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Abstract. In commutative algebra, if δ is a locally nilpotent derivation of the polynomial
algebra K[x1, . . . , xd] over a field K of characteristic 0 and w is a nonzero element of the
kernel of δ, then ∆ = wδ is also a locally nilpotent derivation with the same kernel as δ. In
this paper we prove that the locally nilpotent derivation ∆ of the free associative algebra
K〈X,Y 〉 is determined up to a multiplicative constant by its kernel. We show also that the
kernel of ∆ is a free associative algebra and give an explicit set of its free generators.
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1 Introduction

Let K be a field of characteristic 0. Locally nilpotent derivations δ of polynomial algebras
K[x1, . . . , xd] and their kernels ker(δ) are subjects of active investigation. Traditionally, the
kernel of a derivation δ of K[x1, . . . , xd] is called the algebra of constants of δ and is denoted
by K[x1, . . . , xd]

δ. The algebras of constants of locally nilpotent derivations play an essen-
tial role in the study of the automorphism group of K[x1, . . . , xd], including the generation of
Aut(K[x, y]) by tame automorphisms, the Jacobian conjecture, in invariant theory, fourteenth
Hilbert’s problem and other important topics. See the books by Nowicki [18], van den Es-
sen [29], and Freudenburg [10] for details. In particular, using locally nilpotent derivations,
Rentschler [20] gave an easy proof of the theorem of Jung–van der Kulk [11, 30] that all auto-
morphisms of K[x, y] are tame. Another natural proof based on locally nilpotent derivations
was given by Makar-Limanov [15], see also the book [6]. The most natural way to define the
Nagata automorphism [17]

(x, y, z)→
(
x− 2

(
xz + y2

)
y −

(
xz + y2

)2
z, y +

(
xz + y2

)
z, z
)

is also in terms of locally nilpotent derivations, see Bass [1] and Smith [25]. The famous Jaco-
bian conjecture is equivalent to several conjectures stated in the language of locally nilpotent
derivations, see [29]. Several nice counterexamples to fourteenth Hilbert’s problem are obtained
as algebras of constants of locally nilpotent derivations, see the survey and the book by Freuden-
burg [9, 10] and the survey by Nowicki [19]. On the other hand, the well known theorem of
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Weitzenböck [31] states that if δ is a nilpotent linear operator acting on the d-dimensional vec-
tor space Kx1 ⊕ · · · ⊕Kxd, then the algebra of constants of the locally nilpotent derivation of
K[x1, . . . , xd] which extends δ is a finitely generated algebra. A modern proof of the theorem is
given by Seshadri [22], with further simplification by Tyc [27], see also [18]. Clearly, the algebra
of constants K[x1, . . . , xd]

δ coincides with the algebra of invariants of the linear operator

exp(δ) = 1 +
δ

1!
+
δ2

2!
+ · · · .

If δ is a locally nilpotent derivation of K[x1, . . . , xd] and 0 6= w ∈ K[x1, . . . , xd]
δ, then ∆ = wδ

is also a locally nilpotent derivation with the same algebra of constants as δ. In particular,
starting from the Weitzenböck derivation of K[x, y, z] defined by

δ(x) = −2y, δ(y) = z, δ(z) = 0,

w = xz+y2 ∈ K[x, y, z]δ, and ∆ =
(
xz+y2

)
δ one obtains the Nagata automorphism as exp(∆).

We would like to mention that Shestakov and Umirbaev [23, 24] proved the Nagata conjecture
that the Nagata automorphism is wild with methods of noncommutative algebra.

