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Abstract. Koszul pairs were introduced in [arXiv:1011.4243] as an instrument for the
study of Koszul rings. In this paper, we continue the enquiry of such pairs, focusing on the
description of the second component, as a follow-up of the study in [arXiv:1605.05458]. As
such, we introduce Koszul corings and prove several equivalent characterizations for them.
As applications, in the case of locally finite R-rings, we show that a graded R-ring is Koszul
if and only if its left (or right) graded dual coring is Koszul. Finally, for finite graded posets,
we obtain that the respective incidence ring is Koszul if and only if the incidence coring is so.
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1 Introduction

The classical approach on Koszul rings is due to [1], which defines an N-graded ring A = @®,ecnA"
to be Koszul if and only if A° is a semisimple ring and there exists a resolution P, of A°
by projective graded left A-modules such that each term P, is generated by its homogeneous
component of degree n. Koszul rings evolved as natural generalisations of Koszul algebras, which
in turn were discovered by Priddy in [15]. Since their early developments, Koszul algebras and
rings proved to be very useful tools in various fields of mathematics, as are representation
theory, algebraic geometry, algebraic topology, quantum groups, combinatorics and many more.
A comprehensive read is, for example, [13] and the references therein.

While studying certain cohomological properties of Koszul rings in [5], the authors were led
to a new notion, the so-called Koszul pairs, which we explain in brief. Let R be a semisimple
ring. A graded R-ring is a graded algebra in the tensor category of R-bimodules with respect
to the tensor product (of bimodules). A graded R-ring A = @®,enA" is called connected if
AY = R. Connected graded R-corings are defined by duality. By definition, an almost Koszul
pair consists of a graded connected R-ring A and a graded connected R-coring C, together with
an R-bimodule isomorphism 04 ¢: C1 — Al. These data must be compatible, in the sense that
the composition of the three maps below must be zero:

0c,A®0c,4
—

e=NoR=Yo) Al At 0 g2, (1.1)
where Aj 1 and b denote the components of (co)multiplication maps for C' and A, respectively.

By [5], to an almost-Koszul pair correspond three chain complexes and three cochain com-
plexes, which measure how far is A from being a Koszul ring. More precisely, an important
feature of an almost Koszul pair is that any of the corresponding six complexes is exact if and
only if all of them are so. In this case, the pair (A4,C) is called Koszul. Furthermore, one
proves that a connected graded R-ring A is Koszul if and only if there exists a connected graded
R-coring C such that (A, C) is a Koszul pair.
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In this paper, we continue the work on Koszul pairs and their applications, having in view two
aims. Firstly, following our results in [9] which include several characterizations Koszul rings,
we prove that after properly defining the dual notion, that of Koszul corings, an appropriate
characterization theorem holds true. Furthermore, we obtain a new proof of the fact that
a Koszul R-ring is quadratic and also a corresponding result for corings. In this sense, we refer
to Theorem 4.4 for the general properties of Koszul corings and to Corollary 4.10 for quadraticity.

As applications, we remark that in the locally finite case, as one could expect, a ring is Koszul
if and only if its graded dual coring is so, cf. Theorem 5.2. In the proof of this result, we use
again some Koszul pairs involving the graded duals as the starting structures. In particular, the
incidence ring of a graded poset is Koszul if and only if its incidence coring is Koszul as well, as
per Theorem 6.1. In this class of finite graded posets, we have obtained in [9] some particular
examples of Koszul posets and in this article we show that they also provide examples of Koszul
corings. Taking this into account, this paper can be seen as an announced follow-up of [9].

More examples of Koszul corings, related to Hopf algebras, will be considered in a forthcoming
paper.

Since the literature is abundant on this subject, some remarks regarding the scope and
position of the present paper are due. First off, a vast majority of the theory is known and
developed for the algebra or R-rings case. In this respect, we introduce and study the dual case,
that of corings. By these means, we obtain new insights on the theory. Moreover, although
recent developments of the theory have dealt with a categorical setting (e.g., [6] or [11]), the
present study is, in majority, self-contained, by using the tool of Koszul pairs that the second
author most introduced in [5].

