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Abstract. This paper first discusses irreducibility of a Painlevé equation P . We explain
how the Painlevé property is helpful for the computation of special classical and algebraic
solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to
a Painlevé equation P . Complete integrability of H is shown to imply that all solutions
to P are classical (which includes algebraic), so in particular P is solvable by “quadratures”.
Next, we show that the variational equation of P at a given algebraic solution coincides
with the normal variational equation of H at the corresponding solution. Finally, we test
the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by
showing how our results lead to a quick computation of the component of the identity of
the differential Galois group for the first two variational equations. As expected there are
no cases where this group is commutative.

Key words: Hamiltonian systems; variational equations; Painlevé equations; differential Ga-
lois groups
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1 Introduction and summary

The interesting idea of J.-A. Weil to apply the Morales-Ramis theorem to Painlevé equations
was initiated in [13]. It is also the subject of more recent papers [1, 8, 21, 22, 24, 25]. The
Hamiltonian H of a Painlevé equation x′′ = R(x′, x, t) depends on ‘the time’ t. In order to apply
the Morales-Ramis theorem, H is changed into a time-independent Hamiltonian H = H + e.
Our first main result (Proposition 3.1) states that complete integrability for H implies that all
solutions of the equation x′′ = R(x′, x, t) are classical solutions in the sense of H. Umemura
[26, 27, 28, 29] (this includes algebraic functions). In fact, one may state that such an equation
x′′ = R(x′, x, t) is not considered as a true Painlevé equation. This is in agreement with [32],
see also Section 3 below.

The second main result of this paper (Proposition 4.1) claims that the normal variational
equation(s) of H along a given explicit solution are shown to be equivalent to the variational
equation(s) for x′′ = R(x′, x, t) along a given solution. To fix notations, we recall notations for
second-order Painlevé equations here, taken from [20] and [2]:

P1 : y′′ = 6y2 + t,

P2(α) : y′′ = 2y3 + ty + α,
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P ′3(α, β, γ, δ) : y′′ = y′2/y − y′/t+
(
αy2 + γy3

)
/
(
4t2
)

+ β/(4t) + δ/(4y),

P4(α, β) : y′′ = y′2/y + 3y3/2 + 4ty2 + 2
(
t2 − α

)
y + β/y,

P5(α, β, γ, δ) : y′′ =

(
1

2y
+

1

y − 1

)
y′2 − y′/t+ (y − 1)2(αy + β/y)/

(
t2
)

+ γy/t+ δy(y + 1)/(y − 1).

We will not use a formula for P6. In the case of P ′3 there is a refinement:

P ′3(D6) = P ′3(α, β, γ, δ) with γδ 6= 0,

P ′3(D7) = P ′3(α, β, γ, δ) with (δ = 0, β 6= 0) or (γ = 0, α 6= 0),

P ′3(D8) = P ′3(α, β, 0, 0) with αβ 6= 0.

Finally we mention

degP5(θ0, θ1) : y′′ =
1

2

(
1

y
+

1

y − 1

)
(y′)2 − y′

t
+

2(y − 1)θ20
yt2

− 2yθ21
(y − 1)t2

+ 8y(y − 1).

In [2, Section 3] it is explained how this relates to P5

(
θ21/2,−θ20/2,−2, 0

)
.

For the equations P2 to P5, there is a convenient list in [20] of all cases with algebraic solutions,
up to Bäcklund transformations. The Hamiltonians arising from the equations in this list are
not completely integrable, as follows from Propositions 3.1 and 4.1. One expects, in accordance
with [14, 15], that the variational equations in such cases produce differential Galois groups G
such that Go, the component of the identity, is not abelian. We verify this explicitly for all items
in the list of [20]. The results and some comments regarding them are (see Section 5):

(1) The first variational equation produces, for almost all cases, G = SL2.

(2) In some cases the first variational equation produces the differential Galois group with
component of the identity Gm. The second variational equation produces an extension
of this group by a unipotent group Gm

a . The action by conjugation of Gm on Gm
a is not

trivial. Hence Go is not abelian.

