Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 088, 16 pages      arXiv:1704.01237

Positive Definite Functions on Complex Spheres and their Walks through Dimensions

Eugenio Massa a, Ana Paula Peron a and Emilio Porcu bc
a) Departamento de Matemática, ICMC-USP - São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
b) School of Mathematics and Statistics, Chair of Spatial Analytics Methods, University of Newcastle, UK
c) Department of Mathematics, Universidad Técnica Federico Santa Maria, Avenida España 1680, Valparaíso, 230123, Chile

Received April 06, 2017, in final form October 30, 2017; Published online November 08, 2017

We provide walks through dimensions for isotropic positive definite functions defined over complex spheres. We show that the analogues of Montée and Descente operators as proposed by Beatson and zu Castell [J. Approx. Theory 221 (2017), 22-37] on the basis of the original Matheron operator [Les variables régionalisées et leur estimation, Masson, Paris, 1965], allow for similar walks through dimensions. We show that the Montée operators also preserve, up to a constant, strict positive definiteness. For the Descente operators, we show that strict positive definiteness is preserved under some additional conditions, but we provide counterexamples showing that this is not true in general. We also provide a list of parametric families of (strictly) positive definite functions over complex spheres, which are important for several applications.

Key words: Descente; disk polynomials; Montée; positive definite functions.

pdf (416 kb)   tex (26 kb)


