Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 028, 20 pages      arXiv:1507.03350      https://doi.org/10.3842/SIGMA.2017.028

A Complete Set of Invariants for LU-Equivalence of Density Operators

Jacob Turner a and Jason Morton b
a) Korteweg-de Vries Institute, University of Amsterdam, 1098 XG Amsterdam, The Netherlands
b) Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received November 26, 2016, in final form April 28, 2017; Published online May 02, 2017

Abstract
We show that two density operators of mixed quantum states are in the same local unitary orbit if and only if they agree on polynomial invariants in a certain Noetherian ring for which degree bounds are known in the literature. This implicitly gives a finite complete set of invariants for local unitary equivalence. This is done by showing that local unitary equivalence of density operators is equivalent to local ${\rm GL}$ equivalence and then using techniques from algebraic geometry and geometric invariant theory. We also classify the SLOCC polynomial invariants and give a degree bound for generators of the invariant ring in the case of $n$-qubit pure states. Of course it is well known that polynomial invariants are not a complete set of invariants for SLOCC.

Key words: quantum entanglement; local unitary invariants; SLOCC invariants; invariant rings; geometric invariant theory; complete set of invariants; density operators; tensor networks.

pdf (527 kb)   tex (34 kb)

References

  1. Abanin D.A., Demler E., Measuring entanglement entropy of a generic many-body system with a quantum switch, Phys. Rev. Lett. 109 (2012), 020504, 5 pages, arXiv:1204.2819.
  2. Baez J.C., Renyi Entropy and Free Energy, arXiv:1102.2098.
  3. Biamonte J., Bergholm V., Lanzagorta M., Tensor network methods for invariant theory, J. Phys. A: Math. Theor. 46 (2013), 475301, 19 pages, arXiv:1209.0631.
  4. Biamonte J.D., Morton J., Turner J., Tensor network contractions for \#SAT, J. Stat. Phys. 160 (2015), 1389-1404, arXiv:1405.7375.
  5. Brauer R., On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857-872.
  6. Brion M., Representations of quivers, in Geometric Methods in Representation Theory. I, Sémin. Congr., Vol. 24, Soc. Math. France, Paris, 2012, 103-144.
  7. Cardy J., Measuring entanglement using quantum quenches, Phys. Rev. Lett. 106 (2011), 150404, 4 pages, arXiv:1012.5116.
  8. Chterental O., Djokovic D.Z., Normal forms and tensor ranks of pure states of four qubits, in Linear Algebra Research Advances, Editor G.D. Ling, Nova Science Publishers, New York, 2007, 133-167, quant-ph/0612184.
  9. Daley A.J., Pichler H., Schachenmayer J., Zoller P., Measuring entanglement growth in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett. 109 (2012), 020505, 5 pages, arXiv:1205.1521.
  10. Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of Mathematical Sciences, Vol. 130, Springer, Heidelberg, 2015.
  11. Dür W., Vidal G., Cirac J.I., Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000), 062314, 12 pages, quant-ph/0005115.
  12. Eisert J., Cramer M., Plenio M.B., Colloquium: Area laws for the entanglement entropy, Rev. Modern Phys. 82 (2010), 277-306.
  13. Formanek E., The polynomial identities and invariants of $n\times n$ matrices, CBMS Regional Conference Series in Mathematics, Vol. 78, Amer. Math. Soc., Providence, RI, 1991.
  14. Gour G., Wallach N.R., Classification of multipartite entanglement of all finite dimensionality, Phys. Rev. Lett. 111 (2013), 060502, 5 pages, arXiv:1304.7259.
  15. Grassl M., Rötteler M., Beth T., Computing local invariants of quantum-bit systems, Phys. Rev. A 58 (1998), 1833-1839, quant-ph/9712040.
  16. Hero M.W., Willenbring J.F., Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math. 309 (2009), 6508-6514.
  17. Hilbert D., Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-534.
  18. Hilbert D., Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), 313-373.
  19. Hochster M., Roberts J.L., Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. Math. 13 (1974), 115-175.
  20. Holweck F., Luque J.-G., Thibon J.-Y., Entanglement of four-qubit systems: a geometric atlas with polynomial compass II (the tame world), J. Math. Phys. 58 (2017), 022201, 33 pages, arXiv:1606.05569.
  21. Johansson M., Ericsson M., Singh K., Sjöqvist E., Williamson M.S., Topological phases and multiqubit entanglement, Phys. Rev. A 85 (2012), 032112, 11 pages, arXiv:1202.0716.
