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Abstract. Expectation values of powers of the radial coordinate in arbitrary hydrogen
states are given, in the quantum case, by an integral involving the associated Laguerre
function. The method of brackets is used to evaluate the integral in closed-form and to
produce an expression for this average value as a finite sum.
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1 Introduction

The computation of the expectation 〈rk〉 of the electron for atoms with a single electron is
a standard problem in quantum mechanics, see [19, 29]. For a given energy state n, the problem
is expressed as〈

rk
〉

=

∫ ∞
0

R2
n`(r)r

k+2dr,

where Rn`(r) is the radial solution of the Schrödinger equation for the hydrogen atom. Condi-
tions on the parameters n, `, k are determined by the convergence of this integral.

In the non-relativistic situation, the solution is given in terms of the Hahn polynomials [4]:

h(α,β)m (x,N) =
(1−N)m(β + 1)m

m!
3F2

(
−m, α+ β +m+ 1, −x

β + 1, 1−N

∣∣∣∣ 1) . (1.1)
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In particular, these expectations are given in terms of the Chebyshev polynomials of discrete
variables [18, 24]

tm(x,N) = h(0,0)m (x,N)

in the form〈
rk
〉

=
1

2n
(2µ)−ktk+1(n− `− 1,−2`− 1), when k = −1, 0, 1, 2, . . . , (1.2)

and 〈
rk
〉

=
1

2n
(2µ)−kt−k−2(n− `− 1,−2`− 1), when k = −2,−3, . . . ,−2`− 2. (1.3)

The parameters are µ = Z/na0 with a0 = ~2/me2 the Bohr radius and Z is the nuclear charge.
The constants m and e are the mass and charge of the electron, respectively.

The identity

tk(n− `− 1,−2`− 1) =
Γ(2`+ k + 2)

Γ(2`+ 2)
3F2

(
−k, k + 1, −n+ `+ 1

1, 2`+ 2

∣∣∣∣ 1)
follows from (1.1). Then (1.2) becomes

〈
rk
〉
n`

=
1

2n(2µ)k
Γ(2`+ k + 3)

Γ(2`+ 2)
3F2

(
−1− k, k + 2, −n+ `+ 1

1, 2`+ 2

∣∣∣∣ 1)
for k = −1, 0, 1, 2, . . . , and (1.3)

〈
rk
〉
n`

=
1

2n(2µ)k
Γ(2`− k)

Γ(2`+ 2)
3F2

(
−2 + k, −k + 3, −n+ `+ 1

1, 2`+ 2

∣∣∣∣ 1)
for k = −2,−3, . . . ,−2` − 2, where the dependence upon the parameters n and ` have been
made explicit.

In the quantum case, the radial component of the wave function for a hydrogen atom with
nuclear charge Z is characterized by two quantum numbers: n the principal quantum number
and ` the orbital number. The corresponding normalized radial function is

Rn`(r) = An`(2µr)
` exp(−µr)L2`+1

n−`−1(2µr),

where the normalization constant is

An` =

√
(2µ)3

2n

(n− `− 1)!

(n+ `)!

and

Lαm(x) =
Γ(α+m+ 1)

Γ(m+ 1)Γ(1 + α)
1F1

(
−m

1 + α

∣∣∣∣x)
is the associated Laguerre function; see [14, formula 8.972.1]. The expectation value of a power
of the radial coordinate is given by〈

rk
〉
n`

= (2µ)2`A2
n`

∫ ∞
0

r2+2`+ke−2µr
[
L2`+1
n−`−1(2µr)

]2
dr, (1.4)

with n ∈ N, 0 ≤ ` ≤ n− 1, and k ∈ Z.
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The goal of the work is to compute the integral in (1.4) by the method of brackets, to illustrate
its flexibility. The reader will find in [3, 6, 9, 10, 11, 12, 16] a collection of examples of definite
integrals evaluated by this method. The basic procedure is described in Section 3.

The examples presented here are to be considered as the beginning of a series of calculations
of integrals related to the hydrogen atom. These include the evaluation of the integral [13]

Jαβnms =

∫ ∞
0

e−xxα+sLαn(x)Lβm(x)dx

given by S.K. Suslov and B. Trey [25]. The method of brackets provides an alternative method
of proof that only uses the hypergeometric representation of the Laguerre function. The method
can also be used to discuss the relativistic situation. Details will appear elsewhere.

