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Abstract. We determine the dual modules of all irreducible modules of alternating groups
over fields of characteristic 2.
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1 Introduction and statement of the result

Let S, be the symmetric group of degree n > 1 and let k be a field of characteristic p > 0. In [7,
Theorem 11.5] G. James constructed all irreducible kS,-modules D* where A ranges over the
p-regular partitions of n. Here a partition is p-regular if each of its parts occurs with multiplicity
less than p.

As the alternating group A, has index 2 in S, the restriction D*| 4, is either irreducible
or splits as a direct sum of two non-isomorphic irreducible kA,-modules. Moreover, every
irreducible kA,-module is a direct summand of some D*| A, -

Henceforth we will assume, unless stated otherwise, that & is a field of characteristic 2 which
is a splitting field for the alternating group A,. For this, it suffices that k£ contains the finite
field F4. D. Benson [1] has classified all irreducible k.A,-modules:

Proposition 1.1. Let A = (A > g > -+ > o1 > Ao > 0) be a strict partition of n. Then
DA 4, is reducible if and only if

(1) Agjm1—Xgj=1or2, forj=1,...,s, and
(44) >\2j71 + )\gj %2 (mod 4), forj=1,...,s.

In this note we determine the dual of each irreducible kA,-module. Now D*| 4, is a self-dual
kA,-module, as D* is a self-dual kS,-module. So we only need to determine the dual of an
irreducible k.A,,-module which is a direct summand of D*| A,,» when this module is reducible.

Theorem 1.2. Let A be a strict partition of n such that D’\J,An is reducible. Then the two
S

irreducible direct summands of DY 4, are self-dual if > A2j is even and are dual to each other
j=1
Zf Z )\2]' is odd.
j=1
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For example D751 | Ay = S @ 5%, for a non self-dual irreducible kA;z-module S, and
D(5’4’3’1)¢A13 decomposes similarly. On the other hand D(7’6)¢A13 & 51 @ Sy where S7 and S
are irreducible and self-dual.

In order to prove Theorem 1.2, we use the following elementary result, which requires the
assumption that k has characteristic 2:

Lemma 1.3. Let G be a finite group and let M be a semisimple kG-module which affords
a non-degenerate G-invariant symmetric bilinear form B. Suppose that B(tm, m) # 0, for some
involution t € G and some m € M. Then M has a self-dual irreducible direct summand.

Proof. We have M = @?:1 M;, for some n > 1 and irreducible kG-modules My, ..., M,,. Write
m =Y. m;, with m; € M;, for all i. Then

n
B(tm,m) = Z B(tm;, m;) + Z (B(tm;, m;) + B(tm;,m;))
1<i<n 1<i<j<n

= Z B(tmj;, m;).

1<i<n
The last equality follows from the fact that char(k) = 2 and
B(tmi,mj) = B(mi,t_lmj) = B(mi,tmj) = B(tmj,mi).

Without loss of generality B(tmi,m1) # 0. Then B restricts to a non-zero G-invariant
symmetric bilinear form By on M. As M is irreducible, B; is non-degenerate. So M is
isomorphic to its kG-dual M. |

2 Known results on the symmetric and alternating groups

2.1 The irreducible modules of the symmetric groups

We use the ideas and notation of [7]. In particular for each partition A of n, James defines the
Young diagram [A] of A\, and the notions of a A-tableau and a A-tabloid.

Fix a A-tableau z. So z is a filling of [A] with the symbols {1,...,n}. The corresponding
A-tabloid is {z} := {o(x) |0 € R,}, where R, is the row stabilizer of z. We regard {x} as an
ordered set partition of {1,...,n}. The Z-span of the A-tabloids forms the ZS,-lattice M*, and
the set of A-tabloids is an S,,-invariant Z-basis of M*.

Recall from [7, Section 4] that corresponding to each tableau z there is a polytabloid e, :=
S sgn(o){ox} in M*. Here o ranges over the permutations in the column stabilizer C, of
the tableau . The Specht lattice S* is defined to be the Z-span of all A-polytabloids. In
particular S* is a ZS,-sublattice of M?; it has as Z-basis the polytabloids corresponding to
the standard A-tableaux (i.e., the numbers increase from left-to-right along rows, and from
top-to-bottom along columns).

