Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 100, 8 pages      arXiv:1809.07467
Contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics

Morita Equivalent Blocks of Symmetric Groups

Benjamin Sambale
Fachbereich Mathematik, TU Kaiserslautern, 67653 Kaiserslautern, Germany

Received April 16, 2018, in final form September 18, 2018; Published online September 20, 2018

A well-known result of Scopes states that there are only finitely many Morita equivalence classes of $p$-blocks of symmetric groups with a given weight (or defect). In this note we investigate a lower bound on the number of those Morita equivalence classes.

Key words: Morita equivalence; Scopes classes; symmetric groups.

pdf (357 kb)   tex (14 kb)


  1. Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
  2. Chuang J., Rouquier R., Derived equivalences for symmetric groups and ${\mathfrak{sl}}_2$-categorification, Ann. of Math. 167 (2008), 245-298, math.RT/0407205.
  3. Fayers M., Decomposition numbers for weight three blocks of symmetric groups and Iwahori-Hecke algebras, Trans. Amer. Math. Soc. 360 (2008), 1341-1376.
  4. GAP - Groups, Algorithms, and Programming, Version 4.8.10, 2018, available at
  5. Navarro G., Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, Vol. 250, Cambridge University Press, Cambridge, 1998.
  6. Olsson J.B., McKay numbers and heights of characters, Math. Scand. 38 (1976), 25-42.
  7. Olsson J.B., Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Vol. 20, Universität Essen, Fachbereich Mathematik, Essen, 1993.
  8. Osima M., On the representations of the generalized symmetric group, Math  J. Okayama Univ. 4 (1954), 39-56.
  9. Puig L., On Joanna Scopes' criterion of equivalence for blocks of symmetric groups, Algebra Colloq. 1 (1994), 25-55.
  10. Richards M.J., Some decomposition numbers for Hecke algebras of general linear groups, Math. Proc. Cambridge Philos. Soc. 119 (1996), 383-402.
  11. Schaper K.D., Charakterformeln für Weyl-Moduln und Specht-Moduln in Primcharakteristik, Diplomarbeit, Bonn, 1981.
  12. Scopes J., Cartan matrices and Morita equivalence for blocks of the symmetric groups, J. Algebra 142 (1991), 441-455.

Previous article  Next article   Contents of Volume 14 (2018)