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Abstract. It was proved by Macdonald that the Giambelli identity holds if we define the
Schur functions using the Jacobi–Trudi identity. Previously for the super Chern–Simons
matrix model (the spherical one-point function of the superconformal Chern–Simons theo-
ry describing the worldvolume of the M2-branes) the Giambelli identity was proved from
a shifted version of it. With the same shifted Giambelli identity we can further prove the
Jacobi–Trudi identity, which strongly suggests an integrable structure for this matrix model.
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1 Introduction

More than one hundred years ago, two remarkable identities for the Schur polynomial were
found. One of them is the Giambelli identity [10], stating that the Schur polynomial in any
representation is expressed as a determinant of the Schur polynomials in the hook representation.
Another is the Jacobi–Trudi identity [22], stating that the Schur polynomial is expressed as
a determinant of the complete symmetric polynomials. It is interesting to see how these two
identities are related to each other.

In [28, 29] in discussing generalizations of the Schur polynomial, in the final generalization
(known as the ninth variation [28]), which combines many generalizations given previously, Mac-
donald regards the Jacobi–Trudi identity as the definition of the Schur function in an arbitrary
representation out of the complete symmetric functions. Namely, we prepare a set of functions
as the complete symmetric functions and define the generalized Schur function in any repre-
sentation out of them using the Jacobi–Trudi identity (possibly along with an automorphism).
Then, it was found that the Giambelli identity follows simply within this setup.

It was found [6, 47] that some one-point functions of the Schur polynomial in matrix models
also enjoy the Giambelli identity. Also, following [31] which rewrites the one-point function in
the ABJM matrix model [3] into an expression which is reminiscent of the Giambelli identity with
a shift, in [32] we were able to prove the original Giambelli identity for the ABJM matrix model.

From the viewpoint of the Macdonald’s ninth variation of the Schur function [28], it is natural
to ask whether the Giambelli identity which is satisfied by the ABJM matrix model is lifted to
the Jacobi–Trudi identity, and if yes, what the automorphism is.

In this paper, we shall give a positive answer to this question. In the ABJM matrix model
there is a natural choice of the automorphism: the shift in the fractional-brane background.
Then, the Jacobi–Trudi identity strongly suggests that the ABJM matrix model has the structure
of the integrable hierarchy. Before going into the proof of our statement, we shall make the
above motivation clearer by preparing some mathematical concepts and explaining the physical
backgrounds.
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1.1 Mathematical preparation

Let us start with some preparations of mathematical backgrounds.1 There are a few major
notations to express the Young diagram λ

λ = [λ1, λ2, . . . , λL] = (α1, α2, . . . , αR |β1, β2, . . . , βR).

The first one is the standard one listing all of the box numbers λi in the i-th row (with L =
card{i|λi > 0}). The second one is the Frobenius notation obtained by counting the horizontal
boxes and the vertical boxes from the main diagonal as arm lengths and leg lengths

αi = λi − i, βj =
(
λT
)
j
− j, R = card{i |αi ≥ 0} = card{j |βj ≥ 0}. (1.1)

Finally, we propose a notation which is not very common. Let M be an integer. Then, the last
one is again the Frobenius notation but obtained by shifting the diagonal line by M to the right.
Namely, if M ≥ 0 we define

α′i = λi − i−M, β′j =
(
λT
)
j
− j +M,

R′ = card{i |α′i ≥ 0} = card{j |β′j ≥ 0} −M, (1.2)

resulting in M more leg lengths than arm lengths,

λ =
(
α′1, α

′
2, . . . , α

′
R′ |β′1, β′2, . . . , β′M+R′

)
, (1.3)

while if M = −|M | ≤ 0 we define2

α′i = λi − i+ |M |, β′j =
(
λT
)
j
− j − |M |,

R′ = card{i |α′i ≥ 0} − |M | = card{j |β′j ≥ 0}, (1.4)

resulting in |M | more arm lengths than leg lengths

λ =
(
α′1, α

′
2, . . . , α

′
|M |+R′ |β

′
1, β
′
2, . . . , β

′
R′
)
, (1.5)

To equate the numbers of the arm lengths and the leg lengths, we often prepare the auxiliary
arm lengths

α̃′i = i−M − 1, 1 ≤ i ≤M, (1.6)

for M ≥ 0 and the auxiliary leg lengths

β̃′j = j − |M | − 1, 1 ≤ j ≤ |M |, (1.7)

for M = −|M | ≤ 0. We call the last notation the M -shifted Frobenius notation. See Fig. 1 for
an example.

We consider3 a set of functions Sλ labelled by the Young diagram λ, which are normalized
by S∅ = 1, or a set of functions SMλ labelled by both the Young diagram λ and the integer M ,

1We mostly follow the terminology and the notation given in [29] except for the following points. We use
the uppercase characters for the variables L and R which are later related to the matrix size in the determinant
formula. We denote the transpose of the Young diagram λ by λT instead of λ′ and reserve the primes for the
concept related to shifting the diagonal line.

2Considering the continuation from M ≥ 0, it may be more convenient to define R′ = card{i |α′i ≥ 0} =
card{j |β′j ≥ 0}+ |M | for M = −|M | ≤ 0. We adopt this definition because it is more intuitive in our proof.

