Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 133, 35 pages      arXiv:1806.02131

Field Theory with Coordinate Dependent Noncommutativity

Daniel N. Blaschke a, François Gieres b, Stefan Hohenegger b, Manfred Schweda c and Michael Wohlgenannt d
a) Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
b) Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. Paul Dirac, 4 rue Enrico Fermi, F-69622-Villeurbanne, France
c) Deceased
d) Austro-Ukrainian Institute for Science and Technology c/o AUI, ITP, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

Received September 19, 2018, in final form December 11, 2018; Published online December 23, 2018

We discuss the formulation of classical field theoretical models on $n$-dimensional noncommutative space-time defined by a generic associative star product. A simple procedure for deriving conservation laws is presented and applied to field theories in noncommutative space-time to obtain local conservation laws (for the electric charge and for the energy-momentum tensor of free fields) and more generally an energy-momentum balance equation for interacting fields. For free field models an analogy with the damped harmonic oscillator in classical mechanics is pointed out, which allows us to get a physical understanding for the obtained conservation laws. To conclude, the formulation of field theories on curved noncommutative space is addressed.

Key words: NCQFT; energy-momentum tensor; noncommutative geometry.

pdf (674 kb)   tex (62 kb)


  1. Aref'eva I.Ya., Belov D.M., Koshelev A.S., Rytchkov O.A., Renormalizability and UV/IR mixing in noncommutative theories with scalar fields, Phys. Lett. B 487 (2000), 357-365.
  2. Arnold V.I., Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 250, Springer-Verlag, New York, 1988.
  3. Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., A gravity theory on noncommutative spaces, Classical Quantum Gravity 22 (2005), 3511-3532, hep-th/0504183.
  4. Aschieri P., Dimitrijević M., Kulish P., Lizzi F., Wess J., Noncommutative spacetimes. Symmetries in noncommutative geometry and field theory, Lecture Notes in Phys., Vol. 774, Springer-Verlag, Berlin, 2009.
  5. Aschieri P., Dimitrijević M., Meyer F., Wess J., Noncommutative geometry and gravity, Classical Quantum Gravity 23 (2006), 1883-1911, hep-th/0510059.
  6. Bagchi B., Fring A., Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems, Phys. Lett. A 373 (2009), 4307-4310, arXiv:0907.5354.
  7. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., On the unitarity problem in space/time noncommutative theories, Phys. Lett. B 533 (2002), 178-181, hep-th/0201222.
  8. Balasin H., Blaschke D.N., Gieres F., Schweda M., On the energy-momentum tensor in Moyal space, Eur. Phys. J. C Part. Fields 75 (2015), 284, 11 pages, arXiv:1502.03765.
  9. Banerjee R., Chakraborty B., Ghosh S., Mukherjee P., Samanta S., Topics in noncommutative geometry inspired physics, Found. Phys. 39 (2009), 1297-1345, arXiv:0909.1000.
  10. Bateman H., On dissipative systems and related variational principles, Phys. Rev. 38 (1931), 815-819.
  11. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Physics 111 (1978), 61-110.
  12. Beggs E.J., Majid S., Poisson-Riemannian geometry, J. Geom. Phys. 114 (2017), 450-491, arXiv:1403.4231.
  13. Behr W., Sykora A., Construction of gauge theories on curved noncommutative spacetime, Nuclear Phys. B 698 (2004), 473-502, hep-th/0309145.
  14. Behr W., Sykora A., NC Wilson lines and the inverse Seiberg-Witten map for non-degenerate star products, Eur. Phys. J. C Part. Fields 35 (2004), 145-148, hep-th/0312138.
  15. Ben Geloun J., Hounkonnou M.N., Noncommutative Noether theorem, in XXVI Workshop on Geometrical Methods in Physics, AIP Conf. Proc., Vol. 956, Amer. Inst. Phys., Melville, NY, 2007, 55-60.
  16. Berezin F.A., Shubin M.A., The Schrödinger equation, Mathematics and its Applications (Soviet Series), Vol. 66, Kluwer Academic Publ. Group, Dordrecht, 1991.
  17. Bieliavsky P., Cahen M., Gutt S., Rawnsley J., Schwachhöfer L., Symplectic connections, Int. J. Geom. Methods Mod. Phys. 3 (2006), 375-420, math.SG/0511194.