Locally nilpotent derivations of free associative algebras K〈X1, . . . , Xd〉 have not been studied
as intensively as in the commutative case. We shall mention the old result of Falk [8] who de-
scribed the intersection of the kernels of the formal partial derivatives ∂/∂Xj of K〈X1, . . . , Xd〉,
and the relations of the formal partial derivatives with theory of algebras with polynomial iden-
tity due to Specht [26], see also [6] for further development. Drensky and Gupta [7] studied the
kernels of Weitzenböck derivations of K〈X1, . . . , Xd〉 and established that in all nontrivial cases
the kernel is not finitely generated. As in the case of polynomial algebras, the candidate for
a wild automorphism, the automorphism of Anick [2, p. 343]

(X,Y, Z)→ (X + Z(XZ − ZY ), Y + (XZ − ZY )Z,Z)

can also be expressed as exp(∆) for the locally nilpotent derivation ∆ of K〈X,Y, Z〉 defined by

∆(X) = Z(XZ − ZY ), ∆(Y ) = (XZ − ZY )Z, ∆(Z) = 0.

The wildness of the Anick automorphism was established by Umirbaev [28].
In this paper we study locally nilpotent derivations ∆ of the free unitary associative algebra

K〈X,Y 〉 over a field K of characteristic 0. As in the commutative case we shall call the kernel
of ∆ the algebra of constants of ∆ and denote it by K〈X,Y 〉∆. Our main result is that the
locally nilpotent derivations of K〈X,Y 〉 are determined up to a multiplicative constant by their
algebras of constants.

It is easy to see that ∆ is of the form ∆(U) = 0, ∆(V ) = f(U), with respect to a suitable
system of generators U , V of K〈X,Y 〉. This follows from the description of Rentschler [20] of
the locally nilpotent derivations of K[x, y] and the isomorphism of the automorphism groups
of K[x, y] and K〈X,Y 〉 which is a consequence of the theorem of Jung–van der Kulk [11, 30]
and its analogue for the automorphisms of K〈X,Y 〉 due to Czerniakiewicz [3, 4] and Makar-
Limanov [14]. This result is similar to the recent description of locally nilpotent derivations
of the free Poisson algebra with two generators given by Makar-Limanov, Turusbekova, and
Umirbaev [16].

As a consequence of the result of Lane [13] and Kharchenko [12] the algebra of constants
K〈X,Y 〉∆ of the nontrivial Weitzenböck derivation ∆ of K〈X,Y 〉 is a free associative algebra.
A set of free generators of this algebra was given by Drensky and Gupta [7]. We generalize
this result and show that the algebra K〈X,Y 〉∆ is free for any locally nilpotent derivation ∆ of
K〈X,Y 〉. As in [7] we give an explicit set of free generators of K〈X,Y 〉∆. See also [5] where
it is shown that K〈X,Y 〉∆ is a free associative algebra for a nontrivial homogeneous derivation
(and from which the freeness in our case can be deduced).
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2 Preliminaries

For an algebra R over a field K a linear operator δ : R→ R is called a derivation if it satisfies the
Leibniz law δ(ab) = δ(a)b+aδ(b). The kernel of a derivation δ is denoted by Rδ and the elements
of the kernel are called δ-constants (or just constants when this is not confusing). A derivation δ
is called locally nilpotent if for any r ∈ R there exists a natural number n (which depends on r)
for which δn(r) = 0. The function

deg(r) = max
(
d | δd(r) 6= 0

)
, deg(0) = −∞,

is a degree function with familiar properties:

deg(r1r2) = deg(r1) + deg(r2), deg(r1 + r2) ≤ max(deg(r1),deg(r2)),

deg(r1 + r2) = max(deg(r1), deg(r2)) when deg(r1) 6= deg(r2),

deg(δ(r)) = deg(r)− 1 if δ(r) 6= 0.

The set of all lnds (locally nilpotent derivations) of R is denoted by LND(R).
The intersection

⋂
Rδ, δ ∈ LND(R), of kernels of all locally nilpotent derivations of R is

denoted by AK(R) (absolute Konstanten of R, sometimes denoted as ML(R)).
If δ ∈ LND(R) and characteristic of K is zero then the linear operator

exp(δ) = 1 +
δ

1!
+
δ2

2!
+ · · ·

is an automorphism of R.
In the sequel we fix a field K of characteristic 0 and consider the polynomial algebra K[x, y]

and the free associative algebra K〈X,Y 〉. Let

π : K〈X,Y 〉 → K[x, y]

be the natural homomorphism. We denote the elements U , V , etc. of K〈X,Y 〉 by upper case
symbols and their images under π by the same lower case symbols u, v, etc. Let C be the
commutator ideal of K〈X,Y 〉. It is generated by the commutator

T1 = [Y,X] = Y X −XY.

