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Abstract. In [Temme N.M., Special functions. An introduction to the classical functions
of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New
York, 1996, Section 11.3.3.1] a uniform asymptotic expansion for the incomplete beta func-
tion was derived. It was not obvious from those results that the expansion is actually an
asymptotic expansion. We derive a remainder estimate that clearly shows that the result
indeed has an asymptotic property, and we also give a recurrence relation for the coefficients.
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1 Introduction

For positive real numbers a, b and x ∈ [0, 1], the (normalised) incomplete beta function Ix(a, b)
is defined by

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1 dt,

where B(a, b) denotes the ordinary beta function:

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt =

Γ(a)Γ(b)

Γ(a+ b)

(see, e.g., [2, Section 8.17(i)]). In this paper, we will use the notation of [2, Section 8.18(ii)].

The incomplete beta function plays an important role in statistics in connection with the beta
distribution (see, for instance, [1, pp. 210–275]). Large parameter asymptotic approximations
are useful in these applications. For fixed x and b, one could use the asymptotic expansion

Ix(a, b) =
xa(1− x)b−1

aB(a, b)
2F1

(
1, 1− b
a+ 1

;
x

x− 1

)
∼ xa(1− x)b−1

aB(a, b)

∞∑
n=0

(1− b)n
(a+ 1)n

(
x

x− 1

)n
, (1)

as a→ +∞. The right-hand side of (1) converges only for x ∈ [0, 12), but for any fixed x ∈ [0, 1)
it is still useful when used as an asymptotic expansion as a → +∞. For more details, see [3,
Section 11.3.3]. However, it is readily seen that (1) breaks down as x → 1. Since this limit
has significant importance in applications, Temme derived in [3, Section 11.3.3.1] an asymptotic
expansion as a→ +∞ that holds uniformly for x ∈ (0, 1]. His result can be stated as follows.
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Theorem 1. Let ξ = − lnx. Then for any f ixed positive integer N and fixed positive real b,

Ix(a, b) =
Γ(a+ b)

Γ(a)

(
N−1∑
n=0

dnFn +O
(
a−N

)
F0

)
, (2)

as a→ +∞, uniformly for x ∈ (0, 1]. The functions Fn = Fn(ξ, a, b) are defined by the recurrence
relation

aFn+1 = (n+ b− aξ)Fn + nξFn−1, (3)

with

F0 = a−bQ(b, aξ), F1 =
b− aξ
a

F0 +
ξbe−aξ

aΓ(b)
,

and Q(a, z) = Γ(a, z)/Γ(a) is the normalised incomplete gamma function (see [2, Section 8.2(i)]).
The coefficients dn = dn(ξ, b) are defined by the generating function(

1− e−t

t

)b−1
=
∞∑
n=0

dn(t− ξ)n. (4)

In particular,

d0 =

(
1− x
ξ

)b−1
, d1 =

xξ + x− 1

(1− x)ξ
(b− 1)d0.

They satisfy the recurrence relation

ξ(n+ 1)(n+ 2)d0dn+2 = ξ
n∑

m=0

(m+ 1)

(
n− 2m+ 1 +

m− n− 1

b− 1

)
dm+1dn−m+1

+

n∑
m=0

(m+ 1)

(
n− 2m− 2− ξ +

m− n
b− 1

)
dm+1dn−m

+
n∑

m=0

(1−m− b)dmdn−m. (5)

In the case that b = 1, we have d0 = 1 and dn = 0 for n ≥ 1.

Our contribution is the remainder estimate in (2) and the recurrence relation (5). In fact, it is
not at all obvious from (3) that the sequence {Fn}∞n=0 has an asymptotic property as a→ +∞.
We will show that for any non-negative integer n,

0 < Fn+1 ≤
n+ β

a
Fn, (6)

where β = max(1, b).

In [4, Section 38.2.8] the function Fn is identified as a Kummer U -function:

Fn =
ξn+be−aξn!