  18. Bigatti D., Susskind L., Magnetic fields, branes, and noncommutative geometry, Phys. Rev. D 62 (2000), 066004, 6 pages, hep-th/9908056.
  19. Biswas I., Differential operators on a Riemann surface with projective structure, J. Geom. Phys. 50 (2004), 393-414.
  20. Blaschke D.N., Gieres F., Reboud M., Schweda M., The energy-momentum tensor(s) in classical gauge theories, Nuclear Phys. B 912 (2016), 192-223.
  21. Blaschke D.N., Kronberger E., Sedmik R.I.P., Wohlgenannt M., Gauge theories on deformed spaces, SIGMA 6 (2010), 062, 70 pages, arXiv:1004.2127.
  22. Blumenhagen R., Brunner I., Kupriyanov V., Lüst D., Bootstrapping non-commutative gauge theories from $\rm L_\infty$ algebras, J. High Energy Phys. 2018 (2018), no. 5, 097, 46 pages, arXiv:1803.00732.
  23. Caldirola P., Forze non conservative nella meccanica quantistica, Nuovo Cim. 18 (1941), 393-400.
  24. Calmet X., Kobakhidze A., Noncommutative general relativity, Phys. Rev. D 72 (2005), 045010, 5 pages, hep-th/0506157.
  25. Calmet X., Wohlgenannt M., Effective field theories on noncommutative space-time, Phys. Rev. D 68 (2003), 025016, 11 pages, hep-ph/0305027.
  26. Cariglia M., Duval C., Gibbons G.W., Horváthy P.A., Eisenhart lifts and symmetries of time-dependent systems, Ann. Physics 373 (2016), 631-654, arXiv:1605.01932.
  27. Cattaneo A.S., Felder G., A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys. 212 (2000), 591-611, math.QA/9902090.
  28. Chaichian M., Oksanen M., Tureanu A., Zet G., Covariant star product on symplectic and Poisson space-time manifolds, Internat. J. Modern Phys. A 25 (2010), 3765-3796, arXiv:1001.0503.
  29. Chaichian M., Oksanen M., Tureanu A., Zet G., Noncommutative gauge theory using a covariant star product defined between Lie-valued differential forms, Phys. Rev. D 81 (2010), 085026, 11 pages, arXiv:1001.0508.
  30. Chaichian M., Sheikh-Jabbari M.M., Tureanu A., Hydrogen atom spectrum and the Lamb shift in noncommutative QED, Phys. Rev. Lett. 86 (2001), 2716-2719, hep-th/0010175.
  31. Chamseddine A.H., Noncommutative gravity, Ann. Henri Poincaré 4 (2003), S881-S887, hep-th/0301112.
  32. Chamseddine A.H., Connes A., Space-time from the spectral point of view, in Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Vols. 1-3, Proceedings of the 12th Marcel Grossmann Meeting (Paris, July 12-18, 2009), Editors T. Damour, R. Jantzen, R. Ruffini, World Scientific, Singapore, 2012, 3-23, arXiv:1008.0985.
  33. Ćirić Dimitrijević M., Go\ucanin D., Konjik N., Radovanović V., Noncommutative electrodynamics from ${\rm SO}(2,3)_\star$ model of noncommutative gravity, Eur. Phys. J. C Part. Fields 78 (2018), 548, 13 pages, arXiv:1804.00608.
  34. Coll B., Ferrando J.J., On the Leibniz bracket, the Schouten bracket and the Laplacian, J. Math. Phys. 45 (2004), 2405-2410, gr-qc/0306102.
  35. Connes A., Flato M., Sternheimer D., Closed star products and cyclic cohomology, Lett. Math. Phys. 24 (1992), 1-12.
  36. Connes A., Marcolli M., A walk in the noncommutative garden, in An Invitation to Noncommutative Geometry, Editors M. Khalkhali, M. Marcolli, World Sci. Publ., Hackensack, NJ, 2008, 1-128, math.QA/0601054.
  37. Connes A., Moscovici H., Type III and spectral triples, math.OA/0609703.
  38. Cornalba L., Schiappa R., Nonassociative star product deformations for D-brane world-volumes in curved backgrounds, Comm. Math. Phys. 225 (2002), 33-66, hep-th/0101219.