By the theorem of Jung–van der Kulk [11, 30], the automorphisms of K[x, y] are tame, i.e.,
are compositions of affine automorphisms

x→ a1x+ a2y + a3, y → b1x+ b2y + b3, ai, bi ∈ K, a1b2 − a2b1 6= 0,

and triangular automorphisms

x→ x, y → y + p(x), p(x) ∈ K[x].

A similar theorem of Czerniakiewicz [3, 4] and Makar-Limanov [14] states that the automor-
phisms of K〈X,Y 〉 are also tame. Therefore

Ψ(T1) = cT1, c ∈ K∗,

for any automorphism Ψ of K〈X,Y 〉 (indeed, just check that this is true for affine and triangular
automorphisms).

The structure of the automorphism groups of K[x, y] and K〈X,Y 〉 is also known, it is a free
product of the subgroups of affine and triangular automorphisms with amalgamation along
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their intersection [21]. So we can think that there is a group H isomorphic to AutK[x, y] and
AutK〈X,Y 〉 which acts on K[x, y] and K〈X,Y 〉.

Any automorphism of K〈X,Y 〉 induces an automorphism of K[x, y] and, since the structure
of the group H insures that this is one to one correspondence, any automorphism of K[x, y] can
be uniquely lifted to an automorphism of K〈X,Y 〉.

We shall use below a lexicographic ordering of monomials of K〈X,Y 〉 defined by Y � X > 1
and denote by S the leading monomial of S ∈ K〈X,Y 〉.

In the sequel we shall show that we can reduce our considerations to the case when the lnd ∆
is such that

∆(X) = 0, ∆(Y ) = F = f(X),

where 0 6= f(x) ∈ K[x]. In this special case we shall define the operator � on K〈X,Y 〉 by

�(A) = Y AF − FAY, A ∈ K〈X,Y 〉,

and shall fix the sequence T1, T2, . . ., starting with T1 = Y X −XY and then inductively

Ti+1 = �i(T1).

3 Description of locally nilpotent derivations

Though the lnds of K〈X,Y 〉 are similar to the lnds of K[x, y] there are also significant differences.

It is quite clear that AK(K[x, y]) = K (just observe that the partial derivatives ∂
∂x and ∂

∂y
are locally nilpotent) but we shall show later that AK(K〈X,Y 〉) = K[T1]. The following lemma
shows that AK(K〈X,Y 〉) ⊇ K[T1].

Lemma 3.1. δ(T1) = 0 for any lnd of K〈X,Y 〉.

Proof. If δ ∈ LND(K〈X,Y 〉) then λδ ∈ LND(K〈X,Y 〉) for any λ ∈ K. Take Ψλ = exp(λδ);
then Ψλ([Y,X]) = c(λ)[Y,X], where c(t) ∈ K[t] (recall that δ is an lnd). On the other hand
ΨλΨµ = Ψλ+µ, i.e., c(s)c(t) = c(s + t). Since c(s) 6= 0 this is possible only if c(t) = 1. Hence
δ([Y,X]) = 0. �

Now we shall prove that lnds of K〈X,Y 〉 are similar to those of K[x, y].

Proposition 3.2. Let ∆ be a locally nilpotent derivation of K〈X,Y 〉. Then there is a system of
generators U , V of K〈X,Y 〉 and a polynomial f(U) depending on U only, such that ∆(U) = 0,
∆(V ) = f(U).

Proof. Let ∆ be a locally nilpotent derivation ofK〈X,Y 〉. Clearly, ∆ induces a locally nilpotent
derivation δ of K[x, y]. By the theorem of Rentschler [20], K[x, y] has a system of generators u, v
such that δ(u) = 0, δ(v) = f(u) for some f(u) ∈ K[u].