3The typical examples of the functions Sλ, SMλ are the Schur polynomial and the super Schur polynomial,
though in general (and in our application in the next subsection) these functions do not have to be symmetric
polynomials.
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Figure 1. The Frobenius notation (left) and the shifted Frobenius notation with M = 2 (right) for

λ = [5, 4, 3, 1]. The Frobenius notation is obtained by counting the horizontal and vertical boxes from the

diagonal, λ = (4, 2, 0 | 3, 1, 0), while the shifted Frobenius notation is obtained similarly with the diagonal

shifted by M = 2 to the right, λ = (2, 0 | 5, 3, 2, 0).

which are normalized by S0
∅ = 1. Otherwise, we replace Sλ and SMλ respectively by Sλ/S∅ and

SMλ /S
0
∅.

In this paper we will discuss the following three properties for Sλ or SMλ . For the explanation,
we choose “the complete symmetric functions” HM

` (` ∈ Z≥0, M ∈ Z) to be independent
indeterminates with the understanding HM

` = 0 for ` < 0 and the normalization HM
0 = 1, and

consider a ring automorphism ϕ generated by ϕ
(
HM
`

)
= HM+1

` for all ` and M .

Definition 1.1. The function SMλ (normalized by S0
∅ = 1, otherwise SMλ /S

0
∅) is shifted Giambelli

compatible if there exist a set of functions S′(α′ |β′) labelled by two integers Z× Z \ Z<0 × Z<0,

so that the function SMλ for any Young diagram λ is expressed as

SMλ = det


(
S′(α̃′i|β′j)

)
1≤i≤M

1≤j≤M+R′(
S′(α′i|β′j)

)
1≤i≤R′

1≤j≤M+R′

 , (1.8)

when M ≥ 0 while expressed as

SMλ = det

((
S′
(α′i|β̃′j)

)
1≤i≤|M |+R′
1≤j≤|M |

(
S′(α′i|β′j)

)
1≤i≤|M |+R′

1≤j≤R′

)
, (1.9)

when M = −|M | ≤ 0. Here α′i, α̃
′
i and β′j , β̃

′
j are respectively (auxiliary) arm lengths and

(auxiliary) leg lengths in the M -shifted Frobenius notation defined in (1.2)–(1.7).

Definition 1.2. The function Sλ (normalized by S∅ = 1, otherwise Sλ/S∅) is Jacobi–Trudi
compatible4 if there exist a set of functions HM

` labelled by two integers ` ∈ Z≥0, M ∈ Z
and normalized by HM

0 = 1 with an automorphism ϕ
(
HM
`

)
= HM+1

` so that the function is
expressed by

Sλ = det
(
ϕj−1Hλi−i+j

)
1≤i≤L
1≤j≤L

, (1.10)

with H` = HM=0
` .

4In [29] the Jacobi–Trudi identity is defined also by extending the matrix size in (1.10) to be greater than L.
Since this extension does not make any differences essentially, we restrict the matrix size to be L. The Jacobi–
Trudi identity defined with the automorphism ϕ plays an important role in the study of integrable models and is
also called the quantum Jacobi–Trudi identity (see [4, 12, 23, 26, 27, 42, 43, 48] for examples).



4 T. Furukawa and S. Moriyama

Definition 1.3. The function Sλ (normalized by S∅ = 1, otherwise Sλ/S∅) is Giambelli com-
patible if it satisfies

Sλ = det
(
S(αi |βj)

)
1≤i≤R
1≤j≤R

,

where αi, βj are the arm length and the leg length in the original Frobenius notation defined
in (1.1), λ = (α1, α2, . . . , αR |β1, β2, . . . , βR).

Several remarks follow. Note that for the case of R′ = 0 where |M | is large enough so that the
shifted diagonal does not intersect with the Young diagram, the block of S′(α′ |β′) is missing and

the shifted Giambelli compatibility resembles the Weyl formula. Also note that S′(α′ |β′) and H`

appearing in the definitions coincide with S′(α′ |β′) = S0
(α′=α |β′=β) and H` = S[`] respectively as

obtained from an appropriate choice of λ and M . The Jacobi–Trudi compatibility is utilized
in [28] to define an ultimate variation (known as the ninth variation) of the Schur function in
an arbitrary representation from the complete symmetric functions H` = S[`], containing many

generalizations by specific choices of HM
` . The defining equation (1.10) can alternatively be

expressed as

S0
λ = det

(
Hj−1
λi−i+j

)
1≤i≤L
1≤j≤L

,

where 0 in S0
λ indicates the construction from HM=0

` . Then, the following two propositions
relating these properties hold.

Proposition 1.4. If the function Sλ is Jacobi–Trudi compatible, Sλ is Giambelli compatible.

Proof. See [29, Section I.3, Example 21]. �

Corollary 1.5. If the function Sλ is Jacobi–Trudi compatible, SMλ defined by

SMλ = det
(
HM+j−1
λi−i+j

)
1≤i≤L
1≤j≤L

, (1.11)

is Giambelli compatible.

