Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 017, 51 pages      arXiv:1807.01910      https://doi.org/10.3842/SIGMA.2019.017

Ghostpeakons and Characteristic Curves for the Camassa-Holm, Degasperis-Procesi and Novikov Equations

Hans Lundmark and Budor Shuaib
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

Received July 06, 2018, in final form February 19, 2019; Published online March 06, 2019

Abstract
We derive explicit formulas for the characteristic curves associated with the multipeakon solutions of the Camassa-Holm, Degasperis-Procesi and Novikov equations. Such a curve traces the path of a fluid particle whose instantaneous velocity equals the elevation of the wave at that point (or the square of the elevation, in the Novikov case). The peakons themselves follow characteristic curves, and the remaining characteristic curves can be viewed as paths of ''ghostpeakons'' with zero amplitude; hence, they can be obtained as solutions of the ODEs governing the dynamics of multipeakon solutions. The previously known solution formulas for multipeakons only cover the case when all amplitudes are nonzero, since they are based upon inverse spectral methods unable to detect the ghostpeakons. We show how to overcome this problem by taking a suitable limit in terms of spectral data, in order to force a selected peakon amplitude to become zero. Moreover, we use direct integration to compute the characteristic curves for the solution of the Degasperis-Procesi equation where a shockpeakon forms at a peakon-antipeakon collision. In addition to the theoretical interest in knowing the characteristic curves, they are also useful for plotting multipeakon solutions, as we illustrate in several examples.

Key words: peakons; characteristic curves; Camassa-Holm equation; Degasperis-Procesi equation; Novikov equation.

pdf (2588 kb)   tex (2259 kb)