We acknowledge as well that further generalizations on the theory of Koszul rings were
treated, for example, in [4, 7, 8], eliminating the semisimplicity condition on the part of degree
zero. Many other directions which relax the starting basic assumptions were considered in the
literature (as it is the case, for example, in [2] and some other articles of the same author).
However, as remarked in the previous paragraph, the present article focuses on the dualization
of the more “classical” case by means of Koszul pairs. This way, the overlap or even connection
with the references above is at its minimum and the subjects treated therein exceed the purposes
of the present paper.

The article is organized as follows. In Section 2, we recall the preliminary notions and results
regarding Koszul pairs that are needed in the paper. Section 3 briefly revisits the case of Koszul
R-rings, whereas Section 4 introduces and discusses Koszul R-corings. Sections 5 and 6 study
applications and examples.

2 Preliminaries

In this section we recall some basic concepts and notations from [5] and then we shall prove
some new preliminary results, which are needed later on.

2.1 Connected (co)rings

Let R be a semisimple ring that we fix throughout the article. Since we will always work with
algebras and coalgebras in the tensor category of R-bimodules, an unadorned tensor product ®
will mean ®p. Let V be an R-bimodule. The notation V(™ will be used for the n-th tensor
power V®---®@V. Conventionally, V(®) = R. Similarly, for any bimodule morphism f: M — N,
the tensor product f ® --- ® f with n factors will be denoted by f(™. For a set X, the identity
morphism will be denoted by Idx or simpler, Ix or even X when there is no risk of confusion.

An N-graded algebra A = @,cnA" is called an R-ring if it is an algebra in the tensor category
of R-bimodules and it is connected if A = R. Dually, a connected R-coring is a graded coalgebra,
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C = @,en in the category of R-bimodules such that Cy = R. The augmentation ideal of A will be
denoted by Ay = ®,en+ A" and similarly for C. Note that the comultiplication map A induces
a canonical coassociative map Ay: Cy — C4 ® C4, where C can also be viewed as C'/R.

For a graded connected R-ring A, the multiplication p is defined by some maps pP?:
AP @ A? — APT4. When all of these maps are surjective, for all p,q > 0, we say that A is
strongly graded. Equivalently, A is strongly graded if and only if the iterated multiplication
pin: (AN — A™ is surjective for all n > 2.

Similarly, for a graded connected R-coring C, the comultiplication is defined by some R-
bimodule maps A, ;: Cptq — Cp ® Cy and the coring C'is called strongly graded if and only if
all of them are injective.

Let Al = Id¢e, and for n > 2 define a map A™: C,, — C%n) by the recurrence relation

A" = (Tdg, ®A" ) 0 Ay 1.

It is immediate from the definition and the coassociativity property that the following equality
holds true

APH = (AP @ AT) o A,,.

Another remark is that the strong grading on C' can be seen to be equivalent to the injectivity of
all of the maps A", Vn and further that A, is injective for all n if and only if A, ; is injective
for all n.

When C' is a connected R-coring, the unit of R is a group-like element, that is A(1) = 1® 1,
cf. [5]. Therefore, we can speak of primitive elements of C, namely those ¢ € C for which
A(c) =1®c+c®1. The set of all primitive elements in C' contains C; and will be denoted
by PC. In general, the inclusion of C; in PC is strict, but as per [9, Lemma 1.4], PC = C if
and only if C' is strongly graded.

Indecomposable elements of an augmented R-ring correspond by duality to primitive ele-
ments. They were introduced by May in [10] and we will see how they relate to the strong
grading on an R-ring. In the graded case, the R-bimodule QA of indecomposable elements is
defined by the exact sequence

A @A B AL 5 QA— 0.

There is a canonical morphism A! — QA, which maps a € A' to its class a + Ai € QA. This
map has a left inverse, induced by the projection A, — Al

There is a canonical morphism A! — QA which maps an element in A' to its class modulo
the square of the augmentation ideal A4 in QA. This map has a left inverse, induced by the
projection Ay — Al.