Proof. Since SMλ = det
(
ϕj−1HM

λi−i+j
)
1≤i≤L
1≤j≤L

constructed from HM
` is also Jacobi–Trudi com-

patible, the Giambelli compatibility follows from the above proposition. �

Proposition 1.6. For the shifted Giambelli compatible function SMλ , the Giambelli compatibility
holds for a fixed integer M ,

SMλ = det
(
SM(αi |βj)

)
1≤i≤R
1≤j≤R

. (1.12)

Proof. The proof for M ≥ 0 is given in [32]. We do not prove for M < 0 here since it follows
from our theorem discussed later. �

Hence, it is natural to ask whether the Jacobi–Trudi compatibility is satisfied for the general
shifted Giambelli compatible function SMλ , and if yes, what the automorphism is. After our ad-
justment of the notation, it is not difficult to imagine that the automorphism is that shifting M
by +1,

ϕ : M →M + 1. (1.13)
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In this paper we shall prove the following main theorem. Note that of course the identification of
the automorphism (1.13) is non-trivial since SMλ in the definition of the shifted Giambelli com-
patibility (1.8), (1.9) is totally unrelated to that defined from the automorphism in (1.11). After
proving this theorem, the proposition of [32] (1.12) follows directly by combining this theorem
with the above corollary. Note also that our theorem is a natural generalization of the theorem
(Jacobi–Trudi formula) in [42] which corresponds to the case of M ≥ 0 and R′ = 0. We believe
that our definition of the shifted Giambelli compatibility has clarified how to interpolate the
condition between the cases of positive M and negative M with the absolute values |M | being
large enough. Here for simplicity, in the theorem, we drop the normalizations SM∅ , HM+j−1

0

appearing in SMλ /S
M
∅ , HM+j−1

λi−i+j /H
M+j−1
0 and assume tacitly that these normalizations are non-

vanishing. The dual Nägelsbach–Kostka compatibility SMλ = det
(
EM−j+1

(λT)i−i+j
)
1≤i≤A
1≤j≤A

with A =

card
{
i |
(
λT
)
i
> 0
}

can be proved in the parallel manner by the involution λ↔ λT, M ↔ −M .

Theorem 1.7. For the shifted Giambelli compatible function SMλ , the Jacobi–Trudi compatibility
holds for a fixed integer M ,

SMλ = det
(
HM+j−1
λi−i+j

)
1≤i≤L
1≤j≤L

. (1.14)

1.2 Physical application

The main application we have in mind is the so-called ABJM matrix model,

〈sλ〉k(N1, N2) =
(−1)

1
2
N1(N1−1)+ 1

2
N2(N2−1)

N1!N2!

∫
dN1µ

(2π)N1

dN2ν

(2π)N2
e
ik
4π

( N1∑
m=1

µ2m−
N2∑
n=1

ν2n

)

×

N1∏
m<m′

(
2 sinh

µm−µm′
2

)2 N2∏
n<n′

(
2 sinh

νn−νn′
2

)2
N1∏
m=1

N2∏
n=1

(
2 cosh µm−νn

2

)2 sλ
(
eµ|eν

)
.

As reviewed in [18] the hyperbolic functions can be regarded as the trigonometric deformation
of the U(N1 |N2) invariant measure

N1∏
m<m′

(xm − xm′)2
N2∏
n<n′

(yn − yn′)2

N1∏
m=1

N2∏
n=1

(xm + yn)2
, (1.15)

with the substitution xm = e±µm , yn = e±νn and sλ(x | y) is the super Schur polynomial, the
character of the super unitary group U(N1 |N2), which shares many interesting properties with
the original Schur polynomial such as the Giambelli identity and the Jacobi–Trudi identity [45].
Though we introduce the ABJM matrix model as a definition, this matrix model was originally
obtained by computing the one-point function of the half-BPS Wilson loop in the ABJM theory
[2, 3, 21], which is the N = 6 superconformal Chern–Simons theory describing the worldvolume
of the M2-branes. The theory has gauge group U(N1)k×U(N2)−k (with the subscripts denoting
the Chern–Simons levels) and two pairs of bifundamental matters. Due to the localization
techniques, the one-point function originally defined by the infinite-dimensional path integral in
the supersymmetric field theory reduces to a finite-dimensional matrix integration [8, 24].
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Without loss of generality hereafter we shall choose k > 0. After moving to the grand
canonical ensemble5 with M = N2 −N1,

〈sλ〉GC
k,M (z) =

∞∑
N=max(0,−M)

zN 〈sλ〉k(N,N +M),

it was proved in [31] that 〈sλ〉GC
k,M (z) is shifted Giambelli compatible (1.8), (1.9) for α′1+β′1+1 <

k/2 following the proposal of the Fermi gas formalism [30]. The main steps of the proof in [31]
are as follows.

• We rewrite the invariant measure (1.15) as a product of two determinants, each of which
is a combination of the Cauchy determinant and the Vandermonde determinant.

• We utilize a determinant formula for the super Schur polynomial sλ(x | y) [33] which ex-
presses sλ(x | y) as a ratio of two determinants, with the denominator coinciding with the
above Cauchy–Vandermonde determinant.

• We apply a continuous version of the Cauchy–Binet determinant to combine all the deter-
minants into a single one [31] (see also [18, 32] for a combinatorial viewpoint).

Using the property of the shifted Giambelli compatibility, we were able to prove the Giambelli
compatibility [13, 32].

The question whether the Jacobi–Trudi compatibility is satisfied for the shifted Giambelli
compatible function, which we have raised in the previous subsection, can be rephrased in the
current setup by asking whether the quantum one-point functions of the half-BPS Wilson loop in
the ABJM theory satisfy the Jacobi–Trudi identity. In other words, after answering it positively,
we find that the Macdonald’s ninth variation of the Schur function [28] defined abstractly by
the Jacobi–Trudi compatibility is realized by the path integral.

By applying our theorem in the previous subsection to the ABJM matrix model with the
identification of SMλ as 〈sλ〉GC

k,M (z), or more correctly after the normalization,

SMλ =
〈sλ〉GC

k,M (z)

〈1〉GC
k,M (z)

, HM
` =

〈h`〉GC
k,M (z)

〈1〉GC
k,M (z)

,

we find that

〈sλ〉GC
k,M (z)

〈1〉GC
k,M (z)

= det

(
〈hλi−i+j〉GC

k,M+j−1(z)

〈1〉GC
k,M+j−1(z)

)
1≤i≤L
1≤j≤L

.

