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Figure 4. The two fibers and the sections are shown in the diagram. intersects ; the further

intersections of the ’s with i > 1 provide various cases, analysed in the proof.

this curve should be negative definite. On the other hand, (intersecting ) also intersects
the fiber , in the curve (after possible renumbering). Now blowing down and , the
curve will be a complex curve of self-intersection 0. Since a complex curve does not vanish
in homology, it defines a nontrivial homology class in the complement of the (+2)-curve with
zero self-intersection, providing a contradiction.

Assume now that is intersected by three sections, say and . Blowing these and
the corresponding curves from (i.e., , G ,G ) down, the curve defined by will have self-

intersection (+4) in #3 with four curves , G ,G ,G in its complement, linearly
independent in homology. This is a contradiction again.

Assume finally that all four sections intersect . Blowing the sections and then the curves

down, we get the image of in of self-intersection (+6), with three curves in the
complement, defining linearly independent homology classes, providing the last desired contra-
diction.
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Figure 4. The two I∗0 fibers and the sections Ei are shown in the diagram. E1 intersects G1
1; the further

intersections of the Ei’s with i > 1 provide various cases, analysed in the proof.
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Figure 5. Curve configuration in CP 2 used in Example 4.5.

this curve should be negative definite. On the other hand, E3 (intersecting G3
0) also intersects

the fiber F1, in the curve G2
1 (after possible renumbering). Now blowing down E3 and G2

1, the
curve G3

0 will be a complex curve of self-intersection 0. Since a complex curve does not vanish
in homology, it defines a nontrivial homology class in the complement of the (+2)-curve with
zero self-intersection, providing a contradiction.

Assume now that G1
1 is intersected by three sections, say E1, E2 and E3. Blowing these and

the corresponding curves from F0 (i.e., G1
0, G

2
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0) down, the curve defined by G1
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intersection (+4) in CP 2#3CP 2
with four curves
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)
in its complement, linearly

independent in homology. This is a contradiction again.

Assume finally that all four sections intersect G1
1. Blowing the sections and then the curves Gi

0

down, we get the image of G1
1 in CP 2#CP 2

of self-intersection (+6), with three curves in the
complement, defining linearly independent homology classes, providing the last desired contra-
diction. �

Example 4.5. In a similar manner, we can specify a pencil of curves in the complex projective
plane which (after 9 blow-ups) provides an elliptic fibration with two singular fibers, both of type
I∗0 . Indeed, let S∞ = ∪3

i=1ℓi be the union of three lines ℓ1, ℓ2, ℓ3 passing through a fixed point
P ∈ CP 2, each line with multiplicity one. Define S0 to be the union L1 ∪ L2, where L1 passes
through P while L2 does not; we consider L1 with multiplicity 1 and L2 with multiplicity 2, see
Fig. 5. In this way both S∞ and S0 are (singular) curves of degree 3, and the resulting pencil
(with four basepoints, the three intersection points ℓi∩L2 and P ) will define an elliptic fibration
with exactly two I∗0 fibers and no further singular fibers.
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