We can prove a first result, which is a dual version of [9, Lemma 1.4] and which shows the
role of QA, the bimodule of indecomposable elements in an R-ring. Moreover, the following
lemma will be used for obtaining our main characterization theorem for Koszul corings (i.e.,
Theorem 4.4).

Lemma 2.1. Let A be a graded and connected R-ring.
1. A is strongly graded if and only if the canonical map QA — Al is injective, if and only if
the canonical map A' — QA is surjective.

2. If A is strongly graded, B is a connected graded R-ring and g: B — A is a morphism of
graded R-rings such that its components ¢° and g' are surjective, then g is surjective.

3. Let A = @y menA™™ be bigraded. If gr A is strongly graded and A™™ =0 forn = 0,1 and
all m # n, then A™™ =0 for alln > 2, m # n.
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Proof. Since QA — Al is a left inverse of A! — QA it follows that the former map is injective
if and only if the latter is surjective. On the other hand, A is strongly graded if and only if
A, C Ai, for all n > 2. Consequently, the first statement holds, as the above inclusions are
true if and only if the map A' — QA is surjective.

The proof of the second statement follows as in the case of corings [9, Lemma 1.4], using the
diagram below

n,1

KB
B, ® By —— Bn+1
In®g1 gn+1
n,1

v
Ap ® Ay *A>An+1‘

For proving the last part of the lemma we define Diag(A) to be graded subring of gr(A) given
by Diag(A) = @penA™". Let ¢: Diag(A) — gr(A) denote the inclusion map. Obviously, by the
standing assumptions, (© and ! are surjective maps. Hence, by the second part of the lemma,
¢ is surjective. Thus A™" must be zero for all n and m, with n # m. |

2.2 The R-ring (V, W) and the R-coring {V, W}

For an R-bimodule V' and a sub-bimodule W C V ® V| we define the R-ring (V, W) to be the
quotient T#(V) /(W) of the tensor algebra of the R-bimodule V' by the two-sided ideal generated

by W. Note that (W) = > (W)", where
neN

n—1
wyr=> virlewgvri-,

=1

For V and W as above, one also constructs a graded R-coring {V, W} by taking {V, W}y = R
and {V,W} = V. For all n > 2 define

n—1
(ViWl, =V VewevnrD,
p=1

As it is shown in [5], the direct sum {V,W} = @,en{V, W}, is a graded subcoring of Tf(V),
the tensor coalgebra of the R-bimodule V.

If A is a connected graded R-ring and C is a connected graded R-coring then the graded
coring {A!, Ker pl'} and the graded ring (C1,Im A; 1) will be denoted by A'and C', respectively
and called the shriek coring and the shriek ring, respectively. The homogeneous component of
degree n of A' will be denoted by A!n. To simplify the notation, for the ring C' we shall write
C! instead of (C)".

Remark 2.2. In the literature, the shriek construction (also known as the quadratic dual [1,
Section 2.8], for example) is defined and used slightly different that our setting. However, we
note that throughout this paper, the only meaning of the shriek structures is that introduced
above. Note that, unlike the classical case of [1], for example, here the shriek construction
changes an R-ring into an R-coring and viceversa.

2.3 Bigraded corings

Some basic facts regarding bigraded corings are due, since many of the structures which we will
use are of this kind.
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An R-coring C' is called bigraded if it has a decomposition as a direct sum of R-bimodules
C = ®pnmenCn,m such that its comultiplication induces a collection of maps

! i

An
Cn+n’,m+m’ — Cn,m ® Cn’,m’~

For this case, coassociativity means that the diagram below is commutative, for all positive
integers m, n, p, m’, n’ and p/,

/
p,p
n+m,n’+'m’

Cn+m+p,n’+m’+p’ Cner,n’er’ ® Cp,p’

m+p,m/+p/ m,m,
An,n’ \L iA"’", ®Icp,p’
Cn,n’ ® Cm+P7m/+p’ / Cn,n' ® Cm,m/ ® CP»P/‘

p,p
Icn,n/ ®Am,m/

By definition, we also impose to the counit to vanish on C, ,,, provided that either n > 0 or
m > 0.