As was pointed out in [32], the theorem also applies to other matrix models including the
Gaussian matrix model and the Chern–Simons matrix model in the canonical ensemble and
many cousins of the super Chern–Simons matrix models in the grand canonical ensemble.

Note that although in the original setup ϕ is an automorphism, mapping from a mathematical
object to itself bijectively, we apply it under the restriction α′1 +β′1 + 1 < k/2, which is essential
due to the convergence of the integrations. For this reason our formula is only valid within
a certain range of the Young diagram and we shall take k to be large enough so that the
parameters satisfy the bounds.

5The definition of the vacuum expectation value in the grand canonical ensemble by matching the power of z
with one of the arguments is motivated from the study of rank deformations in [34] with more complicated gauge
groups [35, 37].
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2 Proof

In this section we shall prove the Jacobi–Trudi compatibility out of the shifted Giambelli com-
patibility (1.14). We start with M ≥ 0 since all of the ingredients in the Jacobi–Trudi compati-
bility (1.14) have the shift M+j−1 ≥ 0 and the shifted Giambelli compatibility is given in (1.8).
As in the proof of the Giambelli compatibility [32] we first consider the simpler case of R′ = 0
and then turn to the general case of R′ 6= 0. After completing the proof for M ≥ 0 we can turn
to the proof for M ≤ 0. An elegant proof for the case of M ≥ 0 and R′ = 0 was already given
in [42]. Here we provide a rather pedagogical proof.

2.1 Case of M ≥ 0 and R′ = 0

Our first task would be to translate the relation into an explicit determinant formula. As in the
proof of the Giambelli compatibility [32], due to the setup M ≥ 0 and R′ = 0, the arm lengths
consist only of the auxiliary ones and the relation is simplified.

We consider the Young diagram λ = ( |β′1, β′2, . . . , β′M ). Since β′1 = M + L − 1 we define ni
(ni > ni−1) as the complementary set of the leg lengths6

(β′1, β
′
2, . . . , β

′
M ) t (nL, nL−1, . . . , n1) = (M + L− 1,M + L− 2, . . . , 0). (2.1)

Since the leg length {β′l}Ml=1 is the distance from the shifted diagonal to the horizontal segment of
the boundary of the Young diagram, for the boundary to be successive, the complement {ni}Li=1

is the distance to the vertical segment. This means that the Young diagram can be expressed
as λ = [λ1, λ2, . . . , λL] with

λi = M + i− 1− ni. (2.2)

Then, the (M + j − 1)-shifted Frobenius notation for the horizontal Young diagram [λi − i+ j]
contains the leg lengths from M + j − 1 to 0 except for ni, since (M + j − 1)− (λi− i+ j) = ni.
After substituting the shifted Giambelli expression (1.8) with the normalization SMλ /S

M
∅ into

the Jacobi–Trudi expression (1.10), we find that the identity we want to prove is given by

det
(
S′(k−M−1 |β′l)

)
1≤k≤M
1≤l≤M

L∏
j=2

det
(
S′(k−M−j |M+j−1−l)

)
1≤k≤M+j−1
1≤l≤M+j−1

= det
(

det
(
S′(k−M−j |M+j−l)

)
1≤k≤M+j−1

1≤l≤M+j, l 6=M+j−ni

)
1≤i≤L
1≤j≤L

.

Note that the product on the left-hand side comes from the normalization of the Schur functions.
We shall prove this determinant formula for any value of S′. On one hand, since the arm

lengths are given trivially for R′ = 0 as we have explained at the beginning of this subsection,
we wish to drop them from our notation for simplicity. On the other hand, the matrix size
varies for different determinants and we cannot simply forget about the arm lengths. For this
reason we introduce a set of infinite-dimensional vectors labelled by j ∈ Z≥0 with the infinite
components labelled by i ∈ Z>0,

(zj)i = S′(−i | j),

and define a (finite-dimensional) determinant | | for N arrays of infinite-dimensional vectors wj

as

|w1w2 · · ·wN | = det
(
(wj)N+1−i

)
1≤i≤N
1≤j≤N

, (2.3)

6We label {ni}Li=1 inversely because of the relation to the arm lengths (2.2).
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by choosing the last N components from each vector wj = (. . . , (wj)2, (wj)1)
T. Then, the

identity can be given as follows.

Lemma 2.1. For any set of infinite-dimensional vectors (zj)i labelled by j ∈ Z≥0 and i ∈ Z>0,
the determinant formula

|zβ′1zβ′2 · · ·zβ′M |
L∏
j=2

|zM+j−2zM+j−3· · ·z0| = det
(
|zM+j−1zM+j−2· · ·ẑni · · ·z0|

)
1≤i≤L
1≤j≤L

, (2.4)

holds. Here {ni}Li=1 is a complementary set of {β′l}Ml=1 defined in (2.1) and the determinant | |
for arrays of infinite-dimensional vectors is defined in (2.3) by choosing as many components as
the arrays from the end of the vectors. Also, ẑ stands for removal of the column z supplemented
with the understanding |zM+j−1zM+j−2 · · · ẑn · · · z0| = 0 for n ≥M + j.