The reductions of the formulas discussed here uses basic properties of the gamma function,
such as

Γ(a+ n) = Γ(a)(a)n and (a)−n =
(−1)n

(1− a)n
for a ∈ R, n ∈ N. (1.5)

Here (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol.

2 A direct evaluation

This section presents a direct evaluation of the integral

〈
rk
〉
n`

= (2µ)2`A2
n`

∫ ∞
0

r2+2`+ke−2µr
[
L2`+1
n−`−1(2µr)

]2
dr (2.1)

given in (1.4). The proof is based on some identities for the associated Laguerre function
appearing in the integrand. The methods presented here are then compared with the evaluation
by the method of brackets explained in the next section.

The first identity used to modify the integrand appears in [14, formula 8.976.3]

[
Lαm(x)

]2
=

Γ(α+m+ 1)

22mΓ(m+ 1)

m∑
s=0

(
2m− 2s

m− s

)
Γ(2s+ 1)

Γ(α+ s+ 1)Γ(s+ 1)
L2α
2s (2x). (2.2)

Therefore〈
rk
〉
n`

= (2µ)2`A2
n`

Γ(`+ n+ 1)

22(n−`−1)Γ(n− `)

×
n−`−1∑
s=0

(
2(n− `− 1− s)
n− `− 1− s

)
Γ(2s+ 1)

Γ(2`+ 2 + s)Γ(s+ 1)
G`,k,s(µ), (2.3)

where

G`,k,s(µ) =

∫ ∞
0

r2+2`+ke−2µrL
2(2`+1)
2s (4µr)dr. (2.4)

To obtain an expression for G`,k,s(µ), the representation

Lan(x) =
Γ(a+ n+ 1)

Γ(n+ 1)Γ(1 + a)
1F1

(
−n

1 + a

∣∣∣∣x) (2.5)

for the Laguerre function (see [14, formula 8.972.1]) is used.
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Theorem 2.1. The integral G`,k,s(µ) is given by

G`,k,s(µ) =
Γ(4`+ 2s+ 3)Γ(2`+ k + 3)

Γ(2s+ 1)Γ(4`+ 3)(2µ)2`+k+3 2F1

(
−2s, 2`+ k + 3

4`+ 3

∣∣∣∣ 2) .
Proof. The hypergeometric representation (2.5) shows that

L
2(2`+1)
2s (4µr) =

Γ(4`+ 2s+ 3)

Γ(2s+ 1)Γ(4`+ 3)
1F1

(
−2s

4`+ 3

∣∣∣∣ 4µr) .
Expanding the hypergeometric function gives

G`,k,s(µ) =
Γ(4`+ 2s+ 3)

Γ(2s+ 1)Γ(4`+ 3)

∫ ∞
0

2s∑
j=0

(−2s)j
(4`+ 3)j

(4µr)j

j!
r2`+2+ke−2µrdr

=
Γ(4`+ 2s+ 3)

Γ(2s+ 1)Γ(4`+ 3)

2s∑
j=0

(−2s)j
(4`+ 3)jj!

(4µ)j
∫ ∞
0

r2`+2+k+je−2µrdr

=
Γ(4`+ 2s+ 3)

Γ(2s+ 1)Γ(4`+ 3)

2s∑
j=0

(−2s)j(4µ)j

(4`+ 3)jj!

Γ(2`+ k + j + 3)

(2µ)2`+k+j+3

=
Γ(4`+ 2s+ 3)

Γ(2s+ 1)Γ(4`+ 3)(2µ)2`+k+3

2s∑
j=0

(−2s)j2
j

(4`+ 3)jj!
Γ(2`+ k + j + 3)

=
Γ(4`+ 2s+ 3)Γ(2`+ k + 3)

Γ(2s+ 1)Γ(4`+ 3)(2µ)2`+k+3

2s∑
j=0

(−2s)j(2`+ k + 3)j
(4`+ 3)jj!

2j

=
Γ(4`+ 2s+ 3)Γ(2`+ k + 3)

Γ(2s+ 1)Γ(4`+ 3)(2µ)2`+k+3

∞∑
j=0

(−2s)j(2`+ k + 3)j
(4`+ 3)jj!

2j

=
Γ(4`+ 2s+ 3)Γ(2`+ k + 3)

Γ(2s+ 1)Γ(4`+ 3)(2µ)2`+k+3 2F1

(
−2s, 2`+ k + 3

4`+ 3

∣∣∣∣ 2) .
This is the stated form for G`,k,s(µ). �

Note 2.2. Observe that s ∈ N, so the hypergeometric function in the expression for G`,k,s(µ)
is actually a polynomial in its last variable. Thus, there are no convergence issues.