As was mentioned above this pair of generators can be uniquely lifted to the pair U , V of
generators of K〈X,Y 〉.

Let us consider the automorphisms

Φ = exp(∆) ∈ AutK〈X,Y 〉 = AutK〈U, V 〉

and

ϕ = exp(δ) = 1 +
δ

1!
+
δ2

2!
+ · · · ∈ AutK[x, y] = AutK[u, v].
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Then

ϕ : u→ u, ϕ : v → v + f(u).

From the uniqueness mentioned in Section 2

ϕ(u) = u, ϕ(v) = v + f(u)

implies Φ(U) = U , Φ(V ) = V + f(U). Since Φ = exp(∆) = 1 +Θ, where

Θ =
∆

1!
+

∆2

2!
+ · · ·

and Θn(S) = 0 for S ∈ K〈X,Y 〉 and a sufficiently large n, we have that

∆ = log(1 +Θ) =
Θ

1
− Θ2

2
+
Θ3

3
− · · ·

and Φ determines uniquely the lnd ∆. Hence ∆(U) = 0, ∆(V ) = f(U). �

Another difference between the locally nilpotent derivations of K[x, y] and K〈X,Y 〉 is that
in the latter case they can be distinguished by their algebras of constants.

Theorem 3.3. Let ∆1 and ∆2 be two non-zero locally nilpotent derivations of K〈X,Y 〉. Then ∆1

and ∆2 have the same algebras of constants if and only if ∆2 = α∆1 for a nonzero α ∈ K.

Proof. Changing the generators of K〈X,Y 〉, by Proposition 3.2 we may assume that ∆1(X)=0,
∆1(Y ) = f(X) = F for some nonzero F = f(X) ∈ K〈X,Y 〉. Since K〈X,Y 〉∆1 = K〈X,Y 〉∆2

we have that ∆2(X) = 0. By Lemma 3.1

∆2(T1) = [∆2(Y ), X] + [Y,∆2(X)] = [∆2(Y ), X] = 0.

Therefore ∆2(Y ) = g(X) = G. A direct computation gives that

T2 = Y T1F − FT1Y ∈ K〈X,Y 〉∆1 .

Hence ∆2(T2) = GT1F − FT1G = g(X)T1f(X) − f(X)T1g(X) = 0 which implies that g(x) =
αf(x) for some α ∈ K. Therefore ∆2 = α∆1. Since ∆1,∆2 6= 0, we obtain that α 6= 0. �

4 Algebras of constants of derivations of K〈X,Y 〉
By Proposition 3.2, up to a change of the free generators of K〈X,Y 〉 every nontrivial locally
nilpotent derivation ∆ of K〈X,Y 〉 is of the form

∆(X) = 0, ∆(Y ) = f(X),

where 0 6= f(x) ∈ K[x]. In the sequel we shall fix deg(f) = m ≥ 0 and ∆ as defined above.

Proposition 4.1. AK(K〈X,Y 〉) = K[T1].

Proof. Let us consider derivations

δm : δm(X) = 0, δm(Y ) = Xm.

Suppose δm(P ) = 0 for all m. We may assume that P is homogeneous relative to X and Y .
Write P = XP0 + Y P1, then

0 = δm(P ) = Xδm(P0) +XmP1 + Y δm(P1).
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Hence δm(P1) = 0 and we can assume by induction on degY that P1 belongs to the subalgebra
K〈X,T1〉 of K〈X,Y 〉 generated by X and T1 and write P1 = XP10 + T1P11. If P11 6= 0 then
XmT1P11 cannot be canceled by any monomial of Xδm(P0) if m is sufficiently large. Hence
P11 = 0 and P10 ∈ K〈X,T1〉. Therefore

P = XP0 + Y XP10 = XP0 + T1P10 +XY P10 = X(P0 + Y P10) + T1P10.