References

  1. Beals R., Sattinger D.H., Szmigielski J., Multi-peakons and a theorem of Stieltjes, Inverse Problems 15 (1999), L1-L4, arXiv:solv-int/9903011.
  2. Beals R., Sattinger D.H., Szmigielski J., Multipeakons and the classical moment problem, Adv. Math. 154 (2000), 229-257, arXiv:solv-int/9906001.
  3. Brandolese L., Local-in-space criteria for blowup in shallow water and dispersive rod equations, Comm. Math. Phys. 330 (2014), 401-414, arXiv:1210.7782.
  4. Bressan A., Chen G., Zhang Q., Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discrete Contin. Dyn. Syst. 35 (2015), 25-42, arXiv:1401.0312.
  5. Bressan A., Constantin A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal. 183 (2007), 215-239.
  6. Bressan A., Constantin A., Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.) 5 (2007), 1-27.
  7. Cai H., Chen G., Chen R.M., Shen Y., Lipschitz metric for the Novikov equation, Arch. Ration. Mech. Anal. 229 (2018), 1091-1137, arXiv:1611.08277.
  8. Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664, arXiv:patt-sol/9305002.
  9. Camassa R., Holm D.D., Hyman J.M., A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33.
  10. Camassa R., Huang J., Lee L., On a completely integrable numerical scheme for a nonlinear shallow-water wave equation, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 146-162.
  11. Camassa R., Huang J., Lee L., Integral and integrable algorithms for a nonlinear shallow-water wave equation, J. Comput. Phys. 216 (2006), 547-572.
  12. Chen G., Chen R.M., Liu Y., Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation, Indiana Univ. Math. J. 67 (2018), 2393-2433, arXiv:1509.08569.
  13. Chen R.M., Guo F., Liu Y., Qu C., Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal. 270 (2016), 2343-2374.
  14. Chertock A., Liu J.G., Pendleton T., Convergence analysis of the particle method for the Camassa-Holm equation, in Hyperbolic Problems - Theory, Numerics and Applications, Vol. 2, Ser. Contemp. Appl. Math. CAM, Vol. 18, World Sci. Publishing, Singapore, 2012, 365-373.
  15. Chertock A., Liu J.G., Pendleton T., Convergence of a particle method and global weak solutions of a family of evolutionary PDEs, SIAM J. Numer. Anal. 50 (2012), 1-21.
  16. Chertock A., Liu J.G., Pendleton T., Elastic collisions among peakon solutions for the Camassa-Holm equation, Appl. Numer. Math. 93 (2015), 30-46.
  17. Coclite G.M., Karlsen K.H., On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal. 233 (2006), 60-91.
  18. Coclite G.M., Karlsen K.H., On the uniqueness of discontinuous solutions to the Degasperis-Procesi equation, J. Differential Equations 234 (2007), 142-160.
  19. Coclite G.M., Karlsen K.H., Periodic solutions of the Degasperis-Procesi equation: well-posedness and asymptotics, J. Funct. Anal. 268 (2015), 1053-1077.
  20. Constantin A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321-362.
  21. Constantin A., Escher J., Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 303-328.
  22. Constantin A., Escher J., Global weak solutions for a shallow water equation, Indiana Univ. Math. J. 47 (1998), 1527-1545.
  23. Constantin A., Lannes D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), 165-186, arXiv:0709.0905.
  24. Constantin A., Molinet L., Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), 45-61.
  25. Degasperis A., Holm D.D., Hone A.N.W., A new integrable equation with peakon solutions, Theoret. and Math. Phys. 133 (2002), 1463-1474, arXiv:nlin.SI/0205023.
  26. Degasperis A., Procesi M., Asymptotic integrability, in Symmetry and Perturbation Theory (Rome, 1998), Editors A. Degasperis, G. Gaeta, World Sci. Publ., River Edge, NJ, 1999, 23-37.
  27. Dullin H.R., Gottwald G.A., Holm D.D., An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett. 87 (2001), 194501, 4 pages, arXiv:nlin.CD/0104004.
  28. Dullin H.R., Gottwald G.A., Holm D.D., Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res. 33 (2003), 73-95.
  29. Dullin H.R., Gottwald G.A., Holm D.D., On asymptotically equivalent shallow water wave equations, Phys. D 190 (2004), 1-14, arXiv:nlin.PS/0307011.
  30. Escher J., Liu Y., Yin Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal. 241 (2006), 457-485.
  31. Geng X., Xue B., An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity 22 (2009), 1847-1856.
  32. Grunert K., Holden H., The general peakon-antipeakon solution for the Camassa-Holm equation, J. Hyperbolic Differ. Equ. 13 (2016), 353-380, arXiv:1502.07686.
  33. Grunert K., Holden H., Raynaud X., A continuous interpolation between conservative and dissipative solutions for the two-component Camassa-Holm system, Forum Math. Sigma 3 (2015), e1, 73 pages, arXiv:1402.1060.
  34. Himonas A.A., Holliman C., Kenig C., Construction of 2-peakon solutions and ill-posedness for the Novikov equation, SIAM J. Math. Anal. 50 (2018), 2968-3006, arXiv:1708.05759.
  35. Holden H., Raynaud X., A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin. Dyn. Syst. 14 (2006), 505-523.