The expression for G`,k,s(µ) and (2.3) are used to produce the next result (after the change
s 7→ n− `− 1− s).

Corollary 2.3. For n = 1, 2, . . . , ` = 0, 1, . . . , n − 1 and k ∈ Z with 2` + k + 3 > 0. The
moments of the hydrogen atom are given by

〈
rk
〉
n`

=
Γ(2`+ k + 3)(2n+ 2`)!

n22n−2`−1(4`+ 2)!(2µ)k(n+ `)!(n− `− 1)!

×
n−`−1∑
s=0

(
n+`
s

)(
n−`−1
s

)(
2n+2`
2s

) 2F1

(
−2(n− `− 1− s), 2`+ k + 3

4`+ 3

∣∣∣∣ 2) .
Note 2.4. The restriction 2`+k+3 > 0 avoids the singularities of the gamma factor Γ(2`+k+3).
Also observe that the first entry in the series 2F1 in the answer is a negative integer, therefore
the series reduces to a finite sum.
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In this article the expectation values of the powers of the radial coordinate of the hydrogen
atom in a framework of quantum mechanics, that is, in the non-relativistic case are computed. In
the Introduction it was stated that this already has appeared in the literature. In the relativistic
case, results for these expectation values of the powers of the radial coordinate appeared in 2009.
Indeed, the relativistic Coulomb integrals are contained in [22, 23]. The treatment of the results
obtained in [22, 23] by computer algebra methods is described in [17, 20].

In the nonrelativistic case of quantum mechanics, the corresponding questions were success-
fully solved by direct calculation. For example, in [21] useful relations between different Laguerre
polynomials were found. In [5] the radial expectation values are given for D-dimensional hydro-
genic states with D > 1. The same quantities are discussed in a more general setting in [26, 27].
The radial expectation values of hydrogenic states in momentum space appear in [28], repre-
sented in terms of Gegenbauer polynomials instead of Laguerre polynomials. All these results
were obtained by direct calculations too. The method of brackets may significantly simplify the
calculations for these tasks. This will be discussed in a future publication.

The method of brackets is not the unique successful method which involves integral transfor-
mations. Traditional methods based on Mellin–Barnes transformation may be efficient tools in
order to obtain new results in quantum field theory [1, 2, 7, 8, 15].

3 The method of brackets

The evaluation of the integral giving the mean value 〈rk〉 (2.1) presented in the previous section,
used the relation (2.2) in a fundamental way. A method to evaluate integrals over the half line
[0,∞), based on a small number of rules has been developed in [11, 12]. This method of brackets
is described next. The heuristic rules are currently being placed on solid ground [3]. The reader
will find in [6, 9, 10] a large collection of evaluations of definite integrals that illustrate the
power and flexibility of this method.

For a ∈ C, the symbol

〈a〉 =

∫ ∞
0

xa−1dx

is the bracket associated to the (divergent) integral on the right. The symbol

φn =
(−1)n

Γ(n+ 1)

is called the indicator associated to the index n. The notation φi1i2···ir , or simply φ12···r, denotes
the product φi1φi2 · · ·φir .

Rules for the production of bracket series.
Rule P1. Assign to the integral

∫∞
0 f(x) dx a bracket series:∑

n

φna(n)〈αn+ β〉.

Here the coefficients a(n) come from an assumed expansion f(x) =
∑
n≥0

φna(n)xαn+β−1. The

extra ‘−1’ in the exponent is set for convenience. The coefficients are written as a(n) because
these will soon be evaluated at complex numbers n, not necessarily positive integers. Now we
need to state how to convert the bracket series into a number.

Rule P2. For α ∈ C, the multinomial power (a1+a2+· · ·+ar)α is assigned the r-dimensional
bracket series∑

n1

∑
n2

· · ·
∑
nr

φn1n2···nra
n1
1 · · · a

nr
r

〈−α+ n1 + · · ·+ nr〉
Γ(−α)

.
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Rules for the evaluation of a bracket series.
Rule E1. The one-dimensional bracket series is assigned the value∑

n

φnf(n)〈an+ b〉 =
1

|a|
f(n∗)Γ(−n∗),

where n∗ is obtained from the vanishing of the bracket; that is, n∗ solves an + b = 0. This is
precisely the Ramanujan’s master theorem.

