (565 kb)   tex (30 kb)  

References

  1. Aganagic M., Okounkov A., Elliptic stable envelopes, arXiv:1604.00423.
  2. Berwick-Evans D., Tripathy A., A geometric model for complex analytic equivariant elliptic cohomology, arXiv:1805.04146.
  3. Braden T., Licata A., Proudfoot N., Webster B., Gale duality and Koszul duality, Adv. Math. 225 (2010), 2002-2049, arXiv:0806.3256.
  4. Braden T., Licata A., Proudfoot N., Webster B., Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality (with an appendix by I. Losev), Astérisque 384 (2016), 75-179, arXiv:1407.0964.
  5. Braverman A., Finkelberg M., Nakajima H., Towards a mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), 1071-1147, arXiv:1601.03586.
  6. Bullimore M., Dimofte T., Gaiotto D., The Coulomb branch of 3d ${\mathcal N}=4$ theories, Comm. Math. Phys. 354 (2017), 671-751, arXiv:1503.04817.
  7. Bullimore M., Dimofte T., Gaiotto D., Hilburn J., Boundaries, mirror symmetry, and symplectic duality in 3d ${\mathcal N}=4$ gauge theory, J. High Energy Phys. 2016 (2016), no. 10, 108, 192 pages, arXiv:1603.08382.
  8. Cherednik I., Double affine Hecke algebras, London Mathematical Society Lecture Note Series, Vol. 319, Cambridge University Press, Cambridge, 2005.
  9. de Boer J., Hori K., Ooguri H., Oz Y., Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nuclear Phys. B 493 (1997), 101-147, arXiv:hep-th/9611063.
  10. de Boer J., Hori K., Ooguri H., Oz Y., Yin Z., Mirror symmetry in three-dimensional gauge theories, ${\rm SL}(2,{\mathbb Z})$ and D-brane moduli spaces, Nuclear Phys. B 493 (1997), 148-176, arXiv:hep-th/9612131.
  11. Felder G., Tarasov V., Varchenko A., Solutions of the elliptic qKZB equations and Bethe ansatz. I, in Topics in Singularity Theory, V.I. Arnold's 60th Anniversary Collection, Amer. Math. Soc. Transl. Ser. 2, Vol. 180, Amer. Math. Soc., Providence, RI, 1997, 45-75, arXiv:q-alg/9606005.
  12. Felder G., Tarasov V., Varchenko A., Monodromy of solutions of the elliptic quantum Knizhnik-Zamolodchikov-Bernard difference equations, Internat. J. Math. 10 (1999), 943-975, arXiv:q-alg/9705017.
  13. Gaiotto D., Koroteev P., On three dimensional quiver gauge theories and integrability, J. High Energy Phys. 2013 (2013), no. 5, 126, 59 pages, arXiv:1304.0779.
  14. Gaiotto D., Witten E., $S$-duality of boundary conditions in ${\mathcal N}=4$ super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009), 721-896, arXiv:0807.3720.
  15. Ganter N., The elliptic Weyl character formula, Compos. Math. 150 (2014), 1196-1234, arXiv:1206.0528.
  16. Gepner D.J., Homotopy topoi and equivariant elliptic cohomology, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2006.
  17. Ginzburg V., Vasserot E., Algèbres elliptiques et $K$-théorie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 539-543.
  18. Goresky M., Kottwitz R., MacPherson R., Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83.
  19. Grojnowski I., Delocalised equivariant elliptic cohomology, in Elliptic Cohomology, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge University Press, Cambridge, 2007, 114-121.
  20. Hanany A., Witten E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nuclear Phys. B 492 (1997), 152-190, arXiv:hep-th/9611230.
  21. Intriligator K., Seiberg N., Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996), 513-519, arXiv:hep-th/9607207.
  22. Koroteev P., A-type quiver varieties and ADHM moduli spaces, arXiv:1805.00986.
  23. Koroteev P., Pushkar P.P., Smirnov A., Zeitlin A.M., Quantum K-theory of quiver varieties and many-body systems, arXiv:1705.10419.
  24. Lurie J., A survey of elliptic cohomology, in Algebraic Topology, Abel Symp., Vol. 4, Springer, Berlin, 2009, 219-277.
  25. Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque 408 (2019), ix+209 pages, arXiv:1211.1287.
  26. McGerty K., Nevins T., Kirwan surjectivity for quiver varieties, Invent. Math. 212 (2018), 161-187, arXiv:1610.08121.
  27. Nakajima H., Towards a mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), 595-669, arXiv:1503.03676.
  28. Nakajima H., Introduction to quiver varieties - for ring and representation theorists, in Proceedings of the 49th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Shimane, 2017, 96-114, arXiv:1611.10000.
  29. Nakajima H., Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional ${\mathcal N}=4$ gauge theories, in Modern Geometry: a Celebration of the Work of Simon Donaldson, Proc. Sympos. Pure Math., Vol. 99, Amer. Math. Soc., Providence, RI, 2018, 193-211, arXiv:1706.05154.
  30. Okounkov A., Lectures on K-theoretic computations in enumerative geometry, in Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI, 2017, 251-380, arXiv:1512.07363.
  31. Okounkov A., Smirnov A., Quantum difference equation for Nakajima varieties, arXiv:1602.09007.
  32. Rimányi R., Smirnov A., Varchenko A., Zhou Z., 3d mirror symmetry and elliptic stable envelopes, arXiv:1902.03677.
  33. Rimányi R., Tarasov V., Varchenko A., Partial flag varieties, stable envelopes, and weight functions, Quantum Topol. 6 (2015), 333-364, arXiv:1212.6240.
  34. Rimányi R., Tarasov V., Varchenko A., Elliptic and $K$-theoretic stable envelopes and Newton polytopes, Selecta Math. (N.S.) 25 (2019), 16, 43 pages, arXiv:1705.09344.
  35. Rimányi R., Weber A., Elliptic classes of Schubert cells via Bott-Samelson resolution, arXiv:1904.10852.
  36. Rosu I., Equivariant elliptic cohomology and rigidity, Amer. J. Math. 123 (2001), 647-677, arXiv:math.AT/9912089.
  37. Smirnov A., Elliptic stable envelope for Hilbert scheme of points in the plane, arXiv:1804.08779.
  38. Tarasov V., Varchenko A., Jackson integral representations for solutions to the quantized KZ equation, St. Petersburg Math. J. 6 (1994), 275-313, arXiv:hep-th/9311040.
  39. Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math. 128 (1997), 501-588, arXiv:q-alg/9604011.
  40. Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque 246 (1997), vi+135 pages, arXiv:q-alg/9703044.
  41. Tarasov V., Varchenko A., Combinatorial formulae for nested Bethe vectors, SIGMA 9 (2013), 048, 28 pages, arXiv:math.QA/0702277.
  42. Varchenko A., Quantized Knizhnik-Zamolodchikov equations, quantum Yang-Baxter equation, and difference equations for $q$-hypergeometric functions, Comm. Math. Phys. 162 (1994), 499-528.

Previous article  Next article  Contents of Volume 15 (2019)