Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 039, 19 pages      arXiv:1612.05622      https://doi.org/10.3842/SIGMA.2017.039

Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions

John Haga and Rachel Lash Maitra
Department of Applied Mathematics, Wentworth Institute of Technology, 550 Huntington Ave., Boston MA 02115, USA

Received December 19, 2016, in final form June 01, 2017; Published online June 07, 2017

Abstract
We develop a mathematically rigorous path integral representation of the time evolution operator for a model of (1+1) quantum gravity that incorporates factor ordering ambiguity. In obtaining a suitable integral kernel for the time-evolution operator, one requires that the corresponding Hamiltonian is self-adjoint; this issue is subtle for a particular category of factor orderings. We identify and parametrize a complete set of self-adjoint extensions and provide a canonical description of these extensions in terms of boundary conditions. Moreover, we use Trotter-type product formulae to construct path-integral representations of time evolution.

Key words: factor ordering in quantum gravity; path integrals in quantum gravity; singularity avoidance in quantum gravity; quantization on a half-line.

pdf (449 kb)   tex (28 kb)

References

  1. Ambjørn J., Glaser L., Sato Y., Watabiki Y., 2d CDT is 2D Hořava-Lifshitz quantum gravity, Phys. Lett. B 722 (2013), 172-175, arXiv:1302.6359.
  2. Anderson E., Relational motivation for conformal operator ordering in quantum cosmology, Classical Quantum Gravity 27 (2010), 045002, 18 pages, arXiv:0905.3357.
  3. Clark T.E., Menikoff R., Sharp D.H., Quantum mechanics on the half-line using path integrals, Phys. Rev. D 22 (1980), 3012-3016.
  4. DeWitt B.S., Dynamical theory in curved spaces. I. A review of the classical and quantum action principles, Rev. Modern Phys. 29 (1957), 377-397.
  5. Exner P., Neidhardt H., Zagrebnov V.A., Remarks on the Trotter-Kato product formula for unitary group, Integral Equations Operator Theory 69 (2011), 451-478.
  6. Farhi E., Gutmann S., The functional integral on the half-line, Internat. J. Modern Phys. A 5 (1990), 3029-3051.
  7. Faris W.G., Self-adjoint operators, Lecture Notes in Math., Vol. 433, Springer-Verlag, Berlin - New York, 1975.
  8. Fülöp T., Singular potentials in quantum mechanics and ambiguity in the self-adjoint Hamiltonian, SIGMA 3 (2007), 107, 12 pages, arXiv:0708.0866.
  9. Gaveau B., Schulman L.S., Explicit time-dependent Schrödinger propagators, J. Phys. A: Math. Gen. 19 (1986), 1833-1846.
  10. Gerhardt C., Quantum cosmological Friedmann models with an initial singularity, Classical Quantum Gravity 26 (2009), 015001, 29 pages, arXiv:0806.1769.
  11. Gitman D.M., Tyutin I.V., Voronov B.L., Self-adjoint extensions and spectral analysis in the Calogero problem, J. Phys. A: Math. Theor. 43 (2010), 145205, 34 pages, arXiv:0903.5277.
  12. Gitman D.M., Tyutin I.V., Voronov B.L., Self-adjoint extensions in quantum mechanics. General theory and applications to Schrödinger and Dirac equations with singular potentials, Progress in Mathematical Physics, Vol. 62, Birkhäuser/Springer, New York, 2012.
  13. Gorbachuk V.I., Gorbachuk M.L., Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), Vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991.
  14. Hall B.C., Quantum theory for mathematicians, Graduate Texts in Mathematics, Vol. 267, Springer, New York, 2013.
  15. Halliwell J.J., Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models, Phys. Rev. D 38 (1988), 2468-2481.
  16. Hartle J.B., Hawking S.W., Wave function of the universe, Phys. Rev. D 28 (1983), 2960-2975.
  17. Kiefer C., Can singularities be avoided in quantum cosmology?, Ann. Phys. 19 (2010), 211-218.
  18. Kleinert H., Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, 5th ed., World Sci. Publ., Hackensack, NJ, 2009.
  19. Kontoleon N., Wiltshire D.L., Operator ordering and consistency of the wave function of the Universe, Phys. Rev. D 59 (1999), 063513, 8 pages, gr-qc/9807075.
  20. Lax P.D., Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2002.
  21. Lebedev N.N., Special functions and their applications, Dover Publications, Inc., New York, 1972.
  22. Maitra R.L., Can causal dynamical triangulations probe factor-ordering issues?, Acta Phys. Polon. B Proc. Suppl. 2 (2009), 563-574, arXiv:0910.2117.
  23. Moss I., Quantum cosmology and the self observing universe, Ann. Inst. H. Poincaré Phys. Théor. 49 (1988), 341-349.
  24. Nakayama R., $2$D quantum gravity in the proper-time gauge, Phys. Lett. B 325 (1994), 347-353, hep-th/9312158.
  25. Nelson E., Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332-343.
  26. NIST digital library of mathematical functions, available at http://dlmf.nist.gov/.
  27. Patel D., Rivera J., Maitra R.L., Propagators for 2d quantum gravity in proper-time gauge with varied factor ordering of the Hamiltonian operator, in preparation.
  28. Polyakov A.M., Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), 207-210.
  29. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York - London, 1972.
  30. Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York - London, 1975.
  31. Saloff-Coste L., The heat kernel and its estimates, in Probabilistic Approach to Geometry, Adv. Stud. Pure Math., Vol. 57, Math. Soc. Japan, Tokyo, 2010, 405-436.
  32. Šteigl R., Hinterleitner F., Factor ordering in standard quantum cosmology, Classical Quantum Gravity 23 (2006), 3879-3893, gr-qc/0511149.
  33. Teitelboim C., Quantum mechanics of the gravitational field, Phys. Rev. D 25 (1982), 3159-3179.
  34. Teitelboim C., Proper-time gauge in the quantum theory of gravitation, Phys. Rev. D 28 (1983), 297-309.
  35. Verlinde H., Conformal field theory, two-dimensional quantum gravity and quantization of Teichmüller space, Nuclear Phys. B 337 (1990), 652-680.

Previous article  Next article   Contents of Volume 13 (2017)