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Some Remarks on the Total CR Q and Q′-Curvatures
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Abstract. We prove that the total CR Q-curvature vanishes for any compact strictly
pseudoconvex CR manifold. We also prove the formal self-adjointness of the P ′-operator
and the CR invariance of the total Q′-curvature for any pseudo-Einstein manifold without
the assumption that it bounds a Stein manifold.
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1 Introduction

The Q-curvature, which was introduced by T. Branson [3], is a fundamental curvature quantity
on even dimensional conformal manifolds. It satisfies a simple conformal transformation formula
and its integral is shown to be a global conformal invariant. The ambient metric construction of
the Q-curvature [9] also works for a CR manifold M of dimension 2n+ 1, and we can define the
CR Q-curvature, which we denote by Q. The CR Q-curvature is a CR density of weight −n− 1
defined for a fixed contact form θ and is expressed in terms of the associated pseudo-hermitian
structure. If we take another contact form θ̂ = eΥθ, Υ ∈ C∞(M), it transforms as

Q̂ = Q+ PΥ,

where P is a CR invariant linear differential operator, called the (critical) CR GJMS operator.
Since P is formally self-adjoint and kills constant functions, the integral

Q =

∫
M
Q,

called the total CR Q-curvature, is invariant under rescaling of the contact form and gives
a global CR invariant of M . However, it follows readily from the definition of the CR Q-
curvature that Q vanishes identically for an important class of contact forms, namely the pseudo-
Einstein contact forms. Since the boundary of a Stein manifold admits a pseudo-Einstein contact
form [5], the CR invariant Q vanishes for such a CR manifold. Moreover, it has been shown
that on a Sasakian manifold the CR Q-curvature is expressed as a divergence [1], and hence Q
also vanishes in this case. Thus, it is reasonable to conjecture that the total CR Q-curvature
vanishes for any CR manifold, and our first result is the confirmation of this conjecture:

Theorem 1.1. Let M be a compact strictly pseudoconvex CR manifold. Then the total CR
Q-curvature of M vanishes: Q = 0.

For three dimensional CR manifolds, Theorem 1.1 follows from the explicit formula of the
CR Q-curvature; see [9]. In higher dimensions, we make use of the fact that a compact strictly
pseudoconvex CR manifold M of dimension greater than three can be realized as the boundary
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of a complex variety with at most isolated singularities [2, 10, 11]. By resolution of singularities,
we can realize M as the boundary of a complex manifold X which may not be Stein. In this
setting, the total CR Q-curvature is characterized as the logarithmic coefficient of the volume
expansion of the asymptotically Kähler–Einstein metric on X [15]. By a simple argument using
Stokes’ theorem, we prove that there is no logarithmic term in the expansion.

Although the vanishing of Q is disappointing, there is an alternative Q-like object on a CR
manifold which admits pseudo-Einstein contact forms. Generalizing the operator of Branson–
Fontana–Morpurgo [4] on the CR sphere, Case–Yang [7] (in dimension three) and Hirachi [12]
(in general dimensions) introduced the P ′-operator and the Q′-curvature for pseudo-Einstein
CR manifolds. Let us denote the set of pseudo-Einstein contact forms by PE and the space of
CR pluriharmonic functions by P. Two pseudo-Einstein contact forms θ, θ̂ ∈ PE are related by
θ̂ = eΥθ for some Υ ∈ P. For a fixed θ ∈ PE , the P ′-operator is defined to be a linear differential
operator on P which kills constant functions and satisfies the transformation formula

P̂ ′f = P ′f + P (fΥ)

under the rescaling θ̂ = eΥθ. The Q′-curvature is a CR density of weight −n − 1 defined for
θ ∈ PE , and satisfies

Q̂′ = Q′ + 2P ′Υ + P
(
Υ2
)

for the rescaling. Thus, if P ′ is formally self-adjoint on P, the total Q′-curvature

Q
′
=

∫
M
Q′

gives a CR invariant of M . In dimension three and five, the formal self-adjointness of P ′ follows
from the explicit formulas [6, 7]. In higher dimensions, Hirachi [12, Theorem 4.5] proved the
formal self-adjointness under the assumption that M is the boundary of a Stein manifold X; in
the proof he used Green’s formula for the asymptotically Kähler–Einstein metric g on X, and
the global Kählerness of g was needed to assure that a pluriharmonic function is harmonic with
respect to g. In this paper, we slightly modify his proof and prove the self-adjointness of P ′ for
general pseudo-Einstein manifolds:

Theorem 1.2. Let M be a compact strictly pseudoconvex CR manifold. Then the P ′-operator
for a pseudo-Einstein contact form satisfies∫

M

(
f1P

′f2 − f2P
′f1

)
= 0

for any f1, f2 ∈ P.