Starting with a bigraded coring, one can associate to it a graded coring gr(C'), whose homo-
geneous component of degree n is gr,,(C') = @,,Cym. Therefore, define gr(C) := &, gr,,(C). We
will be interested only in connected bigraded corings, namely those bigraded corings for which
Coo = R and Cp,,, = 0, for m > 0. Note that C' to be connected implies gr(C') is connected as
well.

Let C be a (connected) bigraded coring. Define

= {Cn,ma n=m,

mme 0, n #m.

Then C' := ©,mC;,,, becomes a (connected) bigraded coring. We denote the graded coring
gr(C") associated to it by Diag(C).

Keeping the notations and the context above, there exist canonical R-bimodule morphisms
Tnm' Cnm — Cq’z’m which are identities on C,, and zero maps in rest. Their collection,
7 = {Tn,m }n,m, defines a morphism in the category of graded corings. Since Diag(C') = gr(C"), it
follows that the map 7 induces a morphism at the level of graded corings, namely gr(7): gr(C) —
Diag(C'). Surely the homogeneous component of degree n of Ker 7 is @£y Ch -

Note that one can define by duality the corresponding notions of bigraded R-rings. We omit
the details here, since this case is better known than the one for corings. See, for example, [12]
for the differential graded setting.

2.4 The normalized (co)chain complex

We shall compute Tj,(A) := Tor?(R,R) as the nth homology group of the normalized bar
complex (24(A),ds), where Q,(A) = Agf). The morphisms d,,: Q,(A4) = Q,—1(A) are defined
by di = 0 and, for n > 1,

n—1
d(ar®---®an) =Y (-1) 701 @ ® aiait1 @ D ap,
i=1

Since the normalized bar complex has a canonical structure of DG-coalgebra in the category of
R-bimodules with respect to the comultiplication Ay 4(a1® -+ Raptq) = (1@ - Rap) R (apt1 @
-+ ® Qptq) it follows that T'(A) = @penTn(A) has a canonical structure of connected R-coring.
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One can express the complex (24(A) as a direct sum Qq(A) = Bp>082 (A4, m) of subcomplexes.
As in [9, Section 1.6], we introduce the following terminology and notation An n-tuple m =

(m1,...,my) is called a positive n-partition of m if and only if Z m; = m and all m; are

positive. The set of all positive n-partitions of m will be denoted by Pp(m). Furthermore, if

m = (my,...,my) is a positive n-partition and A is a connected R-ring then for the tensor
product A™ ® --- ® A™ we shall use the notation A™. For a positive n-partition m =
(m1,...,my) of m, the multiplication p of A induces bimodule maps u™: A™ — A™ and

fom: (AN @ .. @ (A1)(mn) 5 A™ Note that, by definition, i = u(my) @ - @ p(my).
Hence, with this notation, (A, m) is the following subcomplex of 24(A):

dTIL ’II d’?n d’l’L d;{l/
08 oA P amE P oamE L PoAm™
m1€P1(m) ma€Pa(m) mn, €Pn (M)

Of course, there is only one 1l-partition of m, namely m; = (m). Thus the first direct sum
in Q4(A, m) coincides with A™. The homology in degree n of Qq(A, m) will be denoted either
by Tp,m(A) or Tor;im(R, R). Clearly, we have T(A) = @p>0Tnm(A) and this decomposition is
compatible with the coring structure, in the sense that T'(A) is a bigraded coring with T3, ,,,(A)
as (n, m)-homogeneous component.