We shall prove this equation by induction of L. (M can be general.) This equation holds

trivially for L = 1. (The product
L∏
j=2

on the left-hand side should be interpreted as 1 since it

comes from the normalization.) When this expression holds for L = L, for L = L + 1 by the
Laplace expansion along the first column the right-hand side of (2.4) is given by

det
(
|zM+j−1zM+j−2 · · · ẑni · · · z0|

)
1≤i≤L+1
1≤j≤L+1

(2.5)

=

L+1∑
k=1

(−1)k−1|zMzM−1 · · · ẑnk · · · z0| det
(
|zM+j−1zM+j−2 · · · ẑni · · · z0|

)
1≤i≤L+1,i 6=k
2≤j≤L+1

.

If we rename

M = M + 1, j = j − 1, i =

{
i, 1 ≤ i ≤ k − 1,

i− 1, k + 1 ≤ i ≤ L+ 1,
ni = ni,

or in other words, (nL, nL−1, . . . , n1) = (nL+1, nL, . . . , n̂k, . . . , n1), the complicated minor deter-
minant in (2.5) can be computed by the assumption of the induction

det
(
|zM+j−1zM+j−2 · · · ẑni · · · z0|

)
1≤i≤L+1,i 6=k
2≤j≤L+1

= det
(
|zM+j−1zM+j−2 · · · ẑni · · · z0|

)
1≤i≤L
1≤j≤L

= |z
β
′
1
z
β
′
2
· · · z

β
′
M
|
L∏
j=2

|zM+j−2zM+j−3 · · · z0|

= |zβ′1zβ′2 · · · znk · · · zβ′M |
L+1∏
j=3

|zM+j−2zM+j−3 · · · z0|. (2.6)

Here in the second equation we have used the assumption of the induction. Since {β′l}Ml=1
is the

complement of {ni}Li=1
with respect to the set of non-negative integers less than M+L = M+L,

nk which is missing in {ni}Li=1
has to be included in {β′l}Ml=1

. Then, the right-hand side of (2.5)
becomes

det
(
|zM+j−1zM+j−2 · · · ẑni · · · z0|

)
1≤i≤L+1
1≤j≤L+1

=

L+1∑
k=1

(−1)k−1|zMzM−1 · · · ẑnk · · · z0||zβ′1zβ′2 · · · znk · · · zβ′M |
L+1∏
j=3

|zM+j−2zM+j−3 · · · z0|.
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To complete the proof we need to show

L+1∑
k=1

(−1)k−1|zMzM−1 · · · ẑnk · · · z0||zβ′1zβ′2 · · · znk · · · zβ′M |

= |zβ′1zβ′2 · · · zβ′M ||zMzM−1 · · · z0|,

where the first determinant and the second one of each term are of dimension M and M + 1
respectively. Due to this reason, we add one auxiliary vector z in front of the first determinant
to prove the corresponding identity with all of the determinants of dimension M + 1, where the
determinant | | defined in (2.3) reduces to the usual one. This is true because of the Laplace
expansion along the first M + 1 rows,∣∣∣∣z zβ′1zβ′2 · · · zβ′M zMzM−1 · · · z0

z 0 0 · · · 0 zMzM−1 · · · z0

∣∣∣∣ = |zzβ′1zβ′2 · · · zβ′M ||zMzM−1 · · · z0|

+

L+1∑
k=1

(−1)k|zzMzM−1 · · · ẑnk · · · z0||zβ′1zβ′2 · · · znk · · · zβ′M |,

where the matrix of the double size on the left-hand side is vanishing because of the rectangular
blocks of zero components. Finally we set z = (1, 0, . . . , 0)T ∈ RM+1 to obtain the desired
equation.

2.2 Case of M ≥ 0 and R′ 6= 0

Let us turn to the R′ 6= 0 case, λ = (α′1, α
′
2, . . . , α

′
R′ |β′1, β′2, . . . , β′M+R′). As in the case of R′ = 0

we first define a complementary set of leg lengths. Since β′1 = M + L− 1, we can separate the
continuous integer sets into two disjoint sets

(M + L− 1,M + L− 2, . . . , 0,−1,−2, . . . ,−R′)
= (β′1, β

′
2, . . . , β

′
M+R′) t (nL, nL−1, . . . , n1),

with ni > ni−1. Since all of the leg lengths {β′l}
M+R′

l=1 are non-negative, (−1,−2, . . . ,−R′) has
to fall into the last R′ components of {ni}Li=1

ni = −R′ − 1 + i, 1 ≤ i ≤ R′. (2.7)

As in the previous case of R′ = 0, the Young diagram can be reexpressed as λ = [λ1, λ2, . . . , λL]
with

λi =

{
M + i+ α′i, for 1 ≤ i ≤ R′,
M + i− 1− ni, for R′ + 1 ≤ i ≤ L.

Then, as before, the (M + j − 1)-shifted Frobenius notation for [λi − i+ j] (R′ + 1 ≤ i ≤ L) in
the lower block contains the leg lengths from M + j − 1 to 0 except for ni. For this case the
determinant formula we need to prove is

det


(
S′(k−M−1|β′l)

)
1≤k≤M

1≤l≤M+R′(
S′(α′k|β

′
l)

)
1≤k≤R′

1≤l≤M+R′

 L∏
j=2

det
(
S′(k−M−j|M+j−1−l)

)
1≤k≤M+j−1
1≤l≤M+j−1

= det



det

(S′(k−M−j|M+j−l)
)
1≤k≤M+j−1
1≤l≤M+j(

S′(α′i|M+j−l)
)
1≤l≤M+j


1≤i≤R′
1≤j≤L(

det
(
S′(k−M−j|M+j−l)