Consequently, the CR invariance of Q
′

holds for any CR manifold which admits a pseudo-
Einstein contact form:

Theorem 1.3. Let M be a compact strictly pseudoconvex CR manifold which admits a pseudo-
Einstein contact form. Then the total Q′-curvature is independent of the choice of θ ∈ PE.

We note that Q
′

is a nontrivial CR invariant since it has a nontrivial variational formula;
see [13]. We also give an alternative proof of Theorem 1.3 by using the characterization [12,

Theorem 5.6] of Q
′
as the logarithmic coefficient in the expansion of some integral over a complex

manifold with boundary M .
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2 Proof of Theorem 1.1

We briefly review the ambient metric construction of the CR Q-curvature; we refer the reader
to [9, 12, 13] for detail.

Let X be an (n + 1)-dimensional complex manifold with strictly pseudoconvex CR bound-
ary M , and let r ∈ C∞(X) be a boundary defining function which is positive in the interior X.
The restriction of the canonical bundle KX to M is naturally isomorphic to the CR canonical

bundle KM := ∧n+1(T 0,1M)⊥ ⊂ ∧n+1(CT ∗M). We define the ambient space by X̃ = KX \ {0},
and set N = KM \ {0} ∼= X̃|M . The density bundles over X and M are defined by

Ẽ(w) =
(
KX ⊗KX

)−w/(n+2)
, E(w) =

(
KM ⊗KM

)−w/(n+2) ∼= Ẽ(w)|M

for each w ∈ R. We call E(w) the CR density bundle of weight w. The space of sections of Ẽ(w)
and E(w) are also denoted by the same symbols. We define a C∗-action on X̃ by δλu = λn+2u
for λ ∈ C∗ and u ∈ X̃. Then a section of Ẽ(w) can be identified with a function on X̃ which is
homogeneous with respect to this action:

Ẽ(w) ∼=
{
f ∈ C∞

(
X̃
)
| δ∗λf = |λ|2wf for λ ∈ C∗

}
.

Similarly, sections of E(w) are identified with homogeneous functions on N .
Let ρ ∈ Ẽ(1) be a density on X and (z1, . . . , zn+1) local holomorphic coordinates. We set

ρ = |dz1 ∧ · · · ∧ dzn+1|2/(n+2)ρ ∈ Ẽ(0) and define

J [ρ] := (−1)n+1 det

(
ρ ∂zjρ
∂ziρ ∂zi∂zjρ

)
.

Since J [ρ] is invariant under changes of holomorphic coordinates, J defines a global differential
operator, called the Monge–Ampère operator. Fefferman [8] showed that there exists ρ ∈ Ẽ(1)
unique modulo O(rn+3) which satisfies J [ρ] = 1 +O(rn+2) and is a defining function of N . We
fix such a ρ and define the ambient metric g̃ by the Lorentz–Kähler metric on a neighborhood
of N in X̃ which has the Kähler form −i∂∂ρ.

Recall that there exists a canonical weighted contact form θ ∈ Γ(T ∗M ⊗ E(1)) on M , and
the choice of a contact form θ is equivalent to the choice of a positive section τ ∈ E(1), called
a CR scale; they are related by the equation θ = τθ. For a CR scale τ ∈ E(1), we define the
CR Q-curvature by

Q = ∆̃n+1 log τ̃ |N ∈ E(−n− 1),

where ∆̃ = −∇̃I∇̃I is the Kähler Laplacian of g̃ and τ̃ ∈ Ẽ(1) is an arbitrary extension of τ .
It can be shown that Q is independent of the choice of an extension of τ , and the total CR
Q-curvature Q is invariant by rescaling of τ .