Then δm(P0 + Y P10) = 0 because T1P10 ∈ K〈X,T1〉 and we can assume by induction on degX
that P0 + Y P10 ∈ K〈X,T1〉, i.e., P ∈ K〈X,T1〉. Of course

AK(K〈X,Y 〉) ⊆ K〈X,T1〉
⋂
K〈Y, T1〉 = K[T1]

since we can switch X and Y . �

Consider the operator � on K〈X,Y 〉 defined in Section 2. We shall prove in this section that
the algebra of constants of ∆ is the minimal algebra RF which contains K〈X,T1〉 and is closed
under this operator. Since �∆ = ∆� it is clear that RF ⊆ K〈X,Y 〉∆. It is worth observing
that the kernel of � is K[Y ] if degX(F ) = 0 and 0 if degX(F ) > 0 and that deg(�(A)) = deg(A)
(where deg is the degree function induced by ∆) if degX(F ) > 0. We shall also denote �(A)
by {A}. This bracketing is a bit unusual since �n(A) will be recorded as {{. . . {A} . . .}} with
the same number n of the left and right brackets and there can be more than two terms inside of
a pair of brackets, but as in the ordinary bracketing in a configuration of three brackets like this
{A1{A2} the first bracket cannot match the third bracket, it should be matched by a bracket }
to the right of the third bracket and second and third brackets are matched.

Theorem 4.2. Let L ∈ K〈X,Y 〉. If ∆n(L) = 0 then L belongs to the linear span RnF of elements
A1Y A2Y · · ·Y Ak, where k ≤ n and each Ai, 1 ≤ i ≤ k, is a monomial from RF , endowed with
an arbitrary number of matching pairs of brackets {}.

Proof. We consider two cases separately.

(a) m = 0 (we can assume that ∆(Y ) = 1). Consider the sequence of elements T1, . . . , Ti, . . .
defined in Section 2 by T1 = Y X − XY , Ti+1 = �i(T1). In this case Ti = Y iX and any

element S ∈ K〈X,Y 〉 can be written as S =
k∑
j=0

SjY
j where Sj ∈ K〈X,T1, . . . , Ti, . . .〉. Since

∆(S) =
k∑
j=0

jSjY
j−1, ∆n(S) = 0, and ∆k(S) 6= 0 if Sk 6= 0 it is clear that k < n.

(b) m > 0. Let us introduce a weight degree function on K〈X,Y 〉 by w(X) = 1, w(Y ) = m.
Then the space VN spanned by monomials of the weight not exceeding N is mapped by the
derivation into itself. We proceed by induction on w(S). If w(S) is sufficiently small, say does
not exceed m, the claim is obvious. Assume that for the weight less than N the claim is true.

Take an L for which w(L) = N and L(k) = 0 (here and further on L(k) denotes ∆k(L)). We
can assume that L(X, 0) = 0 and write

L = LmF +
m−1∑
i=0

LiY X
i.

Then

L(k)
m F + k

m−1∑
i=0

L
(k−1)
i XiF +

m−1∑
i=0

L
(k)
i Y Xi = 0.
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Hence L
(k)
i = 0 for i < m and

(
L′m + k

m−1∑
i=0

LiX
i

)(k−1)

= 0.

Therefore L̂(k) = 0 for L̂ = LmF +
m−1∑
i=0

LiX
iY .

It is sufficient to check the claim for L̂ since L − L̂ =
m−1∑
i=0

Li[Y,X
i] satisfies the claim by

induction (w(Li) < N and [Y,Xi] ∈ RF ).

Write L̂ = LmF + H0Y . Then H
(k)
0 = 0 and (L′m + kH0)(k−1) = 0. Hence L

(k+1)
m = 0

and L̃(k) = 0 for L̃ = kLmF − L′mY . It is sufficient to check the claim for L̃ since kL̂ − L̃ =
(kH0 + L′m)Y and kH0 + L′m satisfy the claim by induction.

Since L
(k+1)
m = 0 and w(Lm) < N we can write

Lm =
∑
j

αj0Y αj1Y · · ·Y αjk + S,

where αji ∈ RF , the summands are endowed with brackets {}, and S is the sum of terms in
which Y appears less than k times. We can omit S since kSF − S′Y ∈ RkF .