(3) We elaborate the interesting case Section 5.7 which discusses P5(a,−a, 0, δ) and y = −1
with first variational equation v′′ = −t−1v′ +

(
8at−2 + 1

2δ
)
v. It follows from the mon-

odromy theorem [31, Proposition 8.12(2)] that its differential Galois group is SL2 unless

a = (2n+1)2

32 with n ∈ Z. For these special values of a the differential Galois group is Gm.
Again, for these special cases, the second variational produces a G with non abelian com-
ponent of the identity. In [22] a P5 equation with different parameters (but equivalent
by Bäcklund transformations) is studied and the same special values are found. Our
methods (specifically, the use of the monodromy theorem) simplify, compared to earlier
similar results by Stoyanova et al. [21, 22, 24, 25] the determination of the Galois group
associated to such a variational equation. The special values for a can be explained as
follows. There is a standard isomonodromy family corresponding to P5, see [9]. Let ± θ0

2

and ± θ1
2 denote the local exponents of this family for the regular singularities 0 and 1.

Then θ0 − θ1 =
√

8a. Thus the special values for a correspond to a type of resonance
between the regular singularities at 0 and at 1.

(4) (This observation is in part inspired by a discussion of one of us with Juan J. Morales-Ruiz;
we thank him for his question.) Each of the Painlevé equations is induced by isomonodromy
of some family of order 2 linear differential equations [30]. The possible singular points
of such a family are 0, 1, ∞ with prescribed singularity. The first variational equation
happens to have the same type of possible singularities; this observation is made in various
examples discussed in Section 5.
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R. Fuchs’ problem, see [20, 23], also concerns algebraic solutions of Painlevé equations. The
second-order linear differential equations resulting from this problem seem to be unrelated to
the first variational equations.

In Section 2 we observe that if a second-order equation R has the Painlevé property and
moreover is reducible, then the induced first-order differential equation Q has the Painlevé pro-
perty, too. The classification of first-order equations with the Painlevé property has consequences
for the special solutions of R, as will be explained on p. 3.

2 Reducibility and special solutions

Consider a Painlevé equation x′′ = R(x′, x, t) with fixed parameters. Let den be the denominator
of R(x′, x, t) seen as element of the field of fractions of C(t)[x′, x]. Then D := C(t)

[
x′, x, 1

den

]
is

a differential algebra with respect to the differentiation given by t′ = 1, x′ = x′, x′′ = R(x′, x, t).

A solution of a Painlevé equation is called “known” or “reducible” if it is obtained from
solutions of linear equations, first-order equations, and abelian integrals. Many results on solu-
tions of Painlevé equations are known, for example due to the Belarusian school [7]. A Painlevé
equation is called reducible if it has a reducible solution; otherwise it is called irreducible. We
note that a different definition of reducible second-order equation appears in [3]. A deep result
of the Japanese school translates the non-existence of reducible solutions (so, irreducibility of
the equation) into

(1) there are no algebraic solutions, and

(2) For every differential field extension K ⊃ C(t) the ring K⊗D has no principal differential
ideal 6= (0), (1).

For this subject we refer to [19, 26, 27, 28] and in particular to [17, Appendix A]. In fact it
is known that condition (2) can be replaced by the simpler condition:

(2′) D has no principal differential ideal 6= (0), (1).

We now discuss how to verify these two conditions.

Concerning (1): By the Painlevé property, an algebraic solution can only be ramified above
the fixed singularities. These are t = ∞ in the cases P1, P2, and P4. Hence here an algebraic
solution must be rational. It is easily seen that no solution of P1 in C(t) exists. For P3 and P5

an algebraic solution can only ramify above t = 0,∞. The equations P6 have many algebraic
solutions; they ramify above t = 0, 1,∞.

Concerning (2′): The algebra D has unique factorization and one easily verifies that every
prime factor Q of F such that (F ) is a differential ideal, generates again a differential ideal.
Thus the equation is reducible if and only if D has a prime ideal (Q) of height one which is
invariant under differentiation.

Now Q(x′, x, t) = 0 is a first-order differential equation. It is well known that x′′ = R(x′, x, t)
has the Painlevé property. The solutions of Q(x′, x, t) = 0 are also solutions of this Painlevé
equation. Therefore Q(x′, x, t) = 0 itself has the Painlevé property. A classical result (see
[12, 16, 18] for modern proofs and references to some of the rich classical literature) implies that
Q(x′, x, t) has one of the following properties:

(i) Genus 0; it is a Riccati equation; thus x′ = a+ bx+ cx2 with a, b, c ∈ C(t).