  39. Das A., Frenkel J., Kontsevich product and gauge invariance, Phys. Rev. D 69 (2004), 065017, 6 pages, hep-th/0311243.
  40. Delduc F., Duret Q., Gieres F., Lefrancois M., Magnetic fields in noncommutative quantum mechanics, J. Phys. Conf. Ser. 103 (2008), 012020, 26 pages, arXiv:0710.2239.
  41. Deriglazov A.A., Ramírez W.G., Recent progress on the description of relativistic spin: vector model of spinning particle and rotating body with gravimagnetic moment in general relativity, Adv. Math. Phys. (2017), 7397159, 49 pages, arXiv:1710.07135.
  42. Dito G., Sternheimer D., Deformation quantization: genesis, developments and metamorphoses, in Deformation Quantization (Strasbourg, 2001), IRMA Lect. Math. Theor. Phys., Vol. 1, de Gruyter, Berlin, 2002, 9-54, math.QA/0201168.
  43. Dobrski M., On some models of geometric noncommutative general relativity, Phys. Rev. D 84 (2011), 065005, 11 pages, arXiv:1011.0165.
  44. Dobrski M., Background independent noncommutative gravity from Fedosov quantization of endomorphism bundle, Classical Quantum Gravity 34 (2017), 075004, 17 pages, arXiv:1512.04504.
  45. Esposito C., Formality theory. From Poisson structures to deformation quantization, SpringerBriefs in Mathematical Physics, Vol. 2, Springer, Cham, 2015.
  46. Fedosov B., Deformation quantization and index theory, Mathematical Topics, Vol. 9, Akademie Verlag, Berlin, 1996.
  47. Fedosov B., On the trace density in deformation quantization, in Deformation Quantization (Strasbourg, 2001), IRMA Lect. Math. Theor. Phys., Vol. 1, de Gruyter, Berlin, 2002, 67-83.
  48. Felder G., Shoikhet B., Deformation quantization with traces, Lett. Math. Phys. 53 (2000), 75-86, math.QA/0002057.
  49. Fosco C.D., Torroba G., Planar field theories with space-dependent noncommutativity, J. Phys. A: Math. Gen. 38 (2005), 3695-3707, hep-th/0405090.
  50. Fring A., Gouba L., Scholtz F.G., Strings from position-dependent noncommutativity, J. Phys. A: Math. Theor. 43 (2010), 345401, 10 pages, arXiv:1003.3025.
  51. Fritz C., Majid S., Noncommutative spherically symmetric spacetimes at semiclassical order, Classical Quantum Gravity 34 (2017), 135013, 50 pages, arXiv:1611.04971.
  52. Gayral V., Gracia-Bondía J.M., Iochum B., Schücker T., Várilly J.C., Moyal planes are spectral triples, Comm. Math. Phys. 246 (2004), 569-623, hep-th/0307241.
  53. Gayral V., Gracia-Bondía J.M., Ruiz Ruiz F., Position-dependent noncommutative products: classical construction and field theory, Nuclear Phys. B 727 (2005), 513-536, hep-th/0504022.
  54. Gelfand I., Retakh V., Shubin M., Fedosov manifolds, Adv. Math. 136 (1998), 104-140, dg-ga/9707024.
  55. Gerhold A., Grimstrup J., Grosse H., Popp L., Schweda M., Wulkenhaar R., The energy-momentum tensor on noncommutative spaces: some pedagogical comments, hep-th/0012112.
  56. Gieres F., Conformal covariance in $2D$ conformal and integrable models, in $W$-algebras and in their supersymmetric extensions, in Proceedings of 3rd International Workshop on Supersymmetries and Quantum Symmetries (Dubna, July 1999), 2000, nlin.SI/0002036.
  57. Gomes M., Kupriyanov V.G., Position-dependent noncommutativity in quantum mechanics, Phys. Rev. D 79 (2009), 125011, 6 pages.
  58. Gomes M., Kupriyanov V.G., da Silva A.J., Dynamical noncommutativity, J. Phys. A: Math. Theor. 43 (2010), 285301, 9 pages, arXiv:0908.2963.
