Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 003, 14 pages      arXiv:1709.09682
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

Manifold Ways to Darboux-Halphen System

John Alexander Cruz Morales a, Hossein Movasati b, Younes Nikdelan c, Raju Roychowdhury d and Marcus A.C. Torres b
a) Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
b) Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brazil
c) Instituto de Matemática e Estatística (IME), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
d) Instituto de Física, Universidade de São Paulo (IF-USP), São Paulo, Brazil

Received September 29, 2017, in final form January 03, 2018; Published online January 08, 2018

Many distinct problems give birth to Darboux-Halphen system of differential equations and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding infinite number of double orthogonal surfaces in $\mathbb{R}^3$. The second is a problem in general relativity about gravitational instanton in Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called Gauss-Manin connection in disguise developed by one of the authors and finally in the last problem Darboux-Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.

Key words: Darboux-Halphen system; Ramanujan system; Gauss-Manin connection; relativity and gravitational theory; Bianchi IX metric; Frobenius manifold; Chazy equation.

pdf (376 kb)   tex (23 kb)


  1. Ablowitz M.J., Chakravarty S., Halburd R., On Painlevé and Darboux-Halphen-type equations, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 573-589.
  2. Alim M., Movasati H., Scheidegger E., Yau S.T., Gauss-Manin connection in disguise: Calabi-Yau threefolds, Comm. Math. Phys. 344 (2016), 889-914, arXiv:1410.1889.
  3. Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988.
  4. Babich M.V., Korotkin D.A., Self-dual ${\rm SU}(2)$-invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys. 46 (1998), 323-337, gr-qc/9810025.
  5. Belavin A.A., Polyakov A.M., Schwartz A.S., Tyupkin Yu.S., Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), 85-87.
  6. Bianchi L., On the three-dimensional spaces which admit a continuous group of motions, Gen. Relativity Gravitation 33 (2001), 2171-2253.
  7. Bruinier J.H., van der Geer G., Harder G., Zagier D., The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008.
  8. Chanda S., Guha P., Roychowdhury R., Bianchi-IX, Darboux-Halphen and Chazy-Ramanujan, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650042, 25 pages, arXiv:1512.01662.
  9. Darboux G., Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Ann. Sci. École Norm. Sup. (2) 7 (1878), 101-150.
  10. Dijkgraaf R., Verlinde H., Verlinde E., Notes on topological string theory and $2$D quantum gravity, in String Theory and Quantum Gravity (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 91-156.
  11. Dubrovin B., Integrable systems in topological field theory, Nuclear Phys. B 379 (1992), 627-689, hep-th/9209040.
  12. Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, hep-th/9407018.
  13. Eguchi T., Hanson A.J., Self-dual solutions to Euclidean gravity, Ann. Physics 120 (1979), 82-106.
  14. Gibbons G.W., Pope C.N., The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys. 66 (1979), 267-290.
  15. Halphen G., Sur une système d'équations différentielles,, C.R. Acad. Sci. Paris 92 (1881), 1101-1103.
  16. Halphen G., Traité des fonctions elliptiques et de leurs applications, Vol. 1, Gauthier Villars, Paris, 1886.
  17. Hitchin N.J., Monopoles and geodesics, Comm. Math. Phys. 83 (1982), 579-602.
  18. Hitchin N.J., On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145-190.
  19. Hitchin N.J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112.
  20. Hurtubise J., ${\rm SU}(2)$ monopoles of charge $2$, Comm. Math. Phys. 92 (1983), 195-202.
  21. Manin Y., Marcolli M., Symbolic dynamics, modular curves, and Bianchi IX cosmologies, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), 517-542, arXiv:1504.04005.
  22. Morrison E.K., Strachan I.A.B., Polynomial modular Frobenius manifolds, Phys. D 241 (2012), 2145-2155, arXiv:1110.4021.
  23. Movasati H., Multiple integrals and modular differential equations, Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011.
  24. Movasati H., Quasi-modular forms attached to elliptic curves, I, Ann. Math. Blaise Pascal 19 (2012), 307-377, arXiv:1110.3664.
  25. Movasati H., Modular-type functions attached to mirror quintic Calabi-Yau varieties, Math. Z. 281 (2015), 907-929, arXiv:1111.0357.
  26. Petropoulos P.M., Vanhove P., Gravity, strings, modular and quasimodular forms, Ann. Math. Blaise Pascal 19 (2012), 379-430, arXiv:1206.0571.
  27. Ramanujan S., On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-186.
  28. Tod K.P., Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221-224.
  29. Torres M.A.C., Metric in the moduli of ${\rm SU}(2)$ monopoles from spectral curves and Gauss-Manin connection in disguise, arXiv:1709.01545.
  30. Witten E., On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), 281-332.

Previous article  Next article   Contents of Volume 14 (2018)