Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 099, 32 pages      arXiv:1708.02280      https://doi.org/10.3842/SIGMA.2017.099

Contractions of Degenerate Quadratic Algebras, Abstract and Geometric

Mauricio A. Escobar Ruiz a, Willard Miller Jr. b and Eyal Subag c
a) Centre de Recherches Mathématiques, Université de Montreal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
b) School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
c) Department of Mathematics, Pennsylvania State University, State College, Pennsylvania, 16802 USA

Received August 09, 2017, in final form December 26, 2017; Published online December 31, 2017

Abstract
Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra $\mathfrak{so}(4,\mathbb {C})$ to itself. In 2 dimensions there are two kinds of quadratic algebras, nondegenerate and degenerate. In the geometric case these correspond to 3 parameter and 1 parameter potentials, respectively. In a previous paper we classified all abstract parameter-free nondegenerate quadratic algebras in terms of canonical forms and determined which of these can be realized as quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces, and studied the relationship between Bôcher contractions of these systems and abstract contractions of the free quadratic algebras. Here we carry out an analogous study of abstract parameter-free degenerate quadratic algebras and their possible geometric realizations. We show that the only free degenerate quadratic algebras that can be constructed in phase space are those that arise from superintegrability. We classify all Bôcher contractions relating degenerate superintegrable systems and, separately, all abstract contractions relating free degenerate quadratic algebras. We point out the few exceptions where abstract contractions cannot be realized by the geometric Bôcher contractions.

Key words: Bôcher contractions; quadratic algebras; superintegrable systems; conformal superintegrability; Poisson structures.

pdf (663 kb)   tex (139 kb)

References

  1. Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894.
  2. Capel J.J., Kress J.M., Post S., Invariant classification and limits of maximally superintegrable systems in 3D, SIGMA 11 (2015), 038, 17 pages, arXiv:1501.06601.
  3. Daskaloyannis C., Tanoudis Y., Quantum superintegrable systems with quadratic integrals on a two dimensional manifold, J. Math. Phys. 48 (2007), 072108, 22 pages, math-ph/0607058.
  4. Dufour J.P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, Vol. 242, Birkhäuser Verlag, Basel, 2005.
  5. Escobar Ruiz M.A., Kalnins E.G., Miller Jr. W., Subag E., Bôcher and abstract contractions of 2nd order quadratic algebras, SIGMA 13 (2017), 013, 38 pages, arXiv:1611.02560.
  6. Grabowski J., Marmo G., Perelomov A.M., Poisson structures: towards a classification, Modern Phys. Lett. A 8 (1993), 1719-1733.
  7. Heinonen R., Kalnins E.G., Miller Jr. W., Subag E., Structure relations and Darboux contractions for 2D 2nd order superintegrable systems, SIGMA 11 (2015), 043, 33 pages, arXiv:1502.00128.
  8. Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and separation of variables, J. Phys. A: Math. Gen. 29 (1996), 5949-5962.
  9. Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and the separation of variables: interbase expansions, J. Phys. A 34 (2001), 521-554.
  10. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
  11. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
  12. Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory, J. Math. Phys. 47 (2006), 043514, 26 pages.
  13. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.
  14. Kalnins E.G., Kress J.M., Miller Jr. W., Winternitz P., Superintegrable systems in Darboux spaces, J. Math. Phys. 44 (2003), 5811-5848, math-ph/0307039.
  15. Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A: Math. Gen. 34 (2001), 4705-4720, math-ph/0102006.
  16. Kalnins E.G., Miller Jr. W., Quadratic algebra contractions and second-order superintegrable systems, Anal. Appl. (Singap.) 12 (2014), 583-612, arXiv:1401.0830.
  17. Kalnins E.G., Miller Jr. W., Post S., Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials, SIGMA 9 (2013), 057, 28 pages, arXiv:1212.4766.
  18. Kalnins E.G., Miller Jr. W., Subag E., Bôcher contractions of conformally superintegrable Laplace equations, SIGMA 12 (2016), 038, 31 pages, arXiv:1512.09315.
  19. Koenigs G.X.P., Sur les géodésiques a integrales quadratiques, in Le cons sur la théorie générale des surfaces, Vol. 4, Editor J.G. Darboux, Chelsea Publishing, 1972, 368-404.
  20. Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, Vol. 347, Springer, Heidelberg, 2013.
  21. Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials, J. Math. Phys. 50 (2009), 095202, 18 pages, arXiv:0811.1568.
  22. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  23. Tempesta P., Winternitz P., Harnad J., Miller Jr. W., Pogosyan G., Rodriguez M. (Editors), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, Vol. 37, Amer. Math. Soc., Providence, RI, 2004.

Previous article   Contents of Volume 13 (2017)