The total CR Q-curvature has a characterization in terms of a complete metric on X. We
note that the (1, 1)-form −i∂∂ logρ descends to a Kähler form on X near the boundary. We

extend this Kähler metric to a hermitian metric g on X. The Kähler Laplacian ∆ = −gij∇i∇j
of g is related to ∆̃ by the equation

ρ∆̃f = ∆f, f ∈ Ẽ(0) (2.1)

near N in X̃ \ N . In the right-hand side, we have regarded f as a function on X.
For any contact form θ on M , there exists a boundary defining function ρ such that

ϑ|TM = θ, |∂ log ρ|g = 1 near M in X, (2.2)
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where ϑ := Re(i∂ρ) ([15, Lemma 3.1]). Let ξ be the (1, 0)-vector filed on X near M characterized
by

ξρ = 1, ξ ⊥g H,

where H := Ker ∂ρ ⊂ T 1,0X. Then, N := Re ξ is smooth up to the boundary and satisfies
Nρ = 1, ϑ(N) = 0. Moreover, ν := ρN is (

√
2)−1 times the unit outward normal vector filed

along the level sets of ρ. By Green’s formula, for any function f on X we have∫
ρ>ε

∆f volg =

∫
ρ=ε

νf νy volg . (2.3)

Since the Monge–Ampère equation implies that g satisfies

volg = −(n!)−1(1 +O(ρ))ρ−n−2dρ ∧ ϑ ∧ (dϑ)n,

the formula (2.3) is rewritten as∫
ρ>ε

∆f volg = −(n!)−1

∫
ρ=ε

Nf · (1 +O(ε))ε−nϑ ∧ (dϑ)n. (2.4)

With this formula, we prove the following characterization of Q.

Lemma 2.1 ([15, Proposition A.3]). For an arbitrary defining function ρ, we have

lp

∫
ρ>ε

volg =
(−1)n

(n!)2(n+ 1)!
Q,

where lp denotes the coefficient of log ε in the asymptotic expansion in ε.

Proof. Since the coefficient of log ε in the volume expansion is independent of the choice of ρ
[15, Proposition 4.1], we may assume that ρ satisfies (2.2) for a fixed contact θ on M . We take
τ̃ ∈ Ẽ(1) such that ρ = τ̃ ρ. Then, θ is the contact form corresponding to the CR scale τ̃ |N . By
the same argument as in the proof of [12, Lemma 3.1], we can take F ∈ Ẽ(0), G ∈ Ẽ(−n − 1)
which satisfy

∆̃
(

log τ̃ + F +Gρn+1 log ρ
)

= O
(
ρ∞
)
, F = O(ρ), G|N =

(−1)n

n!(n+ 1)!
Q.

We set G := τ̃n+1G ∈ Ẽ(0). By (2.1) and the equation ρ∆̃ logρ = n+ 1, we have

∆
(

log ρ− F −Gρn+1 log ρ
)

= n+ 1 +O(ρ∞).

Then, by using (2.4), we compute as

(n+ 1) lp

∫
ρ>ε

volg = lp

∫
ρ>ε

∆
(

log ρ− F −Gρn+1 log ρ
)

volg

= −(n!)−1 lp

∫
ρ=ε

N
(

log ρ− F −Gρn+1 log ρ
)
· (1 +O(ε))ε−nϑ ∧ (dϑ)n

=
n+ 1

n!

∫
M
Gθ ∧ (dθ)n

=
(−1)n

(n!)3
Q.

Thus we complete the proof. �
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Proof of Theorem 1.1. Let ρ be an arbitrary defining function of M , and τ̃ ∈ Ẽ(1) the density
on X defined by ρ = τ̃ ρ. Then α := −i∂∂ log τ̃ is a closed (1, 1)-form on X. The volume form

of g is given by volg = ωn+1/(n + 1)! with the fundamental 2-form ω = igjkθ
j ∧ θk. Near the

boundary M in X, we have

ω = −i∂∂ logρ = −i∂∂ log ρ+ α.

Since the logarithmic term in the volume expansion is determined by the behavior of volg near
the boundary, we compute as

(n+ 1)! lp

∫
ρ>ε

volg = lp

∫
ρ>ε

(−i∂∂ log ρ+ α)n+1

= lp

∫
ρ>ε

αn+1 + lp

∫
ρ>ε

n+1∑
k=1

(
n+ 1

k

)
(−i∂∂ log ρ)k ∧ αn+1−k.