The next rule provides a value for multi-dimensional bracket series of index 0, that is, the
number of sums is equal to the number of brackets.

Rule E2. Assume the matrix A = (aij) is non-singular, then the assignment is∑
n1

· · ·
∑
nr

φn1···nrf(n1, . . . , nr)〈a11n1 + · · ·+ a1rnr + c1〉 · · · 〈ar1n1 + · · ·+ arrnr + cr〉

=
1

|det(A)|
f(n∗1, . . . , n

∗
r)Γ(−n∗1) · · ·Γ(−n∗r),

where {n∗i } is the (unique) solution of the linear system obtained from the vanishing of the
brackets. There is no assignment if A is singular.

Rule E3. Each representation of an integral by a bracket series has associated an index of
the representation via

index = number of sums− number of brackets.

It is important to observe that the index is attached to a specific representation of the integral
and not just to integral itself. The experience obtained by the authors using this method suggests
that, among all representations of an integral as a bracket series, the one with minimal index
should be chosen.

The value of a multi-dimensional bracket series of positive index is obtained by computing
all the contributions of maximal rank by Rule E2. These contributions to the integral appear
as series in the free parameters. Series converging in a common region are added and divergent
series are discarded. Any series producing a non-real contribution is also discarded. There is no
assignment to a bracket series of negative index.

4 The evaluation of the expectations. A first bracket calculation

This section describes the evaluation of the integral

In,`,k(µ) :=

∫ ∞
0

r2+2`+ke−2µr
[
L2`+1
n−`−1(2µr)

]2
dr, (4.1)

that appeared in (1.4) by the method of brackets. The expectation value of a power of the radial
coordinate is then given by〈

rk
〉
n`

= (2µ)2`A2
n`In,`,k(µ).

This integral can be scaled to

In,`,k(µ) =
1

(2µ)3+2`+k

∫ ∞
0

t2+2`+ke−t
[
L2`+1
n−`−1(t)

]2
dt. (4.2)

This does not appear in the table [14]. The closest entry is 7.414.10:∫ ∞
0

e−bxx2a
[
Lan(x)

]2
dx =

22aΓ
(
a+ 1

2

)
Γ
(
n+ 1

2

)
π(n!)2b2a+1

Γ(a+ n+ 1) 2F1

(
−n, a+ 1

2
1
2 − n

∣∣∣∣(1− 2
b

)2)
.



The Moments of the Hydrogen Atom by the Method of Brackets 7

Note 4.1. In the evaluation of (4.1), it is convenient to write it as

In,`,k:A,B,C(µ) :=

∫ ∞
0

r2+2`+ke−ArL2`+1
n−`−1(Br)L

2`+1
n−`−1(Cr)dr

and then consider the limiting value as A, B, C tend to 2µ.

The computation of (4.2) described in this section is obtained without any further identities
for the Laguerre function. Next section describes the computation of the function G`,k,s(µ),
defined in (2.4).

The first step is to compute a series representation for the factors in the integrand.

Lemma 4.2. The functions in the integrand of (4.1) have series given by

e−ax =
∑
n1

φn1a
n1xn1

and

Lαm(x) = Γ(α+ 1 +m)
∑
n2

φn2

xn2

Γ(1 +m− n2)Γ(1 + α+ n2)
.

Proof. The series of the exponential function is elementary. Indeed,

e−ax =
∑
n1≥0

(−a)n1

n1!
xn1 =

∑
n1≥0

(−1)n1

n1!
(ax)n1 =

∑
n1

φn1(ax)n1 .

To evaluate the series of the Laguerre function, treat m as a real non-integer parameter, and
observe that

Lαm(x) =
Γ(α+ 1 +m)

Γ(α+ 1)Γ(m+ 1)

∞∑
n2=0

(−m)n2

(α+ 1)n2

xn2

n2!

=
Γ(α+ 1 +m)

Γ(m+ 1)

∞∑
n2=0

Γ(n2 −m)

Γ(−m)Γ(α+ 1 + n2)

xn2

n2!
.