  1. Aharmim B., Amal E.H., Fouzia E.W., Ghanmi A., Generalized Zernike polynomials: operational formulae and generating functions, Integral Transforms Spec. Funct. 26 (2015), 395-410, arXiv:1312.3628.
  2. Aktaş R., Taşdelen F., Yavuz N., Bilateral and bilinear generating functions for the generalized Zernike or disc polynomials, Ars Combin. 111 (2013), 389-400.
  3. Beatson R.K., zu Castell W., One-step recurrences for stationary random fields on the sphere, SIGMA 12 (2016), 043, 19 pages, arXiv:1601.07743.
  4. Beatson R.K., zu Castell W., Dimension hopping and families of strictly positive definite zonal basis functions on spheres, J. Approx. Theory 221 (2017), 22-37, arXiv:1510.08658.
  5. Beazley Cohen P., Wolfart J., Algebraic Appell-Lauricella functions, Analysis 12 (1992), 359-376.
  6. Berg C., Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity, in Positive Definite Functions: from Schoenberg to Space-Time Challenges, Editors J. Mateu, E. Porcu, University Jaume I, Castellon, Spain, 2008, 15-45.
  7. Berg C., Porcu E., From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), 217-241, arXiv:1505.05682.
  8. Beukers F., Heckman G., Monodromy for the hypergeometric function $_nF_{n-1}$, Invent. Math. 95 (1989), 325-354, arXiv:1505.02900.
  9. Bod E., Algebraicity of the Appell-Lauricella and Horn hypergeometric functions, J. Differential Equations 252 (2012), 541-566, arXiv:1005.0317.
  10. Boyd J.N., Raychowdhury P.N., Zonal harmonic functions from two-dimensional analogs of Jacobi polynomials, Applicable Anal. 16 (1983), 243-259.
  11. Chen D., Menegatto V.A., Sun X., A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733-2740.
  12. Daley D.J., Porcu E., Dimension walks and Schoenberg spectral measures, Proc. Amer. Math. Soc. 142 (2014), 1813-1824, arXiv:1704.01237.
  13. Dreseler B., Hrach R., Summability of Fourier expansions in terms of disc polynomials, in Functions, Series, Operators, Vols. I, II (Budapest, 1980), Colloq. Math. Soc. János Bolyai, Vol. 35, North-Holland, Amsterdam, 1983, 375-384.
  14. Fasshauer G.E., Positive definite kernels: past, present and future, in Proceedings of the Workshop on Kernel Functions and Meshless Methods, Dolomites Research Notes on Approximation, Vol. 4, Gotingen, 2011, 21-63.
  15. Folland G.B., Spherical harmonic expansion of the Poisson-Szegő kernel for the ball, Proc. Amer. Math. Soc. 47 (1975), 401-408.
  16. Gneiting T., Compactly supported correlation functions, J. Multivariate Anal. 83 (2002), 493-508.
  17. Gneiting T., Strictly and non-strictly positive definite functions on spheres, Bernoulli 19 (2013), 1327-1349, arXiv:1111.7077.
  18. Guella J., Menegatto V.A., Unitarily invariant strictly positive definite kernels on sphere, Positivity, to appear.
  19. Guella J.C., Menegatto V.A., Peron A.P., An extension of a theorem of Schoenberg to products of spheres, Banach J. Math. Anal. 10 (2016), 671-685, arXiv:1503.08174.
  20. Kato M., Appell's $F_4$ with finite irreducible monodromy group, Kyushu J. Math. 51 (1997), 125-147.
  21. Kato M., Appell's hypergeometric systems $F_2$ with finite irreducible monodromy groups, Kyushu J. Math. 54 (2000), 279-305.
  22. Koornwinder T.H., The addition formula for Jacobi polynomials. II. The Laplace type integral representation and the product formula, Math. Centrum Amsterdam, Report TW133, 1972, available at
  23. Koornwinder T.H., The addition formula for Jacobi polynomials. III. Completion of the proof, Math. Centrum Amsterdam, Report TW135, 1972, available at
  24. Matheron G., Les variables régionalisées et leur estimation, Masson, Paris, 1965.
  25. Menegatto V.A., Peron A.P., A complex approach to strict positive definiteness on spheres, Integral Transform. Spec. Funct. 11 (2001), 377-396.
  26. Menegatto V.A., Peron A.P., Positive definite kernels on complex spheres, J. Math. Anal. Appl. 254 (2001), 219-232.
  27. Menegatto V.A., Peron A.P., Oliveira C.P., On the construction of uniformly convergent disk polynomial expansions, Collect. Math. 62 (2011), 151-159.
  28. Porcu E., Bevilacqua M., Genton M.G., Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere, J. Amer. Statist. Assoc. 111 (2016), 888-898.
  29. Porcu E., Zastavnyi V., Generalized Askey functions and their walks through dimensions, Expo. Math. 32 (2014), 190-198.
  30. Porcu E., Zastavnyi V., Bevilacqua M., Buhmann covariance functions, their compact supports, and their smoothness, Dolomites Res. Notes Approx. 10 (2017), 33-42, arXiv:1606.09527.
  31. Sahai V., Verma A., Recursion formulas for multivariable hypergeometric functions, Asian-Eur. J. Math. 8 (2015), 1550082, 50 pages.
  32. Saran S., Hypergeometric functions of three variables, Ganita 5 (1954), 77-91.
  33. Saran S., Integrals associated with hypergeometric functions of three variables, Proc. Nat. Inst. Sci. India. Part A. 21 (1955), 83-90.
  34. Saran S., Integral representations of Laplace type for certain hypergeometric functions of three variables, Riv. Mat. Univ. Parma 8 (1957), 133-143.
  35. Schaback R., Native Hilbert spaces for radial basis functions. I, in New Developments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math., Vol. 132, Birkhäuser, Basel, 1999, 255-282.
  36. Schaback R., A unified theory of radial basis functions. Native Hilbert spaces for radial basis functions. II, J. Comput. Appl. Math. 121 (2000), 165-177.
  37. Schaback R., The missing Wendland functions, Adv. Comput. Math. 34 (2011), 67-81.
  38. Schipper J.H., On the algebraicity of GKZ-hypergeometric functions defined by a (hyper)-cuboid, Bachelor's thesis, Utrecht University, 2009, available at
  39. Schoenberg I.J., Metric spaces and completely monotone functions, Ann. of Math. 39 (1938), 811-841.
  40. Schoenberg I.J., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
  41. Schwarz H.A., Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, J. Reine Angew. Math. 75 (1873), 292-335.
  42. Srivastava H.M., Manocha H.L., A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1984.
  43. Stein E.M., Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, Vol. 11, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1972.
  44. Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, R.I., 1959.
  45. Wendland H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), 389-396.
  46. Wünsche A., Generalized Zernike or disc polynomials, J. Comput. Appl. Math. 174 (2005), 135-163.
  47. Zernike F., Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode, Physica 1 (1934), 689-704.
  48. Zernike F., Brinkman H.C., Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome, Proc. Akad. Amsterdam 38 (1935), 161-170.
  49. Ziegel J., Convolution roots and differentiability of isotropic positive definite functions on spheres, Proc. Amer. Math. Soc. 142 (2014), 2063-2077, arXiv:1201.5833.

Previous article  Next article   Contents of Volume 13 (2017)