Now James defines {, ) to be the symmetric bilinear form on M?* which makes the tabloids
into an orthonormal basis. As the tabloids are permuted by the action of S,,, it is clear that (, )
is Sp-invariant.

Suppose now that A is a strict partition and consider the unique permutation 7 € R, which
reverses the order of the symbols in each row of the tableau x. In [7, Lemma 10.4] James shows
that (Tez, e;) = 1, as {x} is the only tabloid common to e; and e,, (in fact James proves that
(Teg, e,) is coprime to p, if \ is p-regular, for some prime p). Set J* := {z € S*|(x,y) € 2Z,
for all y € S*}. Then 28* C J* and it follows from [7, Theorem 4.9] that D* := (S*/J*) ®p, k
is an absolutely irreducible kS,-module, for any field &£ of characteristic 2.
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2.2 The real 2-regular conjugacy classes of the alternating groups

A conjugacy class of a finite group G is said to be 2-regular if its elements have odd order.
R. Brauer proved that the number of irreducible kG-modules equals the number of 2-regular
conjugacy classes of G [4]. Now Brauer’s permutation lemma holds for arbitrary fields [3,
footnote 19]. So it is clear that the number of self-dual irreducible kG-modules equals the
number of real 2-regular conjugacy classes of G.

We review some well known facts about the 2-regular conjugacy classes of the alternating
group. See for example [8, Section 2.5].

Corresponding to each partition p of n there is a conjugacy class C,, of Sy; its elements
consist of all permutations of n whose orbits on {1,...,n} have sizes {u1,...,u¢} (as multiset).
So C, is 2-regular if and only if each p; is odd.

Let p be a partition of n into odd parts. Then C,, C A,. If ;4 has repeated parts then C),
is a conjugacy class of A,. As C,, is closed under taking inverses, C), is a real conjugacy class
of A,.

Now assume that p has distinct parts. Then C), is a union of two conjugacy classes Cff

of A,. Set m := %@) and let z € C,,. Then z is inverted by an involution t € S, of cycle type
(2m,1"72m). Since Cs, (2) 2 [[Z/p;Z is odd, t generates a Sylow 2-subgroup of the extended

centralizer C§ (2) of z in Sy,. It follows that z is conjugate to z~! in A, if and only if ¢ € A,,.

This shows that C’j are real classes of A, if and only if %«“)

above shows:

is even. This and the discussion

Lemma 2.1. The number of self-dual irreducible kA, -modules equals the number of non-strict

odd partitions of n plus twice the number of strict odd partitions p of n for which %(“) s even.

3 Bressoud’s bijection

We need a special case of a partition identity of I. Schur [9]. This was already used by Benson
in his proof of Proposition 1.1:

Proposition 3.1 (Schur, 1926). The number of strict partitions of n into odd parts equals the
number of strict partitions of n into parts congruent to 0, £1 (mod 4) where consecutive parts
differ by at least 4 and consecutive even parts differ by at least 8.

D. Bressoud [5] has constructed a bijection between the relevant sets of partitions. We
describe a simplified version of this bijection.

Let p = (u1 > p2 > -+ > pg) be a strict partition of n whose parts are all odd. We sub-
divide p into ‘blocks’ of at most two parts, working recursively from largest to smallest parts.
Let j > 1 and suppose that w1, pa, ..., nj—1 have already been assigned to blocks. We form the
block {f;, prj+1} if pj = pj41 + 2, and the block {u;} otherwise (if p; > pj41 +4). Let s be the
number of resulting blocks of .

Next we form the sequence of positive integers o = (o1, 09,...,0s), where o; is the sum of
the parts in the j-th block of x. Then the o; are distinct, as the odd parts form a decreasing
sequence, with minimal difference 4, and the even parts form a decreasing sequence, with minimal
difference 8. Moreover, each even o; is the sum of a pair of consecutive odd integers. So o; # 2
(mod 4), for all j > 0.

We get a composition ¢ of n + 2s(s — 1) by defining

(=01, @=02+4, ..., (=05 +4(s—1).