The series for the Laguerre function now follows from the identity

Γ(n2 −m)

Γ(−m)
= (−1)n2

Γ(1 +m)

Γ(1 +m− n2)

valid for n2 ∈ N and m 6∈ N. �

The series given in Lemma 4.2 are now used directly to evaluate the integral (4.1). This gives

In,`,k;A,B,C(µ) =

∫ ∞
0

r2+2`+k

[∑
n1

An1φn1r
n1

]

×

[∑
n2

Γ(`+ n+ 1)

Γ(n− `− n2)Γ(2`+ 2 + n2)
φn2B

n2rn2

]

×

[∑
n3

Γ(`+ n+ 1)

Γ(n− `− n3)Γ(2`+ 2 + n3)
φn3C

n3rn3

]
dr

=
∑

n1,n2,n3

∫ ∞
0

r2+2`+k+n1+n2+n3drAn1Bn2Cn3φn1,n2,n3
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× Γ2(`+ n+ 1)

Γ(n− `− n2)Γ(2`+ 2 + n2)Γ(n− `− n3)Γ(2`+ 2 + n3)

=
∑

n1,n2,n3

〈n1 + n2 + n3 + 3 + 2`+ k〉An1Bn2Cn3φn1,n2,n3

× Γ2(`+ n+ 1)

Γ(n− `− n2)Γ(2`+ 2 + n2)Γ(n− `− n3)Γ(2`+ 2 + n3)
.

This intermediate result is stated next.

Proposition 4.3. A bracket series for the integral In,`,k;A,B,C(µ) is given by

In,`,k;A,B,C(µ) =
∑

n1,n2,n3

〈n1 + n2 + n3 + 3 + 2`+ k〉An1Bn2Cn3φn1,n2,n3

× Γ2(`+ n+ 1)

Γ(n− `− n2)Γ(2`+ 2 + n2)Γ(n− `− n3)Γ(2`+ 2 + n3)
.

The bracket series above contains one bracket and three indices, thus it is expected that the
method will produce a double series as an expression for In,`,k;A,B,C(µ). The vanishing of the
bracket gives

n1 + n2 + n3 = −3− 2`− k, (4.3)

showing the two free indices.
Solving for n3. Replacing n3 = −n1 − n2 − t, with t = 2`+ k+ 3, in the bracket series yields

the expression

In,`,k;A,B,C(µ) =
Γ2(n+ `+ 1)

Ct

×
∞∑

n1,n2=0

Γ(n1 + n2 + t)
(
−A
C

)n1
(
−B
C

)n2

Γ(n− `− n2)Γ(2`+ 2 + n2)Γ(n1 + n2 + s)Γ(−1− k − n1 − n2)n1!n2!

with s = n+ `+ 3 + k. Using (1.5) yields

In,`,k;A,B,C(µ) =
Γ2(n+ `+ 1)Γ(t)

CtΓ(n− `)Γ(2`+ 2)Γ(s)Γ(−1− k)

×
∞∑

n1,n2=0

(t)n1+n2(1− n+ `)n2(k + 2)n1+n2

(2`+ 2)n2(s)n1+n2n1!n2!
(−1)n2

(
A

C

)n1
(
B

C

)n2

.

Then use

(b)n1+n2 = (b)n2(b+ n2)n1

to produce

In,`,k;A,B,C(µ) =
Γ2(n+ `+ 1)Γ(t)

CtΓ(n− `)Γ(2`+ 2)Γ(s)Γ(−1− k)

×
∞∑

n1,n2=0

(t)n2(t+ n2)n1(1− n+ `)n2(k + 2)n2(k + 2 + n2)n1

(2`+ 2)n2(s)n2(s+ n2)n1n1!n2!
(−1)n2

(
A

C

)n1
(
B

C

)n2

.

The sum corresponding to the index n1, which appears only in 3 places, is chosen as the internal
sum. This yields

In,`,k;A,B,C(µ) =
Γ2(n+ `+ 1)Γ(t)

CtΓ(n− `)Γ(2`+ 2)Γ(s)Γ(−1− k)
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×
∞∑

n2=0

(t)n2(k + 2)n2(1− n+ `)n2

(2`+ 2)n2(s)n2n2!

(
−B
C

)n2 ∞∑
n1=0

(t+ n2)n1(k + 2 + n2)n1

(s+ n2)n1n1!

(
A

C

)n1

.

The inner sum is now identified as a hypergeometric function to produce

In,`,k;A,B,C(µ) =
Γ2(n+ `+ 1)Γ(t)

CtΓ(n− `)Γ(2`+ 2)Γ(s)Γ(−1− k)

×
∞∑

n2=0

(t)n2 , (k + 2)n2(1− n+ `)n2

(2`+ 2)n2(s)n2n2!