(ii) Genus 1; it is a Weierstrass equation; thus it is equivalent to (x′)2 = f ·
(
x3 + ax + b

)
,

where f 6= 0 is algebraic over C(t), and a, b ∈ C are such that the equation y2 = x3+ax+b
represents an elliptic curve.
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(iii) Genus > 1; after a finite extension of C(t), the equation is equivalent to the equation
x′ = 0. This is equivalent to the statement: all solutions of Q(x′, x, t) = 0 are contained
in a fixed finite extension of C(t).

We will call the above three cases “special classical solutions” of the Painlevé equation. We
conclude that the Painlevé equation is irreducible if it has no special classical solutions.

We observe that all of the cases of special solutions have genus 0. The corresponding second-
order linear differential equation has at most singularities where the Painlevé equation has fixed
singularities (for P6 these are the points 0, 1, ∞; for P5, degP5, P3 the points 0, ∞; for P4,
P2,FN = P34, P2, P1 the point ∞).

3 Complete integrability for the Hamiltonian H

x′′ = R(x′, x, t) is again some Painlevé equation with fixed parameters. There is a Hamiltonian
function H(y, x, t) related to the given Painlevé equation. There are various possibilities for H
but we assume that it is a rational in the variables y, x, t and moreover is polynomial of degree 2
in the variable y. The usual equations are:

x′(t) =
∂H

∂y
(y(t), x(t), t) and y′(t) = −∂H

∂x
(y(t), x(t), t).

Since H is a polynomial of degree two in y, the first equation can be used to write y(t) as
a rational expression in x′(t), x(t) and t. Substitution of this expression for y(t) in the second
equation will produce an explicit second-order equation for x(t) and this is the given one x′′ =
R(x′, x, t).

Now H depends on the time t. One wants to apply the Morales-Ramis theorem concerning
complete integrability. This leads to a choice of a new Hamiltonian H(y, x, z, e) = H(y, x, z) + e
which depends on two pairs of variables y, x and z, e. The new equations are

x′(t) =
∂H
∂y

, y′(t) = −∂H
∂x

, z′(t) =
∂H
∂e

= 1, e′(t) = −∂H
∂z

.

Proposition 3.1. Suppose that H is completely integrable. Then all solutions of x′′ = R(x′, x, t)
are classical (including algebraic). In particular the equation is reducible.

Proof. H is a first integral. There is an independent first integral E(y, x, z, e). We suppose
that E is a rational (or algebraic) function of the 4 variables. Now we replace the e in E by
−H(y, x, z). The result is a first integral F (y, x, z) for H and a rational (or algebraic) function
G = G(x′, x, t) such that G(x′(t), x(t), t) is independent of t for every solution x(t) of the
Painlevé equation x′′ = R(x′, x, t). Then, taking the derivative with respect to t, one finds that
the expression R(x′, x, t) ∂G∂x′ + x′ ∂G∂x + ∂G

∂t is zero on every solution (x′(t), x(t), t) of the Painlevé
equation. It follows that this expression itself is zero.

Consider, as before, the differential algebra D := C(t)
[
x′, x, 1

den

]
with derivation F 7→ F ′

given by t′ = 1, (x)′ = x′, (x′)′ = R(x′, x, t). Assume (for convenience) that G is rational.
Thus G lies in the field of fractions Qt(D) of D and G′ = 0. Let L ⊂ Qt(D) denote the field
of constants. Then L(x′, x, t) equals Qt(D) and the transcendance degree of L(x′, x, t) ⊃ L
is 2, because G 6∈ C. Therefore there is an irreducible polynomial Q ∈ L(t)[S, T ] such that
Q(x′, x) = 0. The coefficients of Q lie in D[ 1U ] for a suitable element U .

The solutions of the Painlevé equation correspond to C(t)-linear differential homomorphism
φ : D → Mer, where Mer denotes the differential field of the multivalued meromorphic functions
on, say, C \ {0, 1}. Indeed, the homomorphism φ corresponds to the solution φ(x) ∈ Mer.