)
1≤k≤M+j−1

1≤l≤M+j,l 6=M+j−ni

)
R′+1≤i≤L
1≤j≤L

 . (2.8)
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We can prove this determinant formula by applying the previous lemma tentatively to another
Young diagram and specializing it afterwards. Namely, for the Young diagram[

(M +R′)R
′
, λR′+1, λR′+2, . . . , λL

]
= ( |β′1 +R′, β′2 +R′, . . . , β′M+R′ +R′),

the determinant formula we have proved in (2.4) for the shift M +R′ is

|zβ′1+R′zβ′2+R′ · · · zβ′M+R′+R
′ |

L∏
j=2

|zM+j−2+R′zM+j−3+R′ · · · z0|

= det
(
|zM+j−1+R′zM+j−2+R′ · · · ẑni+R′ · · · z0|

)
1≤i≤L
1≤j≤L

,

where {ni +R′}Li=1 is the complement of {β′l +R′}M+R′

l=1 with respect to the set of non-negative
integers less than M +L+R′. We are free to rename the vectors by subtracting all of the labels
by R′

|zβ′1zβ′2 · · · zβ′M+R′
|
L∏
j=2

|zM+j−2zM+j−3 · · · z0z−1 · · · z−R′ |

= det


(
|zM+j−1zM+j−2 · · · z0z−1 · · · ẑni · · · z−R′ |

)
1≤i≤R′
1≤j≤L(

|zM+j−1zM+j−2 · · · ẑni · · · z0z−1 · · · z−R′ |
)
R′+1≤i≤L
1≤j≤L

 ,

and identifying the components of the infinite-dimensional vectors (zj)i as

(zj≥0)i =

S
′
(R′−i | j), for R′ + 1 ≤ i,
S′(α′

R′+1−i | j)
, for 1 ≤ i ≤ R′, (z−j<0)i =

{
1, for i = R′ + 1− j,
0, otherwise.

(2.9)

Then, the determinants on the left-hand side and those in the lower block on the right-hand side
reduce to those we want to prove in (2.8), since the insertion of z−i means that the row with the
arm length α′i is eliminated. For the upper block, on the other hand, due to the removal of the
column zni = z−R′−1+i (2.7) from the determinant, we do not eliminate the arm length α′R′+1−i.
Hence the determinant becomes

|zM+j−1zM+j−2 · · · z0z−1 · · · ẑni · · · z−R′ |

= (−1)R
′−i det

(S′(k−M−j|M+j−l)
)
1≤k≤M+j−1
1≤l≤M+j(

S′(α′
R′+1−i|M+j−l)

)
1≤l≤M+j

 , (2.10)

with the specification (2.9), where the arm lengths reduce to(
. . . ,−2,−1, α′R′+1−i

)T
,

and the sign (−1)R
′−i appears due to the change of rows. Note that compared with (2.8), the

arm lengths in (2.10) appear in the reverse order. To change back to the original order in (2.8)

in the determinant, we need to take care of the signs (−1)

R′−1∑
i=1

i
. Finally, we find that the total

signs cancel

(−1)

R′−1∑
i=1

i
(−1)

R′∑
i=1

(R′−i)
= 1,

and the determinant reduces to the desired expression (2.8).



Jacobi–Trudi Identity in Super Chern–Simons Matrix Model 11

2.3 Case of M ≤ 0

After completing the proof for M ≥ 0, let us turn to M ≤ 0. We shall prove the statement (1.14)
by proving it for M ≥ −M in the induction of M . (L can be general.)

First of all, from the previous two subsections, the statement is true for M ≥ 0. Suppose
this is true for M ≥ −M , let us prove the case of M = −(M + 1),

S
−(M+1)
λ = det

(
H
−(M+1)+j−1
λi−i+j

)
1≤i≤L
1≤j≤L

, (2.11)

for the Young diagram

λ = [λ1, λ2, . . . , λL] =
(
α′1, α

′
2, . . . , α

′
M+1+R′

|β′1, β′2, . . . , β′R′
)
,

with the identification α′i = λi− i+M + 1 for 1 ≤ i ≤M + 1 +R′. We first Laplace-expand the
right-hand side of (2.11) along the first column

det
(
H
−(M+1)+j−1
λi−i+j

)
1≤i≤L
1≤j≤L

=
L∑
k=1

(−1)k−1H
−(M+1)
λk−k+1 det

(
H
−(M+1)+j−1
λi−i+j

)
1≤i≤L,i 6=k
2≤j≤L

. (2.12)

If we rename the various variables by

j = j − 1, i =

{
i, for 1 ≤ i ≤ k − 1,

i− 1, for k + 1 ≤ i ≤ L,
λi =

{
λi + 1, for 1 ≤ i ≤ k − 1,

λi, for k + 1 ≤ i ≤ L,

which implies λ = [λ1 + 1, λ2 + 1, . . . , λk−1 + 1, λk+1, λk+2, . . . , λL], since λi − i+ j = λi − i+ j,
the determinant on the right-hand side of (2.12) can be expressed as

det
(
H
−(M+1)+j−1
λi−i+j

)
1≤i≤L,i 6=k
2≤j≤L

= det
(
H−M+j−1
λi−i+j

)
1≤i≤L−1
1≤j≤L−1

= S−M
λ

= S−M[λ1+1,...,λk−1+1,λk+1,...,λL]
,

where in the second equation we have used the assumption of the induction. Note that although
the summation is taken up to L, since HM

` = 0 for ` < 0 we can truncate the summation within
λk−k+1 ≥ 0. Finally, the identity we want to prove using the shifted Giambelli compatibility is