Take one of the summands µj and consider νj = kµjF − µ′jY . Since ∆ and � commute

νj = kµjF −
k∑
i=1

αj0Y αj1Y · · ·αji−1FαjiY · · ·Y αjkY,

where each term αj0Y αj1Y · · ·αji−1FαjiY · · ·Y αjkY has the same bracketing as µ = µj.

Consider Pi = µF − αj0Y αj1Y · · ·αji−1FαjiY · · ·Y αjkY . It is clear that P
(k)
i = 0 so we

should check that Pi can be recorded as a sum of terms containing only k − 1 entries of Y (we
do not count Y ’s appearing in �).

Write µ = V1Y U1 where Y is the one which is replaced by F in Pi and introduce two
operations:

5r,U (V1Y U1) = V1Y U1UF −V1FU1UY and 5l,U (V1Y U1) = FUV1Y U1−Y UV1FU1.

We shall write 5r and 5l when U = 1, so Pi = 5r(V1Y U1).

The operator � is defined on all algebra while the operations 5r,U , 5l,U are defined only on
specially recorded elements and their extension does not seem to be canonical.

Assume that V1Y U1 = �(V2Y U2). Then we need to simplify 5r(�(V2Y U2)). In order to do
this let us compute [5r,�](V2Y U2).

This is a bit tedious but not difficult:

5r(�(V2Y U2)) = [Y (V2Y U2)F − F (V2Y U2)Y ]F − [Y (V2FU2)F − F (V2FU2)Y ]Y,

�(5r(V2Y U2)) = Y [(V2Y U2)F − (V2FU2)Y ]F − F [(V2Y U2)F − (V2FU2)Y ]Y.

Hence

[5r,�](V2Y U2) = −F (V2Y U2)Y F + F (V2Y U2)FY − Y (V2FU2)FY + Y (V2FU2)Y F

= [Y (V2FU2)− F (V2Y U2)][Y, F ] = −5l (V2Y U2)[Y, F ].
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Therefore

5r(�(V2Y U2)) = �(5r(V2Y U2))−5l(V2Y U2)[Y, F ].

Since w(V2Y U2) < w(V1Y U1) we can apply induction.

Assume now that either µ = V � (V1Y U1) or µ = �(V1Y U1)U . If µ = V � (V1Y U1) then
5r(V � (V1Y U1)) = V 5r (�(V1Y U1)). If µ = �(V1Y U1)U then 5r(µ) = 5r,U (�(V1Y U1)).
Now,

[5r,U ,�](V1Y U1) = �[5r(V1Y U1)U −5r,U (V1Y U1)]−5l(V1Y U1) � (U)

and induction can be applied in these cases as well.

The last case is when Y does not belong to a bracketed subword. Then µ = V1Y U1 and
5r(µ) = V1 � (U1).

The proof is completed. �

Corollary 4.3. The algebra of constants K〈X,Y 〉∆ coincides with the algebra RF .

Proof. As we already mentioned RF ⊆ K〈X,Y 〉∆ and it is sufficient to show that if ∆(L) = 0
for L ∈ K〈X,Y 〉, then L belongs to RF . But this is a direct consequence of the case n = 1 in
Theorem 4.2. �

Now we are able to establish one of the main properties of the algebra of constants K〈X,Y 〉∆.

Theorem 4.4. The algebra of constants K〈X,Y 〉∆ is a free algebra.

Proof. By Corollary 4.3 we may work with the algebra RF instead with K〈X,Y 〉∆. When
m = 0 we have seen (in the proof of Theorem 4.2) that R1 is generated by X,T1, T2, . . .. Since
Ti = Y iX these elements freely generate R1. For m > 0 producing a generating set is more
involved but the freeness can be deduced from a theorem of de W. Jooste [5]. It follows from
his theorem that the kernel of the derivation ∆(X) = 0, ∆(Y ) = Xm is a free algebra. For this
derivation any w-homogeneous component (recall that w(X) = 1, w(Y ) = m) of a constant is
also a constant, hence there is a homogeneous free generating set F1, F2, . . . of RXm . There is
a bijection π between the elements of RXm and RF obtained by replacing Xm in each bracket
of an element of RXm by F = f(X). Therefore π(F1), π(F2), . . . is a generating set of RF which
is free since w(π(Fi)− Fi) < w(Fi). �

It remains to produce a homogeneous set freely generating RXm .