If φ(U) 6= 0, then φ(Q)(S, T ) makes sense. Since the coefficients ofQ are rational functions in t
with ‘constant’ coefficients, one has φ(Q)(S, T ) ∈ C(t)[S, T ]. Moreover φ(Q)(φ(x)′, φ(x)) = 0,
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which means that the solution φ(x) ∈ Mer satisfies a first-order differential equation, which has
again the Painlevé property. We conclude that φ(x) is a special classical solution or an algebraic
solution.

Consider finally a φ such that φ(U) = 0. Then φ is also zero on a prime differential ideal
of D containing U . If this is a principal ideal, then φ(x) is a special classical solution. If this is
a maximal ideal, then the solution φ(x) is algebraic. �

We note that Proposition 3.1 is in agreement with a main result of [32]: The Hamilton
system H, associated with any of the equations P1–P6, does not admit any first integral which
is an algebraic function of x, y, z, e and independent of H, except in the following cases:
(a) α = γ = 0 in P3, (b) β = δ = 0 in P3 and (c) γ = δ = 0 in P5.

It is well known that in the cases (a)–(c) all solutions are obtained by “quadratures”. The
‘first integrals’ (this means here an F such that (F ) ⊂ D is a (prime) differential ideal) are
actually known. Namely for P3 with β = δ = 0 they are t2(x′)2 + 2txx′ −

(
C + 2αtx+ γt2x2

)
x2

(with arbitrary C and a similar formula for the case α = γ = 0); see slide 47 of the 2002 lecture [4]
by Clarkson and also the Russian paper [10]. For P5 with γ = δ = 0 the ‘first integrals’ are
t2(x′)2 − (x− 1)2

(
2αx2 + Cx− 2β

)
. This is, e.g., stated on slide 48 of [4], see also [11].

One observes that the above ‘first integrals’ are order one differential equations having the
Painlevé property. They have genus 0.

4 Several variational equations

Suppose that an algebraic solution x0 = x0(t) of x′′ = R(x′, x, t) is given. The variational
equation VEP for the Painlevé equation is given by the following formalism. Put x = x0(t) + εv
with ε2 = 0. Substitution yields the equation x′′0 + εv′′ = R(x′0 + εv′, x0 + εv, t). The coefficient
of ε in this equation is a second-order linear equation for v. Explicitly, VEP is the equation

v′′ =
∂R

∂x′
(x′0, x0, t)v

′ +
∂R

∂x
(x′0, x0, t)v.

The algebraic solution x0 produces an algebraic solution y0 = y0(t), x0 = x0(t) for the
Hamiltonian equations for H. The variational equation VEH for this Hamiltonian equation is
defined by the following formalism. Put y = y0 + εw, x = x0 + εv with ε2 = 0 in the two
Hamilton equations. Thus

x′0 + εv′ =
∂H

∂y
(y0 + εw, x0 + εv, t) and y′0 + εw′ = −∂H

∂x
(y0 + εw, x0 + εv, t).

The coefficients of ε in these equations yield linear differential equations for w and v of order
one. Moreover, the first equation can be used to eliminate w as linear expression in v and v′.
Thus we obtain a second-order homogenous differential equation for v which coincides of course
with the earlier VEP.

An algebraic solution x0 = x0(t) for the Painlevé equation yields for H the solution y0 = y0(t),
x0 = x0(t), z0(t) = t, e0 = e0(t) = −

∫
∂H
∂z dt. For the algebraic solutions of P2, . . . , P5 and the

Hamiltonians as given in [20], the function e0 turns out to be algebraic. We have not verified
this for the case of P6. If in such a situation a transcendental e0 occurs, then the Morales-
Ramis theory is still valid, and the VEH and NVEH still make sense. However, in that case
these equations are considered over a differential field which is larger than the algebraic closure
of C(t).

The variational equation VEH for H along this solution is obtained by the following formalism.
Put y = y0 + εw, x = x0 + εv, z0 = t + εa, e = e0 + εb with ε2 = 0. Substitution of these data
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into the Hamiltonian equations for H yields a systems of rank 4 of linear differential equations
of first order. In more detail

x′0 + εv′ =
∂H
∂y

(y0 + εw, . . . , e0 + εb), y′0 + εw′ = −∂H
∂x

(y0 + εw, . . . , e0 + εb),

t′ + εa′ =
∂H
∂e

= 1, e′0 + εb′ = −∂H
∂z

(y0 + εw, . . . , e0 + εb).