  59. Gracia-Bondía J.M., Notes on `quantum gravity' and non-commutative geometry, in New Paths Towards Quantum Gravity, Lect. Notes Phys., Vol. 807, Editors B. Booss-Bavnbek, G. Esposito, M. Lesch, Springer-Verlag, Berlin, 2002, 3-58, arXiv:1005.1174.
  60. Grensing G., Structural aspects of quantum field theory and noncommutative geometry, World Scientific Publ., Hackensack, NJ, 2013.
  61. Groenewold H.J., On the principles of elementary quantum mechanics, Physica 12 (1946), 1-56.
  62. Grosse H., Wohlgenannt M., Renormalization and induced gauge action on a noncommutative space, Progr. Theoret. Phys. Suppl. 171 (2007), 161-177, arXiv:0706.2167.
  63. Hawkins E., Noncommutative rigidity, Comm. Math. Phys. 246 (2004), 211-235, math.QA/0211203.
  64. Hawkins E., The structure of noncommutative deformations, J. Differential Geom. 77 (2007), 385-424, math.QA/0504232.
  65. Herbst M., Kling A., Kreuzer M., Star products from open strings in curved backgrounds, J. High Energy Phys. 2001 (2001), no. 9, 014, 21 pages, hep-th/0106159.
  66. Hohm O., Zwiebach B., $L_\infty$ algebras and field theory, Fortschr. Phys. 65 (2017), 1700014, 33 pages, arXiv:1701.08824.
  67. Horváthy P.A., Martina L., Stichel P.C., Exotic Galilean symmetry and non-commutative mechanics, SIGMA 6 (2010), 060, 26 pages, arXiv:1002.4772.
  68. Jurić T., Poulain T., Wallet J.-C., Closed star product on noncommutative ${\mathbb R}^3$ and scalar field dynamics, J. High Energy Phys. 2016 (2016), no. 5, 146, 22 pages, arXiv:1603.09122.
  69. Kanai E., On the quantization of the dissipative systems, Rep. Progr. Phys. 3 (1948), 440-442.
  70. Kontsevich M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157-216, q-alg/9709040.
  71. Kosmann-Schwarzbach Y., From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996), 1243-1274.
  72. Kupriyanov V.G., A hydrogen atom on curved noncommutative space, J. Phys. A: Math. Theor. 46 (2013), 245303, 7 pages, arXiv:1209.6105.
  73. Kupriyanov V.G., Quantum mechanics with coordinate dependent noncommutativity, J. Math. Phys. 54 (2013), 112105, 25 pages, arXiv:1204.4823.
  74. Kupriyanov V.G., Dirac equation on coordinate dependent noncommutative space-time, Phys. Lett. B 732 (2014), 385-390, arXiv:1308.1350.
  75. Kupriyanov V.G., Vassilevich D.V., Star products made (somewhat) easier, Eur. Phys. J. C Part. Fields 58 (2008), 627-637, arXiv:0806.4615.
  76. Kupriyanov V.G., Vitale P., Noncommutative ${\mathbb R}^d$ via closed star product, J. High Energy Phys. 2015 (2015), no. 8, 024, 25 pages, arXiv:1502.06544.
  77. Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, Vol. 347, Springer, Heidelberg, 2013.
  78. Lim Y.-K. (Editor), Problems and solutions on mechanics, Major American Universities Ph.D. Qualifying Questions and Solutions, World Scientific Publ., River Edge, NJ, 1994.
  79. Madore J., Schraml S., Schupp P., Wess J., Gauge theory on noncommutative spaces, Eur. Phys. J. C Part. Fields 16 (2000), 161-167, hep-th/0001203.
  80. Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, 2nd ed., Texts in Applied Mathematics, Vol. 17, Springer-Verlag, New York, 1999.
  81. McCurdy S., Zumino B., Covariant star product for exterior differential forms on symplectic manifolds, in Supersymmetry and the Unification of Fundamental Interactions, AIP Conf. Proc., Vol. 1200, Editors G. Alverson, P. Nath, B. Nelson, Amer. Inst. Phys., Melville, NY, 2010, 204-214, arXiv:0910.0459.
  82. Mezincescu L., Star operation in quantum mechanics, hep-th/0007046.
  83. Micu A., Sheikh-Jabbari M.M., Noncommutative $\Phi^4$ theory at two loops, J. High Energy Phys. 2001 (2001), no. 1, 025, 45 pages, hep-th/0008057.