The first term in the last line is 0 since α is smooth up to the boundary. Using −i∂∂ log ρ =
d(ϑ/ρ) and dα = 0, we also have

lp

∫
ρ>ε

(−i∂∂ log ρ)k ∧ αn+1−k = lp ε−k
∫
ρ=ε

ϑ ∧ (dϑ)k−1 ∧ αn+1−k = 0.

Thus, by Lemma 2.1 we obtain Q = 0. �

3 Proof of Theorem 1.2

We will recall the definitions of the P ′-operator and the Q′-curvature. A CR scale τ ∈ E(1)
is called pseudo-Einstein if it has an extension τ̃ ∈ Ẽ(1) such that ∂∂ log τ̃ = 0 near N in X̃.
The corresponding contact form θ is called a pseudo-Einstein contact form and characterized in
terms of associated pseudo-hermitian structure; see [12, 13, 14]. If τ is a pseudo-Einstein CR
scale, another τ̂ is pseudo-Einstein if and only if τ̂ = e−Υτ for a CR pluriharmonic function
Υ ∈ P. For any f ∈ P, we take an extension f̃ ∈ Ẽ(0) such that ∂∂f̃ = 0 near M in X and
define

P ′f = −∆̃n+1
(
f̃ log τ̃

)
|N ∈ E(−n− 1).

We note that the germs of τ̃ and f̃ along N is unique, and P ′f is assured to be a density by
∆̃f̃ |N = 0. The Q′-curvature is defined by

Q′ = ∆̃n+1(log τ̃)2|N ∈ E(−n− 1).

Here, the homogeneity of Q′ follows from the fact ∆̃ log τ̃ |N = 0.
To prove the formal self-adjointness of P ′, we use its characterization in terms of the metric g.

We define a differential operator ∆′ by ∆′f = −gij∂i∂jf . Since g is Kähler near the boundary,
∆′ agrees with ∆ near M in X.

Lemma 3.1 ([12, Lemma 4.4]). Let τ ∈ E(1) be a pseudo-Einstein CR scale and τ̃ ∈ Ẽ(1)
its extension such that ∂∂ log τ̃ = 0 near N in X̃. Let ρ = ρ/τ̃ be the corresponding defining
function. Then, for any f ∈ C∞(X) which is pluriharmonic in a neighborhood of M in X, there
exist F,G ∈ C∞(X) such that F = O(ρ) and

∆′
(
f log ρ− F −Gρn+1 log ρ

)
= (n+ 1)f +O

(
ρ∞
)
.

Moreover, τ−n−1G|M = (−1)n+1

(n+1)!n!P
′f holds.
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In the statement of [12, Lemma 4.4], the Laplacian ∆ is used, but we may replace it by ∆′

since they agree near the boundary in X.

Proof of Theorem 1.2. We extend fj to a function on X such that ∂∂fj = 0 in a neighbor-
hood of M in X. Let τ be a pseudo-Einstein CR scale and ρ = ρ/τ̃ the corresponding defining
function. Then we have ω = −i∂∂ log ρ near M in X. We take Fj , Gj as in Lemma 3.1 so that
uj := fj log ρ−Fj−Gjρn+1 log ρ satisfies ∆′uj = (n+1)fj +O(ρ∞). We consider the coefficient
of log ε in the expansion of the integral

Iε = Re

∫
ρ>ε

(
i∂f1 ∧ ∂u2 ∧ ωn + i∂f2 ∧ ∂u1 ∧ ωn − f1f2 ω

n+1
)
,

which is symmetric in the indices 1 and 2. Since dω = 0, ∂∂f2 = 0 near M in X, we have

i∂f1 ∧ ∂u2 ∧ ωn = d
(
if1∂u2 ∧ ωn

)
− if1∂∂u2 ∧ ωn + inf1∂u2 ∧ dω ∧ ωn−1

= d
(
if1∂u2 ∧ ωn

)
+

1

n+ 1
f1∆′u2ω

n+1 + (cpt supp),

i∂f2 ∧ ∂u1 ∧ ωn = −d
(
iu1∂f2 ∧ ωn

)
+ (cpt supp),

where (cpt supp) stands for a compactly supported form on X. Thus,

Iε =

∫
ρ>ε

1

n+ 1
f1

(
∆′u2 − (n+ 1)f2

)
ωn+1

+ Re

∫
ρ=ε

i(f1∂u2 − u1∂f2) ∧ ωn +

∫
ρ>ε

(cpt supp).