The even (; form a decreasing sequence, with minimal difference 4, and the odd (; form a weakly
decreasing sequence ((; = (j41 if and only if (j, (j4+1 represent two singleton blocks {2k — 1}
and {2k — 5} of p, for some k£ > 0).
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Choose a permutation 7 such that (;1 > (;o0 > -+ > (5. Then we get a strict partition
of n by defining

T =0GC1, 2 =GCr2—4, ..., ’YS:CTS_4(S_1)'
By construction, the minimal difference between the parts of + is 4 and the minimal difference
between the even parts of v is 8. Moreover, v; = (;; (mod 4). So v; # 2 (mod 4). Then p — v
is Bressoud’s bijection.
Finally form a strict partition A of n which has 2s — 1 or 2s parts, by defining

(ﬁ—l—l,ﬁ— ), if ; is even or
(\ X)) 2 2
2j—1, A2j) = 1 oy—1
(”;%) if 7; is odd.

Then A\ satisfies the constraints (i) and (ii) of Proposition 1.1. Conversely, it is easy to see that
if A satisfies these constraints, then A is the image of some strict odd partition p of n under the
above sequence of operations.

Lemma 3.2. Let p be a strict-odd partition of n and let A be the strict partition of n constructed
from p as above. Then %K“) = Ao

Proof. Each pair of consecutive parts Ag;_1, A2j of A corresponds to a block B of p1. Moreover
by our description of Bressoud’s bijection, there are integers qu, ..., gs, with ) ¢; = 0 such that

i+ 1 p—1 .
Hi & >7 lfB:{Mi}’

(A2j—1 +2q5, A2j + 2q5) = ( 2 72
(i prig1), if B = {pi, pis1}-

In case B = {ui, pti+1}, we have pu; = pi+1 + 2 and thus “’T_l + “'*Tl_l = A9 + 2¢;. We conclude
that

5 —z; 5 —Z:l()\2j+2q]‘) —z:l)\gj. [ |
1= J= J=

4 Proof of Theorem 1.2

Let D(n) be the set of strict partitions of n and let S(n) be the set of strict partitions of n which
satisfy conditions (i) and (ii) in Proposition 1.1. So there are 2| S(n)| 4+ |D(n)\ S(n)| irreducible
kA,-modules.

Next set S(n)™ := {\ € S(n)| > Ag; is even}. Then it follows from Lemmas 2.1 and 3.2 that
the number of self-dual irreducible k.A,-modules equals 2| S(n)*| 4 | D(n)\ S(n)|. Now D*| 4,
is an irreducible self-dual kA,-module, for A € D(n)\ S(n). So we can prove Theorem 1.2 by
showing that the irreducible direct summands of D*| 4, are self-dual for all A\ € S(n)*.

Suppose then that A € S(n)*. Let 7 € S, be the permutation which reverses each row of

2s
a A-tableau, as discussed in Section 2.1. We claim that 7 € A,. For 7 is a product of L%JJ
i=1

commuting transpositions. Now LMJ + L)‘ﬁJ = Agj, a8 Agj_1 — Agj = 1, or Agjq1 — Agj = 2

2 2
2s S
and both \g;_1 and Ag; are odd. So ) L%J = ) Xg; is even. This proves the claim.
i=1 j=1

Since D? is irreducible and the form (, ) is non-zero, (, ) is non-degenerate on D*. Write
D> 4, = S1 @ Sy, where S and S are non-isomorphic irreducible modules. As 7 € A, it
follows from Lemma 1.3 that we may assume that S; is self-dual. Now S5 22 S = S and S5 is
isomorphic to a direct summand of D*| 4. So Ss is also self-dual. This completes the proof of
the theorem.



The Duals of the 2-Modular Irreducible Modules of the Alternating Groups 5

5 Irreducible modules of alternating groups
over fields of odd characteristic

We now comment briefly on what happens when k is a splitting field for A,, which has odd
characteristic p. Let sgn be the sign representation of £S,,. So sgn is 1-dimensional but non-
trivial. G. Mullineux defined a bijection A — A on the p-regular partitions of n and conjectured
that D* @ sgn = DM for all p-regular partitions A of n. This was only proved in the 1990’s by
Kleshchev and Ford-Kleshchev. See [6] for details.

Now D 4, & DM A, and DY 4 is irreducible if and only if A # AM See [2] for details.
Moreover DX and DM are duals of each other, by [7, Theorem 6.6]. So D?| 4, is self-dual, if
A # MM, However when A = AM | we do not know how to determine when the two irreducible
direct summands of DY 4, are self-dual.
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