Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 005, 42 pages      arXiv:1505.06938      https://doi.org/10.3842/SIGMA.2017.005

Twistor Geometry of Null Foliations in Complex Euclidean Space

Arman Taghavi-Chabert
Università di Torino, Dipartimento di Matematica ''G. Peano'', Via Carlo Alberto, 10 - 10123, Torino, Italy

Received April 01, 2016, in final form January 14, 2017; Published online January 23, 2017

Abstract
We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $\mathcal{Q}^n$ of dimension $n \geq 3$, and its twistor space $\mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $\mathcal{Q}^n$. Viewing complex Euclidean space $\mathbb{CE}^n$ as a dense open subset of $\mathcal{Q}^n$, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $\mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $\mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano $2$-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.

Key words: twistor geometry; complex variables; foliations; spinors.

pdf (725 kb)   tex (57 kb)

References

  1. Bailey T.N., Eastwood M.G., Gover A.R., Thomas's structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), 1191-1217.
  2. Baird P., Eastwood M., CR geometry and conformal foliations, Ann. Global Anal. Geom. 44 (2013), 73-90, arXiv:1011.4717.
  3. Baird P., Wood J.C., Bernstein theorems for harmonic morphisms from ${\bf R}^3$ and $S^3$, Math. Ann. 280 (1988), 579-603.
  4. Baird P., Wood J.C., Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, Vol. 29, The Clarendon Press, Oxford University Press, Oxford, 2003.
  5. Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989.
  6. Baum H., Juhl A., Conformal differential geometry. $Q$-curvature and conformal holonomy, Oberwolfach Seminars, Vol. 40, Birkhäuser Verlag, Basel, 2010.
  7. Budinich P., Trautman A., Fock space description of simple spinors, J. Math. Phys. 30 (1989), 2125-2131.
  8. Calderbank D.M.J., Pedersen H., Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier (Grenoble) 50 (2000), 921-963, math.DG/9911117.
  9. Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.
  10. Cartan E., The theory of spinors, Dover Publications, Inc., New York, 1981.
  11. Cox D., Flaherty Jr. E.J., A conventional proof of Kerr's theorem, Comm. Math. Phys. 47 (1976), 75-79.
  12. Curry S., Gover A.R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559.
  13. Doubrov B., Slovák J., Inclusions between parabolic geometries, Pure Appl. Math. Q. 6 (2010), 755-780, arXiv:0807.3360.
  14. Eells J., Salamon S., Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640.
  15. Gover A.R., Šilhan J., The conformal Killing equation on forms - prolongations and applications, Differential Geom. Appl. 26 (2008), 244-266, math.DG/0601751.
  16. Harnad J., Shnider S., Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions, J. Math. Phys. 33 (1992), 3197-3208.
  17. Harnad J., Shnider S., Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces, J. Math. Phys. 36 (1995), 1945-1970.
  18. Hitchin N.J., Complex manifolds and Einstein's equations, in Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., Vol. 970, Springer, Berlin - New York, 1982, 73-99.
  19. Hughston L.P., Hurd T.R., A ${\bf C}{\rm P}^{5}$ calculus for space-time fields, Phys. Rep. 100 (1983), 273-326.
  20. Hughston L.P., Mason L.J., A generalised Kerr-Robinson theorem, Classical Quantum Gravity 5 (1988), 275-285.
  21. Jones P.E., Tod K.P., Minitwistor spaces and Einstein-Weyl spaces, Classical Quantum Gravity 2 (1985), 565-577.
  22. Kerr R.P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963), 237-238.
  23. Kerr R.P., Schild A., Republication of: A new class of vacuum solutions of the Einstein field equations, Gen. Relativity Gravitation 41 (2009), 2485-2499.
  24. Kodaira K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. 75 (1962), 146-162.
  25. LeBrun C.R., ${\cal H}$-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185.
  26. Mason L., Taghavi-Chabert A., Killing-Yano tensors and multi-Hermitian structures, J. Geom. Phys. 60 (2010), 907-923, arXiv:0805.3756.
  27. Nurowski P., Construction of conjugate functions, Ann. Global Anal. Geom. 37 (2010), 321-326, math.DG/0605745.
  28. Onishchik A.L., On compact Lie groups transitive on certain manifolds, Soviet Math. Dokl. 1 (1960), 1288-1291.
  29. Penrose R., Twistor algebra, J. Math. Phys. 8 (1967), 345-366.
  30. Penrose R., Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52.
  31. Penrose R., Rindler W., Spinors and space-time. Vol. 2. Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986.
  32. Salamon S., Viaclovsky J., Orthogonal complex structures on domains in ${\mathbb R}^4$, Math. Ann. 343 (2009), 853-899, arXiv:0704.3422.
  33. Taghavi-Chabert A., The complex Goldberg-Sachs theorem in higher dimensions, J. Geom. Phys. 62 (2012), 981-1012, arXiv:1107.2283.
  34. Taghavi-Chabert A., Pure spinors, intrinsic torsion and curvature in even dimensions, Differential Geom. Appl. 46 (2016), 164-203, arXiv:1212.3595.
  35. Taghavi-Chabert A., Pure spinors, intrinsic torsion and curvature in odd dimensions, arXiv:1304.1076.
  36. Tod K.P., Harmonic morphisms and mini-twistor space, in Further Advances in Twistor Theory. Vol. II. Integrable Systems, Conformal Geometry and Gravitation, Pitman Research Notes in Mathematics Series, Vol. 232, Editors L.J. Mason, L.P. Hughston, P.Z. Kobak, Longman Scientific & Technical, Harlow, 1995, 45-46.
  37. Tod K.P., More on harmonic morphisms, in Further Advances in Twistor Theory. Vol. II. Integrable Systems, Conformal Geometry and Gravitation, Pitman Research Notes in Mathematics Series, Vol. 232, Editors L.J. Mason, L.P. Hughston, P.Z. Kobak, Longman Scientific & Technical, Harlow, 1995, 47-48.

Previous article  Next article   Contents of Volume 13 (2017)