Lemma 4.5. The algebra RXm is generated by X and bracketed words

T i11 X
j1 · · ·Xjk−1T ik1 ,

where i1, i2, . . . , ik > 0, j1, j2, . . . , jk−1 < m, and where the right brackets } are preceded by T1

(i.e., there are no configurations X}).

Proof. Denote by D the subalgebra of RXm which is generated by words described in the
lemma. Any element of RXm can be written as a linear combination of bracketed words µ =
Xj0T i11 X

j1 · · ·T ik1 X
jk . We shall find an element B ∈ D with the same leading monomial B as

the leading monomial µ of µ in the lexicographic order defined by Y � X > 1. Clearly this is
sufficient for the proof of the lemma.

To find the leading monomial µ of a bracketed word µ we should replace all left brackets {
by Y and all right brackets } by Xm.
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If µ starts with X then µ = Xµ1 (as an element of K〈X,Y 〉) where µ1 ∈ RXm and we can
use induction on weight to claim that there is an element B1 ∈ D such that µ1 = B1 (or even
that µ1 ∈ B).

If µ cannot be written as �(ν) then µ = (µ1)(µ2) where brackets () separate elements of RXm

and w(µi) < w(µ). Hence we can use induction to claim that µ1 = B1, µ2 = B2 where Bi ∈ D.

If µ = �(ν) then w(µ) = w(ν) + 2m and we may assume that ν = B where B ∈ D. Since
B ∈ D we can write B =

(
Xj0

)
(V1)

(
Xj1

)
· · · (Vk)

(
Xjk

)
where Vi ∈ D and (Xj) = Xj and

µ = Y Xj0(V1)
(
Xj1

)
· · · (Vk)Xjk+m. Inasmuch as Vi ∈ D we may assume that the first and the

last letters in all Vi (as bracketed words) are T1.

If j0 > 0 then T1

(
Xj0−1

)
(V1)

(
Xj1

)
· · · (Vk)

(
Xjk+m

)
= µ.

If j0 = 0, js ≥ m where s is the smallest possible then{
(V1)

(
Xj1

)
· · · (Vs)

}(
Xjs−m

)
· · · (Vk)

(
Xjk+m

)
= µ.

If all js < m then µ ∈ D. �

Theorem 4.6. The algebra D = RXm, m > 0, is freely generated by X, T1 and words
�
(
T i11 X

j1 · · ·Xjk−1T ik1

)
, where i1, i2, . . . , ik > 0, j1, j2, . . . , jk−1 < m, and T i11 X

j1 · · ·Xjk−1T ik1

are bracketed words described in Lemma 4.5 (we shall refer to these words as permissible and to
T i11 X

j1 · · ·Xjk−1T ik1 without brackets as the root of the corresponding word).

Proof. It is sufficient to check that the leading monomial µ of a permissible word cannot be
presented as a product of the leading monomials of permissible words of a smaller weight.

To check this consider the leading monomial µ = Y b1 · · ·Xas−1Y bsXas of a permissible µ.
(Observe that b1 > 0, as = m+ 1 since �(V ) = Y V Xm.)

The number of T1 in the bracketed representation of µ ∈ D must be equal to s since in the
leading monomial of any word from D a subword Y X can appear only as T1. So the number of
brackets { in µ is degY (µ)− s. Of course the number of brackets } is the same.

A subword Y biXai can appear in µ only as {. . . {T1} . . .}Xdi where the number of left brackets
is bi−1, the number of right brackets is the integral part of ai−1

m and 0 ≤ di < m is the remainder
of the division of ai−1 by m. Therefore the root and the bracketing of µ are uniquely determined
by µ. But we would have two different bracketings if µ = (ν1)(ν2). This finishes a proof of the
theorem. �
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