(
−B
C

)n2

2F1

(
t+ n2, 2 + k + n2

s+ n2

∣∣∣∣AC
)
.

Note 4.4. The same procedure can be used to treat the cases obtained by solving for n1 or n2
in the equation (4.3). The corresponding integrals are

I
(1)
n,`,k;A,B,C(µ) =

Γ2(n+ `+ 1)Γ(t)

AtΓ2(n− `)Γ2(2`+ 2)

×
∞∑

n2=0

(t)n2(1− n+ `)n2

(2`+ 2)n2n2!

(
B

A

)n2

2F1

(
t+ n2, 1− n+ `

2`+ 2

∣∣∣∣CA
)

and

I
(2)
n,`,k;A,B,C(µ) =

Γ2(n+ `+ 1)Γ(t)

AtΓ2(n− `)Γ2(2`+ 2)

×
∞∑

n3=0

(t)n3,(1− n+ `)n3

(2`+ 2)n3n3!

(
C

A

)n3

2F1

(
t+ n3, 1− n+ `

2`+ 2

∣∣∣∣BA
)
.

At this point, the parameters A, B, C are replaced by the value 2µ, in order to continue the
evaluation. This gives

In,`,k(µ) =
Γ2(n+ `+ 1)Γ(t)

(2µ)tΓ(n− `)Γ(2`+ 2)Γ(s)Γ(−1− k)

×
∞∑

n2=0

(t)n2(k + 2)n2(1− n+ `)n2

(2`+ 2)n2(s)n2n2!
(−1)n2

2F1

(
t+ n2, 2 + k + n2

s+ n2

∣∣∣∣ 1) .
Observe that 1 − n + ` is a negative integer, so this is actually a finite sum. Using Gauss’
evaluation

2F1

(
a, b

c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

for c− a− b > 0,

and expressing the resulting gamma factors in terms of Pochhammer symbols to obtain

In,`,k(µ) =
Γ(n+ `+ 1)Γ(2`+ k + 3)Γ(n− `− k − 2)

(2µ)2`+k+3Γ2(n− `)Γ(2`+ 2)Γ(−1− k)

×
∞∑

n2=0

(k + 2)n2(1− n+ `)n2(2`+ k + 3)n2

(2`+ 2)n2(`+ k + 3− n)n2n2!
.

The final step identifies this series as a hypergeometric series to produce:

In,`,k(µ) =
Γ(n+ `+ 1)Γ(2`+ k + 3)Γ(n− `− k − 2)

(2µ)2`+k+3Γ2(n− `)Γ(2`+ 2)Γ(−1− k)

× 3F2

(
k + 2, 1 + `− n, 2`+ k + 3

2`+ 2, l + k + 3− n

∣∣∣∣ 1) .
The results of this section are summarized in the next statement.
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Theorem 4.5. For n, `, k as above,〈
rk
〉
n`

=
Γ(2`+ k + 3)Γ(n− `− k − 2)

2n(2µ)kΓ(n− `)Γ(2`+ 2)Γ(−1− k)
3F2

(
k + 2, 1 + `− n, 2`+ k + 3

2`+ 2, l + k + 3− n

∣∣∣∣ 1) .
5 The evaluation of the expectations. A second approach

The moment 〈rk〉n` has been expressed in (2.3) as a finite sum values of the integral

G`,k,s(µ) =

∫ ∞
0

r2+2`+ke−2µrL
2(2`+1)
2s (4µr)dr, (5.1)

where the index s is an integer varying from 0 to n − ` − 1. Corollary 2.3 provides an expres-
sion for 〈rk〉n` as a finite sum of values of the hypergeometric function 2F1 evaluated at the
argument 2. The hypergeometric terms appearing in the mentioned representation are actually
finite sums, so the convergence of the series is not an issue. An alternative form is derived in
this section that extends the range of validity of G`,k,s(µ) to a larger range for the parameter s.

The goal is to produce a representation of the series for the Laguerre polynomials, given
initially by

Lαn(x) =
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)
1F1

(
−n
α+ 1

∣∣∣∣x) .
This series is now written in a form suitable for the application of the method of brackets:

Lαn(x) =
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞∑
k1=0

(−n)k1
(α+ 1)k1

xk1

k1!

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞∑
k1=0

(−1)k1(−n)k1(−α)−k1
xk1

k1!