S
−(M+1)
λ =

L∑
k=1

(−1)k−1H
−(M+1)
λk−k+1 S

−M
[λ1+1,...,λk−1+1,λk+1,...,λL]

. (2.13)

Since the shifted Giambelli compatibility is given by the M -shifted Frobenius notation, we first
express all of the Young diagrams in this notation

det

((
S′
(α′i|−M−2+j)

)
1≤i≤M+1+R′

1≤j≤M+1

(
S′(α′i|β′j)

)
1≤i≤M+1+R′

1≤j≤R′

)
det

((
S′
(M−i|−M−1+j)

)
1≤i≤M
1≤j≤M

)

=
L∑
k=1

(−1)k−1 det


(
S′
(α′k|−M−2+j)

)
1≤j≤M+1(

S′
(M−i|−M−2+j)

)
1≤i≤M

1≤j≤M+1


× det

((
S′
(α′i|−M−1+j)

)
1≤i≤M+1+R′,i 6=k

1≤j≤M

(
S′(α′i|β′j)

)
1≤i≤M+1+R′,i 6=k

1≤j≤R′

)
. (2.14)

This can be obtained by the expansion of the determinant

det

(
S′
(α′i|−M−1)

(S′
(α′i|−M−2+j)

)2≤j≤M+1 (S′(α′i|β′j)
)1≤j≤R′ (S′

(α′i|−M−1+j)
)1≤j≤M

S′
(M−i|−M−1) 02≤j≤M+1 01≤j≤R′ (S′

(M−i|−M−1+j))1≤j≤M

)
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= (−1)(M+R′)×M

× det

(
(S′

(α′i|−M−2+j)
)1≤j≤M+1 (S′

(α′i|−M−1+j)
)1≤j≤M (S′(α′i|β′j)

)1≤j≤R′

(S′
(M−i|−M−2+j))1≤j≤M+1 01≤j≤M 01≤j≤R′

)
, (2.15)

where for the upper blocks the column indices run over 1 ≤ i ≤ M + 1 + R′ while for the
lower blocks the column indices run over 1 ≤ i ≤ M . This equation is obtained by exchan-
ging the M + R′ column vectors in the second and third blocks with the M column vectors
in the fourth block. On one hand, for the left-hand side, if we eliminate the fourth upper
block

(
S′
(α′i|−M−1+j)

)
1≤j≤M from the elementary column operations, the determinant reduces

to the left-hand side of (2.14). On the other hand if we Laplace-expand the right-hand side
of (2.15) along the first M + 1 columns, we obtain the right-hand side of (2.14). In the Laplace
expansion, the remaining determinant would be vanishing unless we choose the last M row
vectors

(
S′
(M−i|−M−2+j)

)
1≤j≤M+1

in the first lower block. To avoid choosing the same row vec-

tors resulting in the vanishing determinant, the remaining row vector has to satisfy α′i ≥ M ,
which means αi − i + 1 ≥ 0, the same truncation in the summation as in (2.13). Hence,
finally the same statement is true for M ≥ −(M + 1). This completes the proof by induc-
tion.

3 Conclusions

In this paper we prove that the Jacobi–Trudi identity with a shift of the background holds for
the one-point functions of the half-BPS Wilson loop in the ABJM matrix model. As noted
in [32] for the proof of the Giambelli identity, there are many cousins of this matrix model
and the proof of the Jacobi–Trudi identity is generalized directly to these matrix models as
well. For example we can replace the super unitary group by the super orthosymplectic group
studied in [20, 38, 40, 41, 44] which is originally coming from the N = 5 super Chern–Simons
theories [2, 21]. Also we can apply the results here to the matrix models [14, 34, 35, 36, 37, 39]
coming from the N = 4 super Chern–Simons theories. These applications are understood
directly by the main theorem summarized in this paper.

Our main motivation of proving the Jacobi–Trudi identity is as follows. It was conjectured
that the partition function of the ABJM theory is described by the free energy of the closed topo-
logical string theory [7, 9, 15, 16, 17, 30] and the one-point function of the half-BPS Wilson loop
in the ABJM theory is described by the free energy of the open topological string theory [13].
Despite the well-established conjecture, it has been difficult to prove it. The Jacobi–Trudi
identity proved in this paper, the Giambelli identity proved in [32] and the open-closed dual-
ity [19, 25] strongly suggest the structure of integrable hierarchy [4, 26, 46] on the matrix model
side. Combining with the integrable structure on the topological string side [1, 5, 11], we hope
that this structure is helpful in proving the conjecture.
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[10] Giambelli G.Z., Alcune proprietà delle funzioni simmetriche caratteristiche, Atti Accad. Sci. Torino Cl. Sci.
Fis. Mat. Natur. 38 (1903), 823–844.

[11] Grassi A., Hatsuda Y., Mariño M., Quantization conditions and functional equations in ABJ(M) theories,
J. Phys. A: Math. Theor. 49 (2016), 115401, 30 pages, arXiv:1410.7658.

[12] Harnad J., Lee E., Symmetric polynomials, generalized Jacobi–Trudi identities and τ -functions,
arXiv:1304.0020.

[13] Hatsuda Y., Honda M., Moriyama S., Okuyama K., ABJM Wilson loops in arbitrary representations, J. High
Energy Phys. 2013 (2013), no. 10, 168, 31 pages, arXiv:1306.4297.

[14] Hatsuda Y., Honda M., Okuyama K., Large N non-perturbative effects in N = 4 superconformal Chern–
Simons theories, J. High Energy Phys. 2015 (2015), no. 9, 046, 54 pages, arXiv:1505.07120.

