Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 008, 23 pages      arXiv:1608.04546

Classical and Quantum Superintegrability of Stäckel Systems

Maciej Błaszak a and Krzysztof Marciniak b
a) Faculty of Physics, Division of Mathematical Physics, A. Mickiewicz University, Poznań, Poland
b) Department of Science and Technology, Campus Norrköping, Linköping University, Sweden

Received September 18, 2016, in final form January 19, 2017; Published online January 28, 2017

In this paper we discuss maximal superintegrability of both classical and quantum Stäckel systems. We prove a sufficient condition for a flat or constant curvature Stäckel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stäckel transform to preserve maximal superintegrability and we apply this condition to our class of Stäckel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.

Key words: Hamiltonian systems; classical and quantum superintegrable systems; Stäckel systems; Hamilton-Jacobi theory; Stäckel transform.

pdf (430 kb)   tex (27 kb)


  1. Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., Superintegrable anharmonic oscillators on $N$-dimensional curved spaces, J. Nonlinear Math. Phys. 15 (2008), suppl. 3, 43-52, arXiv:0710.0843.
  2. Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., Riglioni D., A maximally superintegrable deformation of the $N$-dimensional quantum Kepler-Coulomb system, J. Phys. Conf. Ser. 474 (2013), 012008, 9 pages, arXiv:1310.6554.
  3. Ballesteros Á., Herranz F.J., Santander M., Sanz-Gil T., Maximal superintegrability on $N$-dimensional curved spaces, J. Phys. A: Math. Gen. 36 (2003), L93-L99, math-ph/0211012.
  4. Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems, Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
  5. Błaszak M., Marciniak K., Domański Z., Separable quantizations of Stäckel systems, Ann. Physics 371 (2016), 460-477, arXiv:1501.00576.
  6. Błaszak M., Sergyeyev A., Maximal superintegrability of Benenti systems, J. Phys. A: Math. Gen. 38 (2005), L1-L5, nlin.SI/0412018.
  7. Błaszak M., Sergyeyev A., Natural coordinates for a class of Benenti systems, Phys. Lett. A 365 (2007), 28-33, nlin.SI/0604022.
  8. Błaszak M., Sergyeyev A., Generalized Stäckel systems, Phys. Lett. A 375 (2011), 2617-2623.
  9. Boyer C.P., Kalnins E.G., Miller Jr. W., Stäckel-equivalent integrable Hamiltonian systems, SIAM J. Math. Anal. 17 (1986), 778-797.
  10. Crampin M., Sarlet W., A class of nonconservative Lagrangian systems on Riemannian manifolds, J. Math. Phys. 42 (2001), 4313-4326.
  11. Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold, J. Math. Phys. 47 (2006), 042904, 38 pages, math-ph/0412055.
  12. Gonera C., Isochronic potentials and new family of superintegrable systems, J. Phys. A: Math. Gen. 37 (2004), 4085-4095.
  13. Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, Phys. Rev. Lett. 53 (1984), 1707-1710.
  14. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.
  15. Kalnins E.G., Kress J.M., Miller Jr. W., Pogosyan G.S., Nondegenerate superintegrable systems in $n$-dimensional Euclidean spaces, Phys. Atomic Nuclei 70 (2007), 545-553.
  16. Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of superintegrability in two-dimensional constant-curvature spaces, J. Phys. A: Math. Gen. 34 (2001), 4705-4720, math-ph/0102006.
  17. Kalnins E.G., Miller W., Post S., Models for quadratic algebras associated with second order superintegrable systems in 2D, SIGMA 4 (2008), 008, 21 pages, arXiv:0801.2848.
  18. Marciniak K., Błaszak M., Flat coordinates of flat Stäckel systems, Appl. Math. Comput. 268 (2015), 706-716, arXiv:1406.2117.
  19. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  20. Schouten J.A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Grundlehren der Mathematischen Wissenschaften, Vol. 10, 2nd ed., Springer-Verlag, Berlin - Göttingen - Heidelberg, 1954.
  21. Sergyeyev A., Exact solvability of superintegrable Benenti systems, J. Math. Phys. 48 (2007), 052114, 11 pages, nlin.SI/0701015.
  22. Sergyeyev A., Błaszak M., Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems, J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages, arXiv:0706.1473.
  23. Sklyanin E.K., Separation of variables - new trends, Progr. Theoret. Phys. Suppl. (1995), 35-60, solv-int/9504001.
  24. Stäckel P., Über die Integration der Hamilton-Jacobischen Differential Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle, 1891.

Previous article  Next article   Contents of Volume 13 (2017)