The normal variational equation NVEH for H along this solution is obtained by taking the
three dimensional space perpendicular to the equation for a and dividing out by the tangent line
of the curve (i.e., the given solution). This means that we are reduced to the case a = b = 0.
Substitution of a = b = 0 in the VEH yields the VEH, which is equivalent to the VEP. We note
that the VEH contains the term e0, but NVEH does not. This computation proves the following
result.

Proposition 4.1. The normal variational equation NVEH of H coincides with the variational
VEP of the Painlevé equation x′′ = R(x′, x, t).

5 VEP for the algebraic solutions of P2, . . . , P5

We adopt here the list of special solutions of [20, Theorem 2.1]. Further we will, as in that
paper, replace the classical P3 by P ′3. Finally for the degenerate fifth Painlevé equation we will
use the degP5 of our paper [2].

5.1 P2(α = 0) with solution y = 0

P2 reads y′′ = 2y3 + ty + α. The VEP for α = 0 and y = 0 reads v′′ = tv. This is the Airy
equation with differential Galois group SL2. This is also present in [1, 13, 25].

We skip the Flaschka–Newell P34 = P2,FN since it is equivalent to P2.

5.2 P4

(
0,−2

9

)
with y = −2

3
t

In this case the VEP reads v′′ = t−1v′− 4
3 t

2v. A basis of solutions is
{

e
√
−1/3t2 , e−

√
−1/3t2} and

the differential Galois group is Gm. The second variational equations (obtained by putting as
solution −2

3 t+ εv + ε2w) read

v′′ − t−1v′ + 4

3
t2v = 0, w′′ − t−1w′ + 4

3
t2w =

3

2
t−1vv′′ − 3

4
t−1(v′)2 + 3tv2.

For every solution v0 6= 0 of the first equation, the second inhomogeneous equation produces
an extension of Gm by an additive group Ga. For instance, the choice v0 = ect

2
with c2 = −1

3

leads to the equation w′′ − t−1w′ + 4
3 t

2w =
(
3ct−1 + 2t

)
e2ct

2
. Any special solution w0 involves

the “error function” erf(t). An element of s ∈ Gm
∼= C∗ maps v0 to sv0 and maps w0 to s2w0+

a solution of the homogeneous equation. Hence the component of the identity of the differential
Galois group of the second variational equation is not commutative. Compare also to the next
case, where more details are given.

5.3 P4(0,−2) with y = −2t

This case is similar to the one discussed in Section 5.2. The resulting VEP is v′′−t−1v′−4t2v = 0.
A basis of solutions is

{
et

2
, e−t

2}
and the differential Galois group is Gm. The second VEP is

v′′ − t−1v′ − 4t2v = 0, w′′ − t−1w′ − 4t2w =
1

2
t−1vv′′ − 1

4
t−1(v′)2 − 7tv2.
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The Picard–Vessiot field K for this set of equations is an extension of the Picard–Vessiot field
K0 = C

(
t, et

2) ⊃ C(t) of the first equation. The extension K ⊃ K0 is obtained by adding

a particular solution w0 of the second inhomogeneous equation for every solution v0 = aet
2

+
be−t

2 6= 0 of the first equation. The differential Galois group G of K/K0 is an unipotent
group and can be seen to be G3

a. The action of Gm on the solutions v0 induces a non-trivial
action (by conjugation) of Gm on G3

a. Indeed, fix a solution v0 of the first equation: v0 = et
2
.

Choose σ ∈ Gm such that σ(v0) = cv0 and c2 6= 1 and a solution w0 of the inhomogeneous
equation appearing in the second VEP. Any extension σ̃ of σ to G satisfies σ̃(w0) = c2w0 + v
with v′′ − t−1v′ − 4t2v = 0. This shows that the action of Gm on G3

a is non-trivial. Thus the
component of the identity of G is not commutative.

Stoyanova in [24] studies non-integrability of P4(1, 0). After suitable Bäcklund transforma-
tions her results agree with our Section 5.3.