  36. Holden H., Raynaud X., Global conservative multipeakon solutions of the Camassa-Holm equation, J. Hyperbolic Differ. Equ. 4 (2007), 39-64.
  37. Holden H., Raynaud X., Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), 1511-1549.
  38. Holden H., Raynaud X., Global dissipative multipeakon solutions of the Camassa-Holm equation, Comm. Partial Differential Equations 33 (2008), 2040-2063.
  39. Holden H., Raynaud X., A numerical scheme based on multipeakons for conservative solutions of the Camassa-Holm equation, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 873-881.
  40. Holden H., Raynaud X., Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst. 24 (2009), 1047-1112.
  41. Hone A.N.W., Lundmark H., Szmigielski J., Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ. 6 (2009), 253-289, arXiv:0903.3663.
  42. Hone A.N.W., Wang J.P., Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor. 41 (2008), 372002, 10 pages, arXiv:0805.4310.
  43. Jiang Z., Ni L., Blow-up phenomenon for the integrable Novikov equation, J. Math. Anal. Appl. 385 (2012), 551-558.
  44. Jiang Z., Ni L., Zhou Y., Wave breaking of the Camassa-Holm equation, J. Nonlinear Sci. 22 (2012), 235-245.
  45. Johnson R.S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82.
  46. Johnson R.S., The classical problem of water waves: a reservoir of integrable and nearly-integrable equations, J. Nonlinear Math. Phys. 10 (2003), suppl. 1, 72-92.
  47. Kardell M., Lundmark H., Peakon-antipeakon solutions of the Novikov equation, in preparation.
  48. Lai S., Li N., Wu Y., The existence of global strong and weak solutions for the Novikov equation, J. Math. Anal. Appl. 399 (2013), 682-691.
  49. Li Y.A., Olver P.J., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J Differential Equations 162 (2000), 27-63.
  50. Liu Y., Yin Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys. 267 (2006), 801-820.
  51. Liu Y., Yin Z., On the blow-up phenomena for the Degasperis-Procesi equation, Int. Math. Res. Not. 2007 (2007), Art. ID rnm117, 22 pages.
  52. Lundmark H., Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci. 17 (2007), 169-198.
  53. Lundmark H., Szmigielski J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems 19 (2003), 1241-1245, arXiv:nlin.SI/0503033.
  54. Lundmark H., Szmigielski J., Degasperis-Procesi peakons and the discrete cubic string, Int. Math. Res. Pap. 2005 (2005), 53-116, arXiv:nlin.SI/0503036.
  55. Lundmark H., Szmigielski J., An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Amer. Math. Soc. 244 (2016), viii+87 pages, arXiv:1304.0854.
  56. Lundmark H., Szmigielski J., Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation, J. Integrable Syst. 2 (2017), xyw014, 65 pages, arXiv:1605.02805.
  57. Matsuno Y., The peakon limit of the $N$-soliton solution of the Camassa-Holm equation, J. Phys. Soc. Japan 76 (2007), 034003, 8 pages, arXiv:nlin.SI/0701051.
  58. McKean H.P., Breakdown of a shallow water equation, Asian J. Math. 2 (1998), 867-874.
  59. McKean H.P., Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math. 57 (2004), 416-418.
  60. Molinet L., On well-posedness results for Camassa-Holm equation on the line: a survey, J. Nonlinear Math. Phys. 11 (2004), 521-533.
  61. Ni L., Zhou Y., Well-posedness and persistence properties for the Novikov equation, J. Differential Equations 250 (2011), 3002-3021.
  62. Novikov V., Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor. 42 (2009), 342002, 14 pages, arXiv:0905.2219.
  63. Rodríguez-Blanco G., On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. 46 (2001), 309-327.
  64. Shuaib B., Lundmark H., Non-interlacing peakon solutions of the Geng-Xue equation, arXiv:1812.09173.
  65. Szmigielski J., Zhou L., Colliding peakons and the formation of shocks in the Degasperis-Procesi equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), 20130379, 19 pages, arXiv:1302.1377.
  66. Szmigielski J., Zhou L., Peakon-antipeakon interactions in the Degasperis-Procesi equation, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 83-107, arXiv:1301.0171.
  67. Tığlay F., The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Not. 2011 (2011), 4633-4648, arXiv:1009.1820.
  68. Wu X., Guo B., Global well-posedness for the periodic Novikov equation with cubic nonlinearity, Appl. Anal. 95 (2016), 405-425.
  69. Wu X., Yin Z., Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor. 44 (2011), 055202, 17 pages.
  70. Wu X., Yin Z., Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 707-727.
  71. Xin Z., Zhang P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000), 1411-1433.
  72. Xin Z., Zhang P., On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations 27 (2002), 1815-1844.
  73. Yan W., Li Y., Zhang Y., The Cauchy problem for the integrable Novikov equation, J. Differential Equations 253 (2012), 298-318.
  74. Yin Z., On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math. 47 (2003), 649-666.
  75. Zhou Y., Wave breaking for a shallow water equation, Nonlinear Anal. 57 (2004), 137-152.

Previous article  Next article   Contents of Volume 15 (2019)