The first and the third terms contain no log terms. Since ω = d(ϑ/ρ) near M in X, the second
term is computed as

Re

∫
ρ=ε

i(f1∂u2 − u1∂f2) ∧ ωn = ε−n Re

∫
ρ=ε

(
if1∂

(
f2 log ρ− F2 −G2ρ

n+1 log ρ
)
∧ (dϑ)n

− i
(
f1 log ρ− F1 −G1ρ

n+1 log ρ
)
∧ ∂f2 ∧ (dϑ)n

)
+O

(
ε∞
)
.

The logarithmic term in the right-hand side is

log ε

∫
ρ=ε

(n+ 1)f1G2ϑ ∧ (dϑ)n + 2ε−n log εRe

∫
ρ=ε

if1∂f2 ∧ (dϑ)n +O(ε log ε).

The coefficient of log ε in the first term is

(−1)n+1

(n!)2

∫
M
f1P

′f2. (3.1)

The second term is equal to

2ε−n log εRe

∫
ρ>ε

i∂f1 ∧ ∂f2 ∧ (dϑ)n + ε−n log ε

∫
ρ>ε

(cpt supp).

The first term in this formula is symmetric in the indices 1 and 2 while the second term gives
no log ε term. Therefore, (3.1) should also be symmetric in 1 and 2, which implies the formal
self-adjointness of P ′. �
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4 Proof of Theorem 1.3

The formal self-adjointness of the P ′-operator implies the CR invariance of the total Q′-curva-
ture. When n ≥ 2, the CR invariance can also be proved by the following characterization of Q

′

in terms of the hermitian metric g on X whose fundamental 2-form ω = igjkθ
j ∧ θk agrees with

−i∂∂ logρ near M in X:

Theorem 4.1 ([12, Theorem 5.6]). Let τ ∈ E(1) be a pseudo-Einstein CR scale and τ̃ ∈ Ẽ(1)
its extension such that ∂∂ log τ̃ = 0 near N in X̃. Let ρ = ρ/τ̃ be the corresponding defining
function. Then we have

lp

∫
r>ε

i∂ log ρ ∧ ∂ log ρ ∧ ωn =
(−1)n

2(n!)2
Q
′

(4.1)

for any defining function r.

In [12, Theorem 5.6], it is assumed that X is Stein and ω = −i∂∂ log ρ globally on X, but
as the logarithmic term is determined by the boundary behavior, it is sufficient to assume
ω = −i∂∂ log ρ near M in X as above.

Proof of Theorem 1.3. Let τ , ρ be as in Theorem 4.1 and let ρ̂ be the defining function
corresponding to another pseudo-Einstein CR scale τ̂ . Then we can write as ρ̂ = eΥρ with
Υ ∈ C∞(X) such that ∂∂Υ = 0 near M in X.

Using the defining function ρ for r in the formula (4.1), we compute as

lp

∫
ρ>ε

i∂ log ρ̂ ∧ ∂ log ρ̂ ∧ ωn = lp

∫
ρ>ε

i(∂ log ρ+ ∂Υ) ∧ (∂ log ρ+ ∂Υ) ∧ ωn

= lp

∫
ρ>ε

i∂ log ρ ∧ ∂ log ρ ∧ ωn + lp

∫
ρ>ε

i∂Υ ∧ ∂Υ ∧ ωn

+ 2 Re lp

∫
ρ>ε

i∂ log ρ ∧ ∂Υ ∧ ωn.

The second term in the last line is

lp

∫
ρ>ε

i∂Υ ∧ ∂Υ ∧ ωn = lp

∫
ρ=ε

iΥ∂Υ ∧ ωn + lp

∫
ρ>ε

(cpt supp) = 0.

Since ω = d(ϑ/ρ) near M in X, we have∫
ρ>ε

i∂ log ρ ∧ ∂Υ ∧ ωn = log ε

∫
ρ=ε

i∂Υ ∧ ωn +

∫
ρ>ε

(cpt supp)

= ε−n log ε

∫
ρ=ε

i∂Υ ∧ (dϑ)n +

∫
ρ>ε

(cpt supp)

= ε−n log ε

∫
ρ>ε

(cpt supp) +

∫
ρ>ε

(cpt supp),

which implies that the third term is also 0. Thus, Q
′

is independent of the choice of a pseudo-
Einstein CR scale τ . �
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