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∑
k1

φ1(−n)k1(−α)k1x
k1

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∑
k1

φ1Γ(−n+ k1)Γ(−α− k1)xk1 .

To produce a bracket series representation of the last expression, observe that

Γ(β) =
∑
`

φ`〈β + `〉

and this leads to

Lαn(x) =
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∑
k1,k2k3

φ123〈−n+ k1 + k2〉〈−α− k1 + k3〉xk1 .

The vanishing of the brackets provides two representations for the Laguerre function, denoted
by Tj .

Case 1. Take k1 as a free index. Then k∗2 = n− k1 and k∗3 = k1 + α yields the expression

T1 =
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞∑
k1=0

(−n)k1
(α+ 1)k1

xk1

k1!
.

This is the original series for Lαn(x).
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Case 2. Take k2 as a free index. Then k∗1 = n− k2 and k∗3 = α+ n− k2 yields

T2 =
Γ(α+ n+ 1)xn

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∞∑
k2=0

Γ(−n+ k2)Γ(−α− n+ k2)
(−x)−k2

k2!
. (5.2)

Case 3. Taking k3 as a free index does not produce a representation for Lαn(x).
The next step is to use the T2 representation to evaluate the integral G`,k,s(µ). By equa-

tion (5.2), the expression for Lαn(x) is now written as

Lαn(x) =
Γ(α+ n+ 1)xn

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∞∑
j=0

φjΓ(−n+ j)Γ(−α− n+ j)x−j .

Using this representation in (5.1) produces

G`,k,s(µ) =
Γ(4`+ 3 + 2s)(4µ)2s

Γ(2s+ 1)Γ(4`+ 3)Γ(−2s)Γ(−4`− 2)

×
∞∑
j=0

φjΓ(−2s+ j)Γ(−4`− 2− 2s+ j)(4µ)−j
∫ ∞
0

r2+2`+k+2s−je−2µrdr.

Evaluating the last integral in terms of the gamma function and simplifying produces a proof of
the next result.

Theorem 5.1. The integral

G`,k,s(µ) =

∫ ∞
0

r2+2`+ke−2µrL
2(2`+1)
2s (4µr)dr

is given by

G`,k,s(µ) =
4s

(2µ)3+2`+k

Γ(3 + 2`+ k + 2s)

Γ(2s+ 1)
2F1

(
−2s, −2s− 4`− 2

−2− 2`− k − 2s

∣∣∣∣ 1

2

)
.

6 A couple of examples

The method of brackets has been used here to produce analytic expressions for the mean radius〈
rk
〉
n`

= (2µ)2`A2
n`

∫ ∞
0

r2+2`+ke−2µr
[
L2`+1
n−`−1(2µr)

]2
dr,

stated first in (1.4). The physically relevant parameters are

n = 0, 1, 2, . . . , 0 ≤ ` ≤ n− 1, k ∈ R.

The expressions include〈
rk
〉
n`

=
Γ(2`+ k + 3)(2n+ 2`)!

n22n−2`−1(4`+ 2)!(2µ)k(n+ `)!(n− `− 1)!

×
n−`−1∑
s=0

(
n+`
s

)(
n−`−1
s

)(
2n+2`
2s

) 2F1

(
−2(n− `− 1− s), 2`+ k + 3

4`+ 3

∣∣∣∣ 2) , (6.1)

where 〈rk〉n` is given as a finite sum of hypergeometric terms and〈
rk
〉
n`

=
Γ(2`+ k + 3)Γ(n− `− k − 2)

2n(2µ)kΓ(n− `)Γ(2`+ 2)Γ(−1− k)
3F2

(
k + 2, 1 + `− n, 2`+ k + 3

2`+ 2, l + k + 3− n

∣∣∣∣ 1)
given in Theorem 4.5. This section compares these expressions with the results found in the
literature.
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Example 6.1. Take ` = n− 1. Then the sum (6.1) reduces to 1 since the index s must vanish.
Then 〈

rk
〉
n,n−1 =

Γ(k + 2n+ 1)

(2µ)k(2n)!
.

In particular, for k ∈ N, this becomes〈
rk
〉
n,n−1 =

(2n+ k)!

(2µ)k(2n)!
.

Example 6.2. The case ` = n− 2 reduces the sum (6.1) to two terms. The result is

〈rk〉n,n−2 =
(k2 + 3k + 2n)Γ(k + 2n− 1)

2(2µ)k(2n− 2)!
.
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