  22. Kempf G.R., Instability in invariant theory, Ann. of Math. 108 (1978), 299-316.
  23. Klyachko A., Coherent states, entanglement, and geometric invariant theory, quant-ph/0206012.
  24. Kraft H., Procesi C., Classical invariant theory, a primer, 1996, available at https://math.unibas.ch/uploads/x4epersdb/files/primernew.pdf.
  25. Kraus B., Local unitary equivalence of multipartite pure states, Phys. Rev. Lett. 104 (2010), 020504, 4 pages, arXiv:0909.5152.
  26. Landsberg J.M., Tensors: geometry and applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc., Providence, RI, 2012.
  27. Le Bruyn L., Procesi C., Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.
  28. Leron U., Trace identities and polynomial identities of $n\times n$ matrices, J. Algebra 42 (1976), 369-377.
  29. Li J.-L., Qiao C.-F., Classification of arbitrary multipartite entangled states under local unitary equivalence, J. Phys. A: Math. Theor. 46 (2013), 075301, 14 pages, arXiv:1111.4379.
  30. Liu B., Li J.-L., Li X., Qiao C.-F., Local unitary classification of arbitrary dimensional multipartite pure states, Phys. Rev. Lett. 108 (2012), 050501, 4 pages, arXiv:1105.1517.
  31. Lloyd S., Universal quantum simulators, Science 273 (1996), 1073-1078.
  32. Luque J.-G., Thibon J.-Y., Polynomial invariants of four qubits, Phys. Rev. A 67 (2003), 042303, 5 pages, quant-ph/0212069.
  33. Luque J.-G., Thibon J.-Y., Algebraic invariants of five qubits, J. Phys. A: Math. Gen. 39 (2006), 371-377, quant-ph/0506058.
  34. Luque J.-G., Thibon J.-Y., Toumazet F., Unitary invariants of qubit systems, Math. Structures Comput. Sci. 17 (2007), 1133-1151, quant-ph/0604202.
  35. Maciżek T., Oszmaniec M., Sawicki A., How many invariant polynomials are needed to decide local unitary equivalence of qubit states?, J. Math. Phys. 54 (2013), 092201, 15 pages, arXiv:1305.3894.
  36. Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, 3rd ed., Springer-Verlag, Berlin, 1994.
  37. Nagata M., Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3 (1963), 369-377.
  38. Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
  39. Onishchik A.L., Vinberg E.B., Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
  40. Parfenov P.G., Orbits and their closures in the spaces ${\mathbb C}^{k_1}\otimes\dots\otimes{\mathbb C}^{k_r}$, Sb. Math. 192 (2001), 89-112.
  41. Pichler H., Bonnes L., Daley A.J., Läuchli A.M., Zoller P., Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope, New J. Phys. 15 (2013), 063003, 17 pages, arXiv:1302.1187.
  42. Raussendorf R., Briegel H.J., A one-way quantum computer, Phys. Rev. Lett. 86 (2001), 5188-5191.
  43. Razmyslov Ju.P., Trace identities of full matrix algebras over a field of characteristic zero, Math. USSR Izv. 8 (1974), 727-760.
  44. Rényi A., On measures of entropy and information, in Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I, University California Press, Berkeley, Calif., 1961, 547-561, available at http://digitalassets.lib.berkeley.edu/math/ucb/text/math_s4_v1_article-27.pdf.
  45. Schachenmayer J., Lanyon B.P., Roos C.F., Daley A.J., Entanglement growth in quench dynamics with variable range interactions, Phys. Rev. X 3 (2013), 031015, 16 pages, arXiv:1305.6880.
  46. Turner J., On subtilings of polyomino tilings, arXiv:1602.05784.
  47. Verstraete F., Dehaene J., De Moor B., Verschelde H., Four qubits can be entangled in nine different ways, Phys. Rev. A 65 (2002), 052112, 5 pages, quant-ph/0109033.
  48. Williamson M.S., Ericsson M., Johansson M., Sjöqvist E., Sudbery A., Vedral V., Wootters W.K., Geometric local invariants and pure three-qubit states, Phys. Rev. A 83 (2011), 062308, 8 pages, arXiv:1102.4222.
  49. Zhang T.-G., Zhao M.-J., Li M., Fei S.-M., Li-Jost X., Criterion of local unitary equivalence for multipartite states, Phys. Rev. A 88 (2013), 042304, 6 pages, arXiv:1310.2042.
  50. Zhang T.-G., Zhao M.-J., Li-Jost X., Fei S.-M., Local unitary invariants for multipartite states, Internat. J. Theoret. Phys. 52 (2013), 3020-3025, arXiv:1307.6659.
  51. Zhou C., Zhang T.-G., Fei S.-M., Jing N., Li-Jost X., Local unitary equivalence of arbitrary dimensional bipartite quantum states, Phys. Rev. A 86 (2012), 010303, 4 pages, arXiv:1207.2688.
  52. Ziman M., Štelmachovič P., Bužek V., On the local unitary equivalence of states of multi-partite systems, Fortschr. Phys. 49 (2001), 1123-1131, quant-ph/0107016.

Previous article  Next article   Contents of Volume 13 (2017)