5.4 P ′
3(D6)(a,−a, 4,−4) and y = −t1/2

The variational equation reads v′′ +
(
1
4 t
−2 + a

2 t
−3/2 − 4t−1

)
v = 0. At t = 0 there is a logarithm

present in the local solutions. At t =∞ there is an exponential present in the local solutions. The
differential Galois group G, say over C

(
t1/2
)
, contains therefore Ga and Gm. Thus G contains

a Borel subgroup. The operator corresponding to this equation does not factor over C
(
t1/2
)
.

One concludes that G = SL2.

5.5 P ′
3(D7)(0,−2, 2, 0) and y = t1/3

The variational equation reads −t1/3v′′ − 1
3 t
−2/3v′ +

(
−1

9 t
−5/3 + 3

2 t
−1)v = 0. As in Section 5.4,

there is at t = 0 a logarithm present and at t =∞ an exponential. The corresponding operator
does not factor over the field C

(
t1/3
)
. One concludes that the differential Galois group is SL2.

5.6 P ′
3(D8)(8h,−8h, 0, 0) and y = −t1/2

The variational equation is v′′ +
(
4ht−3/2 + 1

4 t
−2)v = 0. Computations similar to those in

Sections 5.4 and 5.5 imply that the differential Galois group is SL2.

5.7 P5(a,−a, 0, δ) and y = −1

Here the VEP is v′′ = −t−1v′ +
(
8at−2 + 1

2δ
)
v and the operator form is δ2t −

(
8a + 1

2δt
2
)

with

δt := t ddt . The differential Galois group G ⊂ SL2 depends on a and δ.

If δ = 0, then this group is a subgroup of Gm. We skip this equation because it is a special
case of the degenerate fifth Painlevé equation. (Alternatively, observe that it is ‘quadrature’.)

Suppose that δ 6= 0 (then one usually scales δ to −1
2). We use [31] for some facts and

terminology and we use the package DEtools of MAPLE for some computations. The singularity

at t = ∞ is irregular; its generalized eigenvalues are ±
(
δ
2

)1/2
t and the formal monodromy γ

is −id. On a suitable basis of the formal solution space at t = ∞, the topological monodromy
at t =∞ is the product of γ and two Stokes matrices and has the form

(−1 0
0 −1

) (
1 0
e1 1

) (
1 e2
0 1

)
.

Since there is only one other singular point, namely at t = 0, and since this singularity is reg-
ular, the group G coincides with the differential Galois group taking over the field of the conver-

gent Laurent series C
({
t−1
})

. The latter is generated by the group Gm
∼=
{(

c 0
0 1/c

) ∣∣ c ∈ C∗
}

,

γ and the two Stokes matrices. The topological monodromy at t = ∞ is conjugated to the
topological monodromy at t = 0. Comparing the traces of these matrices yields −e1e2 − 2 =
e2πi
√
8a + e−2πi

√
8a = 2 cos

(
2π
√

8a
)
.
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If e1e2 6= 0, then G = SL2. Now e1e2 = 0 is equivalent to
√

8a − 1
2 ∈ Z or a = (2n+1)2

32 for
some integer n ≥ 0. In these cases G is contained in a Borel subgroup of SL2 and the operator
δ2t −

(
8a + 1

2δt
2
)

factors as (δt − F )(δt + F ) over the field C(t). In fact e1, e2 are both zero if

a = (2n+1)2

32 and G is generated by γ =
(−1 0

0 −1
)

and Gm
∼=
{(

c 0
0 1/c

) ∣∣ c ∈ C∗
}

.

Example: for a = 1
32 one finds F = 1

2 +
√
δ/2t. In fact, a basis of solutions is given by

t−1/2e
√
δ/2t, t−1/2e−

√
δ/2t. More generally, a basis of solutions for a = (2n+1)2

32 and (for conve-

nience) with δ = 2 is
{
t−(2n+1)/2et

(
tn + · · ·

)
, t−(2n+1)/2e−t

(
tn + · · ·

)}
. The second polynomial

is obtained from the first one by changing the sign of the terms tk with k ≡ (n− 1) mod 2.
The second variational equation is

v′′ + t−1v′ −
(
8at−2 + δ/2

)
v = 0,

w′′ + t−1w′ −
(
8at−2 + δ/2

)
w =

3

2
vv′′ − (v′)2 +

3

2
t−1vv′ −

(
16at−2 + δ

)
v2.