[15] Hatsuda Y., Mariño M., Moriyama S., Okuyama K., Non-perturbative effects and the refined topological
string, J. High Energy Phys. 2014 (2014), no. 9, 168, 42 pages, arXiv:1306.1734.

[16] Hatsuda Y., Moriyama S., Okuyama K., Instanton bound states in ABJM theory, J. High Energy Phys.
2013 (2013), no. 5, 054, 23 pages, arXiv:1301.5184.

[17] Hatsuda Y., Moriyama S., Okuyama K., Instanton effects in ABJM theory from Fermi gas approach, J. High
Energy Phys. 2013 (2013), no. 1, 158, 40 pages, arXiv:1211.1251.

[18] Hatsuda Y., Moriyama S., Okuyama K., Exact instanton expansion of the ABJM partition function, Prog.
Theor. Exp. Phys. 2015 (2015), 11B104, 35 pages, arXiv:1507.01678.

[19] Hatsuda Y., Okuyama K., Exact results for ABJ Wilson loops and open-closed duality, J. High Energy
Phys. 2016 (2016), no. 10, 132, 34 pages, arXiv:1603.06579.

[20] Honda M., Exact relations between M2-brane theories with and without orientifolds, J. High Energy Phys.
2016 (2016), no. 6, 123, 28 pages, arXiv:1512.04335.

[21] Hosomichi K., Lee K.M., Lee S., Lee S., Park J., N = 5, 6 superconformal Chern–Simons theories and
M2-branes on orbifolds, J. High Energy Phys. 2008 (2008), no. 9, 002, 24 pages, arXiv:0806.4977.

[22] Jacobi C.G.J., De functionibus alternantibus earumque divisione per productum e differentiis elementorum
conflatum, J. Reine Angew. Math. 22 (1841), 360–371.

[23] Jing N., Rozhkovskaya N., Vertex operators arising from Jacobi–Trudi identities, Comm. Math. Phys. 346
(2016), 679–701, arXiv:1411.4725.

[24] Kapustin A., Willett B., Yaakov I., Exact results for Wilson loops in superconformal Chern–Simons theories
with matter, J. High Energy Phys. 2010 (2010), no. 3, 089, 29 pages, arXiv:0909.4559.

[25] Kiyoshige K., Moriyama S., Dualities in ABJM matrix model from closed string viewpoint, J. High Energy
Phys. 2016 (2016), no. 11, 096, 15 pages, arXiv:1607.06414.

https://doi.org/10.1007/s00220-005-1448-9
https://arxiv.org/abs/hep-th/0312085
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://doi.org/10.1007/JHEP09(2013)064
https://arxiv.org/abs/1112.3310
https://arxiv.org/abs/1710.11603
https://doi.org/10.1016/j.aam.2005.08.005
https://arxiv.org/abs/math-ph/0505021
https://doi.org/10.1007/s00220-011-1253-6
https://arxiv.org/abs/1007.3837
https://doi.org/10.1007/JHEP02(2010)058
https://doi.org/10.1007/JHEP02(2010)058
https://arxiv.org/abs/0912.3006
https://doi.org/10.1007/JHEP08(2011)001
https://doi.org/10.1007/JHEP08(2011)001
https://arxiv.org/abs/1106.4631
https://doi.org/10.1088/1751-8113/49/11/115401
https://arxiv.org/abs/1410.7658
https://arxiv.org/abs/1304.0020
https://doi.org/10.1007/JHEP10(2013)168
https://doi.org/10.1007/JHEP10(2013)168
https://arxiv.org/abs/1306.4297
https://doi.org/10.1007/JHEP09(2015)046
https://arxiv.org/abs/1505.07120
https://doi.org/10.1007/JHEP09(2014)168
https://arxiv.org/abs/1306.1734
https://doi.org/10.1007/JHEP05(2013)054
https://arxiv.org/abs/1301.5184
https://doi.org/10.1007/JHEP01(2013)158
https://doi.org/10.1007/JHEP01(2013)158
https://arxiv.org/abs/1211.1251
https://doi.org/10.1093/ptep/ptv145
https://doi.org/10.1093/ptep/ptv145
https://arxiv.org/abs/1507.01678
https://doi.org/10.1007/JHEP10(2016)132
https://doi.org/10.1007/JHEP10(2016)132
https://arxiv.org/abs/1603.06579
https://doi.org/10.1007/JHEP06(2016)123
https://arxiv.org/abs/1512.04335
https://doi.org/10.1088/1126-6708/2008/09/002
https://arxiv.org/abs/0806.4977
https://doi.org/10.1515/crll.1841.22.360
https://doi.org/10.1007/s00220-015-2564-9
https://arxiv.org/abs/1411.4725
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://doi.org/10.1007/JHEP11(2016)096
https://doi.org/10.1007/JHEP11(2016)096
https://arxiv.org/abs/1607.06414


14 T. Furukawa and S. Moriyama

[26] Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice models. I. Functional relations
and representation theory, Internat. J. Modern Phys. A 9 (1994), 5215–5266, hep-th/9309137.

[27] Kuniba A., Ohta Y., Suzuki J., Quantum Jacobi–Trudi and Giambelli formulae for Uq
(
B

(1)
r

)
from the

analytic Bethe ansatz, J. Phys. A: Math. Gen. 28 (1995), 6211–6226, hep-th/9506167.

[28] Macdonald I.G., Schur functions: theme and variations, in Séminaire Lotharingien de Combinatoire (Saint-
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