Γ(b)
U(n+ 1, n+ b+ 1, aξ).
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2 Proof of the main results

We proceed similarly as in [3, Section 11.3.3.1] and start with the integral representation

Ix(a, b) =
1

B(a, b)

∫ +∞

ξ
tb−1e−at

(
1− e−t

t

)b−1
dt. (7)

We substitute the truncated Taylor series expansion(
1− e−t

t

)b−1
=

N−1∑
n=0

dn(t− ξ)n + rN (t)

into (7) and obtain

Ix(a, b) =
Γ(a+ b)

Γ(a)

(
N−1∑
n=0

dnFn +RN (a, b, x)

)
,

where Fn is given by the integral representation

Fn =
1

Γ(b)

∫ +∞

ξ
tb−1e−at(t− ξ)n dt =

e−aξ

Γ(b)

∫ +∞

0
(τ + ξ)b−1τne−aτ dτ, (8)

and the remainder term RN (a, b, x) is defined by

RN (a, b, x) =
1

Γ(b)

∫ +∞

ξ
tb−1e−atrN (t) dt. (9)

The recurrence relation (3) can be obtained from (8) via a simple integration by parts.
Let, for a moment,

cn(a, b) =

∫ +∞

0
(τ + ξ)b−1τne−aτ dτ.

Then via integration by parts we find

acn+1(a, b) = (n+ b)cn(a, b) + ξ(1− b)cn(a, b− 1). (10)

We make the observation that

0 ≤ ξcn(a, b− 1) = ξ

∫ +∞

0
(τ + ξ)b−2τne−aτ dτ ≤ cn(a, b). (11)

It follows from (10) and (11) that

acn+1(a, b) ≤

{
(n+ 1)cn(a, b) if 0 < b ≤ 1,

(n+ b)cn(a, b) if b ≥ 1.

Since Fn = e−aξcn(a, b)/Γ(b), this inequality implies (6).
To obtain the remainder estimate in (2), we use the Cauchy integral representation

rN (t) =
(t− ξ)N

2πi

∮
{ξ,t}

(
1−e−τ
τ

)b−1
(τ − t)(τ − ξ)N

dτ, (12)
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where the contour encircles the points ξ and t once in the positive sense. From the integral
representation (9), we have that 0 ≤ ξ ≤ t. Thus, in the case that N ≥ 1, we can deform the
contour in (12) to the path

[1 +∞i, 1 + πi] ∪ [1 + πi,−1 + πi] ∪ [−1 + πi,−1− πi]

∪ [−1− πi, 1− πi] ∪ [1− πi, 1−∞i].

For the integrals along the final three portions of the path, we have the estimates∣∣∣∣∣∣∣
1

2πi

∫ −1−πi
−1+πi

(
1−e−τ
τ

)b−1
(τ − t)(τ − ξ)N

dτ

∣∣∣∣∣∣∣ ≤
max

(
(e− 1)b−1,

(
e+1√
π2+1

)b−1)
(1 + ξ)N+1

,

∣∣∣∣∣∣∣
1

2πi

∫ 1−πi

−1−πi

(
1−e−τ
τ

)b−1
(τ − t)(τ − ξ)N

dτ

∣∣∣∣∣∣∣ ≤
max

((
e±1+1√
π2+1

)b−1)
πN+2

, (13)

and ∣∣∣∣∣∣∣
1

2πi

∫ 1−∞i

1−πi

(
1−e−τ
τ

)b−1
(τ − t)(τ − ξ)N

dτ

∣∣∣∣∣∣∣ ≤
1

2π

∫ +∞

π

max
((

1± e−1
)b−1)(

s2 + 1
)(1−b)/2√

s2 + (1− t)2
(
s2 + (1− ξ)2

)N/2 ds

≤
max

((
1± e−1

)b−1)
2π

∫ +∞

π

(
s2 + 1

)(1−b)/2
sN+1

ds, (14)

respectively. The integrals along the first two portions can be estimated similarly to (13)
and (14). Hence, for 0 ≤ ξ ≤ t and N ≥ 1, we have

|rN (t)| ≤ CN (b)(t− ξ)N ,

where the constant CN (b) does not depend on ξ. Using this result in the integral representa-
tion (9), we can infer that

|RN (a, b, x)| ≤ CN (b)FN .

Finally, combining this result with the inequalities (6), we obtain the required remainder estimate
in (2).

The reader can check that the function f(t) =
(
1−e−t
t

)b−1
is a solution of the nonlinear

differential equation

tf(t)f ′′(t)− b− 2

b− 1
tf ′2(t) + (t+ 2)f(t)f ′(t) + (b− 1)f2(t) = 0.

If we substitute the Taylor series (4) into this differential equation and rearrange the result, we
obtain the recurrence relation (5).
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