For the case a = 1
32 a MAPLE computation shows that the differential Galois group G of the

above two equations has the properties: G/Go = C2, G
o/H = Gm, H ∼= G3

a and the action
of Gm (by conjugation) on H is not trivial. The details are similar to those of Section 5.3. In

particular Go is not commutative. A similar result holds for all cases a = (2n+1)2

32 .
We note that Stoyanova’s results in [22] agree with our’s in Section 5.7 (up to Bäcklund

transformations).

5.8 P5

(
s2

2
,−1

2
,−s,−1

2

)
and y = − t

s
+ 1

We note that in [20, Theorem 2.1(8)] there is a typo. According to the “Clarkson lectures” [4,
slides 52–53], the above choice of parameters corresponds to a Riccati family of solution w with
equation w′ = s

tw
2 +
(
1 + 1−s

t

)
w− 1

t . This Riccati equation has the rational solution w = 1− t
s .

We refer to [6, Section 7, especially Section 7.1] for a derivation of this.
Clarkson’s papers [5] and [6, Section 5.6] contain a list of rational solutions of P5, e.g.,

P5

(
1
2 ,−

s2

2 , 2 − s,−1
2

)
with y = t + s. We skip these examples since they are equivalent via

Bäcklund transformations to one of the two equations in [20, Theorem 2.1].
The solution y = −t/s + 1 to P5

(
s2/2,−1/2,−s,−1/2

)
induces the VEP v′′ + s−2t

t(t−s)v
′ +

(s−t)3−s+2t
t2(t−s) v = 0. This equation has a basis of solutions e−tts+1, ett1−s generating the Picard–

Vessiot field C
(
t, et, ts

)
over C(t). The corresponding differential Galois group G is an infinite

subgroup of Gm × Gm. As in Sections 5.2 and 5.3 one computes the second VEP. The resul-
ting inhomogeneous equation yields an extension E of G by copies of Ga, and its connected
component Eo is non-commutative.

5.9 degP5 with θ0 = 1
2

and solution y(t) = 1 − θ1
2t

In [20] the degenerate fifth Painlevé equation P5

(
h2

2 ,−
1
8 ,−2, 0

)
and solution y = 1 + 2t1/2

h is
considered (note a small typo in [20, Theorem 2.1(9)]: their ‘−8’ should read −1

8). Further-
more, [20, Theorem 2.1(9)] together with the last lines of [20, Section 2.2] explain the relation
between P ′3(D6) and degP5 (and hence between our Section 5.4 and the present one). As ex-
plained in [2, p. 9] the above special P5 and algebraic solution translate into degP5

(
1
2 , θ1

)
with

θ1 = h, and algebraic solution y = 1− θ1/(2t). It induces as VEP the equation

v′′ + av′ + bv = 0 with a =
4t− 3θ1
t(2t− θ1)

, b = −32t3 − 32t2θ1 + 8tθ21 + θ1
t2(2t− θ1)

.

We note that h = 0 corresponds to θ1 = 0. The given solution has no immediate meaning
for h = 0 and, likewise, the solution y(t) = 1 has no immediate meaning for the case θ1 = 0.
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Therefore we will suppose that θ1 6= 0. As pointed out by a referee, y(t) = 1 has a meaning for
an associated Hamiltonian system.

The VEP has three singular points 0, θ1
2 , ∞. The first two singularities are regular singular

and ∞ is an irregular singularity with Katz invariant 1.

Since a equals f ′

f for some f ∈ C(t), the differential Galois group G is a subgroup of SL2.
A standard computation (either by hand or using MAPLE’s DEtools package) shows that at
t = 0, the function log t is present, implying that Ga ⊂ G. The singularity t = θ1

2 is apparent
and e4t is present in the formal solutions at t = ∞. Thus G also contains a copy of Gm. If
G 6= SL2, then G is a Borel subgroup and the operator

(
d
dt

)2
+a
(
d
dt

)
+ b factors (or equivalently

the induced Riccati equation has a rational solution). A standard computation shows that in
the present case the operator does not factor. One concludes that G = SL2.
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Angew. Math. 726 (2017), 1–27, arXiv:1112.2916.

[18] Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one,
J. Symbolic Comput. 71 (2015), 47–59, arXiv:1303.4960.

[19] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé
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