  84. Moscovici H., Local index formula and twisted spectral triples, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 465-500, arXiv:0902.0835.
  85. Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124.
  86. Müller-Hoissen F., Noncommutative geometries and gravity, in Recent Developments in Gravitation and Cosmology, AIP Conf. Proc., Vol. 977, Amer. Inst. Phys., Melville, NY, 2008, 12-29, arXiv:0710.4418.
  87. Ovsienko V., Tabachnikov S., Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in Mathematics, Vol. 165, Cambridge University Press, Cambridge, 2005.
  88. Pengpan T., Xiong X., Remarks on the noncommutative Wess-Zumino model, Phys. Rev. D 63 (2001), 085012, 7 pages, hep-th/0009070.
  89. Poulain T., Wallet J.-C., $\kappa$-Poincaré invariant quantum field theories with Kubo-Martin-Schwinger weight, Phys. Rev. D 98 (2018), 025002, 22 pages, arXiv:1801.02715.
  90. Reshetikhin N., Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), 331-335.
  91. Rivasseau V., Non-commutative renormalization, in Quantum Spaces - Poincaré Seminar 2007, Progress in Mathematical Physics, Vol. 53, Editors B. Duplantier, V. Rivasseau, Birkhäuser Verlag, Basel, 2008, 19-107, arXiv:0705.0705.
  92. Roger C., Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects, Arch. Math. (Brno) 45 (2009), 301-324.
  93. Rosa L., Vitale P., On the $\star$-product quantization and the Duflo map in three dimensions, Modern Phys. Lett. A 27 (2012), 1250207, 15 pages, arXiv:1209.2941.
  94. Schenkel A., Noncommutative gravity and quantum field theory on noncommutative curved spacetimes, Ph.D. Thesis, Würzburg University, 2011, arXiv:1210.1115.
  95. Schenkel A., Uhlemann C.F., Field theory on curved noncommutative spacetimes, SIGMA 6 (2010), 061, 19 pages, arXiv:1003.3190.
  96. Schweber S.S., An introduction to relativistic quantum field theory, Dover Books on Physics, Dover Publications, New York, 2005.
  97. Steinacker H., Emergent geometry and gravity from matrix models: an introduction, Classical Quantum Gravity 27 (2010), 133001, 46 pages, arXiv:1003.4134.
  98. Steinacker H., The curvature of branes, currents and gravity in matrix models, J. High Energy Phys. 2013 (2013), no. 1, 112, 28 pages, arXiv:1210.8364.
  99. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003.
  100. Straumann N., General relativity, 2nd ed., Graduate Texts in Physics, Springer, Dordrecht, 2013.
  101. Struckmeier J., Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems, J. Phys. A: Math. Gen. 38 (2005), 1257-1278.
  102. Sykora A., Jambor C., Realization of algebras with the help of $\star$-products, hep-th/0405268.
  103. Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207-299, hep-th/0109162.
  104. Szabo R.J., Symmetry, gravity and noncommutativity, Classical Quantum Gravity 23 (2006), R199-R242, hep-th/0606233.
  105. Vassilevich D.V., Diffeomorphism covariant star products and noncommutative gravity, Classical Quantum Gravity 26 (2009), 145010, 8 pages, arXiv:0904.3079.
  106. Vassilevich D.V., Tensor calculus on noncommutative spaces, Classical Quantum Gravity 27 (2010), 095020, 16 pages, arXiv:1001.0766.
  107. Waldmann S., Poisson-Geometrie und Deformationsquantisierung. Eine Einführung, Springer-Verlag, Berlin - Heidelberg, 2007.
  108. Wallet J.-C., Noncommutative induced gauge theories on Moyal spaces, J. Phys. Conf. Ser. 103 (2008), 012007, 20 pages, arXiv:0708.2471.
  109. Witten E., A note on the antibracket formalism, Modern Phys. Lett. A 5 (1990), 487-494.
  110. Wohlgenannt M., Non-commutative geometry and physics, Ukr. J. Phys. 55 (2010), 5-14, hep-th/0602105.
  111. Wulkenhaar R., Field theories on deformed spaces, J. Geom. Phys. 56 (2006), 108-141.

Previous article  Next article   Contents of Volume 14 (2018)