Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 091, 34 pages      arXiv:1802.01153
Contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei Kapaev

Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane

Marco Bertola ab, José Gustavo Elias Rebelo a and Tamara Grava ac
a) Area of Mathematics, SISSA, via Bonomea 265 - 34136, Trieste, Italy
b) Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, Canada H3G 1M8
c) School of Mathematics, University of Bristol, UK

Received February 06, 2018, in final form August 14, 2018; Published online August 30, 2018

We study the asymptotic behaviour of orthogonal polynomials in the complex plane that are associated to a certain normal matrix model. The model depends on a parameter and the asymptotic distribution of the eigenvalues undergoes a transition for a special value of the parameter, where it develops a corner-type singularity. In the double scaling limit near the transition we determine the asymptotic behaviour of the orthogonal polynomials in terms of a solution of the Painlevé IV equation. We determine the Fredholm determinant associated to such solution and we compute it numerically on the real line, showing also that the corresponding Painlevé transcendent is pole-free on a semiaxis.

Key words: orthogonal polynomials on the complex plane; Riemann-Hilbert problem; Painlevé equations Fredholm determinant.

pdf (1092 kb)   tex (1015 kb)


  1. Ameur Y., Kang N.-G., Makarov N., Wennman A., Scaling limits of random normal matrix processes at singular boundary points, arXiv:1510.08723.
  2. Ameur Y., Seo S.-M., On bulk singularities in the random normal matrix model, Constr. Approx. 47 (2018), 3-37, arXiv:1603.06761.
  3. Balogh F., Bertola M., Lee S.-Y., McLaughlin K.D.T.-R., Strong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane, Comm. Pure Appl. Math. 68 (2015), 112-172, arXiv:1209.6366.
  4. Balogh F., Grava T., Merzi D., Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane, Constr. Approx. 46 (2017), 109-169, arXiv:1509.05331.
  5. Balogh F., Merzi D., Equilibrium measures for a class of potentials with discrete rotational symmetries, Constr. Approx. 42 (2015), 399-424, arXiv:1312.1483.
  6. Bambusi D., Maspero A., Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU, J. Funct. Anal. 270 (2016), 1818-1887, arXiv:1407.4315.
  7. Bassom A.P., Clarkson P.A., Hicks A.C., McLeod J.B., Integral equations and exact solutions for the fourth Painlevé equation, Proc. Roy. Soc. London Ser. A 437 (1992), 1-24.
  8. Bertola M., Cafasso M., Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation, Comm. Math. Phys. 309 (2012), 793-833, arXiv:1101.3997.
  9. Bleher P., Silva G., The mother body phase transition in the normal matrix model, arXiv:1601.05124.
  10. Bornemann F., On the numerical evaluation of Fredholm determinants, Math. Comp. 79 (2010), 871-915, arXiv:0804.2543.
  11. Chau L.-L., Zaboronsky O., On the structure of correlation functions in the normal matrix model, Comm. Math. Phys. 196 (1998), 203-247.
  12. Claeys T., Grava T., McLaughlin K.D.T.R., Asymptotics for the partition function in two-cut random matrix models, Comm. Math. Phys. 339 (2015), 513-587, arXiv:1410.7001.
  13. Claeys T., Vanlessen M., Universality of a double scaling limit near singular edge points in random matrix models, Comm. Math. Phys. 273 (2007), 499-532, math-ph/0607043.
  14. Dai D., Kuijlaars A.B.J., Painlevé IV asymptotics for orthogonal polynomials with respect to a modified Laguerre weight, Stud. Appl. Math. 122 (2009), 29-83, arXiv:0804.2564.
  15. Deift P., McLaughlin K.T.-R., A continuum limit of the Toda lattice, Mem. Amer. Math. Soc. 131 (1998), x+216 pages.
  16. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368.
  17. Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, Vol. 3, New York University, Courant Institute of Mathematical Sciences, New York, Amer, Math, Soc,, Providence, RI, 1999.
  18. Elbau P., Random normal matrices and polynomial curves, Ph.D. Thesis, ETH Zürich, 2007, arXiv:0707.0425.
  19. Elbau P., Felder G., Density of eigenvalues of random normal matrices, Comm. Math. Phys. 259 (2005), 433-450, math.QA/0406604.
  20. Etingof P., Ma X., Density of eigenvalues of random normal matrices with an arbitrary potential, and of generalized normal matrices, SIGMA 3 (2007), 048, 13 pages, math.CV/0612108.
  21. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.
  22. Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in $2$D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
  23. Ginibre J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965), 440-449.
  24. Gustafsson B., Putinar M., Saff E.B., Stylianopoulos N., Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction, Adv. Math. 222 (2009), 1405-1460, arXiv:0811.1715.
  25. Harnad J., Its A.R., Integrable Fredholm operators and dual isomonodromic deformations, Comm. Math. Phys. 226 (2002), 497-530, solv-int/9706002.
  26. Hedenmalm H., Makarov N., Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc. 106 (2013),, arXiv:1106.2971.
  27. Hedenmalm H., Wennman A., Planar orthogonal polynomials and boundary universality in the random normal matrix model, arXiv:1710.06493.
  28. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A., Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), 1003-1037.
  29. Its A.R., Kapaev A.A., Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution, J. Phys. A: Math. Gen. 31 (1998), 4073-4113.
  30. Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
  31. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  32. Kuijlaars A.B.J., Tovbis A., The supercritical regime in the normal matrix model with cubic potential, Adv. Math. 283 (2015), 530-587, arXiv:1412.7597.
  33. Lee S.-Y., Makarov N.G., Topology of quadrature domains, J. Amer. Math. Soc. 29 (2016), 333-369, arXiv:1307.0487.
  34. Lee S.-Y., Teodorescu R., Wiegmann P., Shocks and finite-time singularities in Hele-Shaw flow, Phys. D 238 (2009), 1113-1128, arXiv:0811.0635.
  35. Mehta M.L., Random matrices, Pure and Applied Mathematics (Amsterdam), Vol. 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004.
  36. Saff E.B., Stylianopoulos N., On the zeros of asymptotically extremal polynomial sequences in the plane, J. Approx. Theory 191 (2015), 118-127, arXiv:1409.0726.
  37. Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Berlin, 1997.
  38. Sakai M., Regularity of a boundary having a Schwarz function, Acta Math. 166 (1991), 263-297.
  39. Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, Vol. 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005.
  40. Szegő G., Orthogonal polynomials, Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
  41. Teo L.-P., Conformal mappings and dispersionless Toda hierarchy II: general string equations, Comm. Math. Phys. 297 (2010), 447-474, arXiv:0906.3565.
  42. Wasow W., Asymptotic expansions for ordinary differential equations, Dover Publications, Inc., New York, 1987.
  43. Wiegmann P.B., Zabrodin A., Conformal maps and integrable hierarchies, Comm. Math. Phys. 213 (2000), 523-538, hep-th/9909147.

Previous article  Next article   Contents of Volume 14 (2018)