Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 036, 20 pages      arXiv:1801.00960
Contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications

Surface Defects in E-String Compactifications and the van Diejen Model

Belal Nazzal and Shlomo S. Razamat
Department of Physics, Technion, Haifa 32000, Israel

Received January 11, 2018, in final form April 03, 2018; Published online April 17, 2018

We study the supersymmetric index of four dimensional theories obtained by compactifications of the six dimensional E string theory on a Riemann surface. In particular we derive the difference operator introducing certain class of surface defects to the index computation. The difference operator turns out to be, up to a constant shift, an analytic difference operator discussed by van Diejen.

Key words: QFT; supersymmetry; analytic difference operators.

pdf (435 kb)   tex (34 kb)


  1. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  2. Arthamonov S., Shakirov S., Genus two generalization of $A_1$ spherical DAHA, arXiv:1704.02947.
  3. Bhardwaj L., Classification of 6d ${\mathcal N}=(1,0)$ gauge theories, J. High Energy Phys. 2015 (2015), no. 11, 002, 26 pages, arXiv:1502.06594.
  4. Del Zotto M., Heckman J.J., Tomasiello A., Vafa C., 6d conformal matter, J. High Energy Phys. 2015 (2015), no. 2, 054, 56 pages, arXiv:1407.6359.
  5. Derkachev S.É., Spiridonov V.P., The Yang-Baxter equation, parameter permutations, and the elliptic beta integral, Russian Math. Surveys 68 (2013), 1027-1072, arXiv:1205.3520.
  6. van Diejen J.F., Integrability of difference Calogero-Moser systems, J. Math. Phys. 35 (1994), 2983-3004.
  7. Dolan F.A., Osborn H., Applications of the superconformal index for protected operators and $q$-hypergeometric identities to ${\mathcal N}=1$ dual theories, Nuclear Phys. B 818 (2009), 137-178, arXiv:0801.4947.
  8. Gadde A., Pomoni E., Rastelli L., Razamat S.S., $S$-duality and 2d topological QFT, J. High Energy Phys. 2010 (2010), no. 3, 032, 22 pages, arXiv:0910.2225.
  9. Gadde A., Rastelli L., Razamat S.S., Yan W., Gauge theories and Macdonald polynomials, Comm. Math. Phys. 319 (2013), 147-193, arXiv:1110.3740.
  10. Gaiotto D., Rastelli L., Razamat S.S., Bootstrapping the superconformal index with surface defects, J. High Energy Phys. 2013 (2013), no. 1, 022, 54 pages, arXiv:1207.3577.
  11. Gaiotto D., Razamat S.S., ${\mathcal N}=1$ theories of class ${\mathcal S}_k$, J. High Energy Phys. 2015 (2015), no. 7, 073, 64 pages, arXiv:1503.05159.
  12. Gaiotto D., Tomasiello A., Holography for $(1,0)$ theories in six dimensions, J. High Energy Phys. 2014 (2014), no. 12, 003, 28 pages, arXiv:1404.0711.
  13. Gorsky A., Nekrasov N., Hamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theory, Nuclear Phys. B 414 (1994), 213-238, hep-th/9304047.
  14. Heckman J.J., Morrison D.R., Rudelius T., Vafa C., Atomic classification of 6D SCFTs, Fortschr. Phys. 63 (2015), 468-530, arXiv:1502.05405.
  15. Heckman J.J., Morrison D.R., Vafa C., On the classification of 6D SCFTs and generalized ADE orbifolds, J. High Energy Phys. 2014 (2014), no. 5, 028, 49 pages, Erratum, J. High Energy Phys. 2015 (2015), no. 6, 017, 2 pages, arXiv:1312.5746.
  16. Intriligator K., Pouliot P., Exact superpotentials, quantum vacua and duality in supersymmetric ${\rm Sp}(N_c)$ gauge theories, Phys. Lett. B 353 (1995), 471-476, hep-th/9505006.
  17. Ito Y., Yoshida Y., Superconformal index with surface defects for class ${\mathcal S}_k$, arXiv:1606.01653.
  18. Kim H.C., Razamat S.S., Vafa C., Zafrir G., E-string rheory on Riemann surfaces, Fortschr. Phys. 66 (2018), 1700074, 35 pages, arXiv:1709.02496.
  19. Kinney J., Maldacena J., Minwalla S., Raju S., An index for 4 dimensional super conformal theories, Comm. Math. Phys. 275 (2007), 209-254, hep-th/0510251.
  20. Koornwinder T.H., Askey-Wilson polynomials for root systems of type $BC$, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189-204.
  21. Maruyoshi K., Yagi J., Surface defects as transfer matrices, Prog. Theor. Exp. Phys. 2016 (2016), 113B01, 52 pages, arXiv:1606.01041.
  22. Morrison D.R., Taylor W., Classifying bases for 6D F-theory models, Cent. Eur. J. Phys. 10 (2012), 1072-1088, arXiv:1201.1943.
  23. Nekrasov N., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and $qq$-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
  24. Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  25. Rains E., Ruijsenaars S., Difference operators of Sklyanin and van Diejen type, Comm. Math. Phys. 320 (2013), 851-889, arXiv:1203.0042.
  26. Rains E.M., Transformations of elliptic hypergeometric integrals, Ann. of Math. 171 (2010), 169-243, math.QA/0309252.
  27. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs.\ integrable systems of elliptic Calogero-Moser type IV. The relativistic Heun (van Diejen) case, SIGMA 11 (2015), 004, 78 pages, arXiv:1404.4392.
  28. Spiridonov V.P., Elliptic hypergeometric functions (a complement to the book by G.E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia of Math. Appl., Vol. 71, Cambridge University Press, Cambridge, 1999, written for its Russian edition, Moscow, MCCME, 2013, 577-606), arXiv:0704.3099.
  29. Spiridonov V.P., On the elliptic beta function, Russian Math. Surveys 56 (2001), 185-186.
  30. Spiridonov V.P., Warnaar S.O., Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006), 91-132, math.CA/0411044.
  31. Yagi J., Surface defects and elliptic quantum groups, J. High Energy Phys. 2017 (2017), no. 6, 013, 32 pages, arXiv:1701.05562.
  32. Yamazaki M., New integrable models from the gauge/YBE correspondence, J. Stat. Phys. 154 (2014), 895-911, arXiv:1307.1128.

Previous article  Next article   Contents of Volume 14 (2018)