Dually, for a connected R-coring C|, the normalized bar cochain complex (Q2° (C),d’) is

defined by ©"(C) = €' and d° = 0, while

n

d" = Z(’l)i_l Idcf” RAL® Idc(ﬁ*i) )
i=1

Here C4 := C/Cp and Ay : C4 — Cy ® Cy is the map induced by the comultiplication of C.
It is well-known that E"(C) = Ext&(R, R) is the nth cohomology group of Q°(C') and that
E(C) = ®nen E™(C) is a connected R-ring with respect to the multiplication induced by the DG-
algebra structure (in the category of R-bimodules) on Q°® (C’) which is defined by concatenation
of tensor monomials (see, e.g., [13, Section 1.1}).

The complex Q°*(C) is a direct sum of subcomplexes Q°(C,m), that are defined as follows.
For a positive n-partition of m let Cp, := Cpy, ® - -+ ® Cpy,,. Hence Q°(C,m) is the subcomplex

dy, dr, dr, it d
0—0—7 GB Cm, — @ Cmy — - —— EB Cm, —

mi1EPy (m) mQEfPQ(m) mneﬂ’n(m)

Of course, Q'(C,m) = C,,. The homology in degree n of Q*(C,m) will be denoted either by
E™™(C) or Ext™(R, R). Clearly, we have E(C) = ®p,>0E™™(C) and this decomposition is
compatible with the ring structure in the sense that E(C) is a bigraded ring with E™"(C) as
(n, m)-homogeneous component. For more details the reader is referred to [5, Section 1.15].

2.5 Almost-Koszul pairs

As mentioned in the introduction, an almost Koszul pair (A, C) consists of a connected and
graded R-ring A and a connected graded R-coring C, together with an isomorphism of R-
bimodules 04¢c: C1 — A' which satisfies the relation (1.1). Using the graded version of
Sweedler’s notation for the comultiplication of C, the above equation is equivalent to

ZHC,A(C1,1)90,A(02,1) =0, (2.1)

where c is an arbitrary element of Cl.
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If (A,C) and (B, D) are almost-Koszul pairs, then a morphism of almost-Koszul pairs is
a couple (¢,1), where ¢: A — B is a morphism of graded R-rings and ¢: C' — D is a morphism
of graded R-corings such that they commute with the isomorphisms 64 ¢ and 05 p. Henceforth,
the diagram below is commutative,

AlLBl

9A,cl ieB,D
P1

Ci ——D;.

A first example of an almost-Koszul pair is given in [5, Proposition 1.8]. For any connected
and strongly graded R-ring A, the pair (A, T(A)) is almost-Koszul. Here, the coring structure
of T(A) is defined as in Section 2.4, and the map 04 7(a): T1(A4) — Al is induced by the
projection Ay — Al. Note that T1(A4) = A4 /A2 = Al as A is strongly graded, so 04,7(4) is an
isomorphism.

The couple (A, A') is another example of an almost-Koszul pair. Recall that A!1 = A', so we
can take 04 4 := I41. The condition (1.1) is trivial in this particular case as, by construction,
Al = Ker bt

Dually, if C'is a connected and strongly graded R-coring, the pair (E(C), C) is almost-Koszul,
cf. [5, Proposition 1.18]. In this example the R-ring structure of E(C') is defined in Section 2.4.
Since E'(C) = Ker A, the map Oec),c: C1 — EY(C), given by O ,c(c) = c+ Cy € C/Cy,
is well defined and it is an isomorphism of R-bimodules.

The couple (C*, C) can be seen as an almost-Koszul pair with respect to the map Oor o = ley-
The relation (1.1) is verified since C4 := (C; ® C1)/Im Ay 1 and the component C} ® C} — Cj
of the multiplication on C' coincides with the canonical projection from C; ® C; onto Cé.

2.6 Koszul pairs

Following [5] we shall briefly recall the definition of Koszul pairs, which are our main tool
to investigate Koszul R-(co)rings. For any almost-Koszul pair (4,C) and n > 0 we define
a complex of graded right C-comodules by

K 1(A,C)=R and K'(A,C)=A"®C, Vn>0.

The differential map d?: A"®C — A""'®C is zero on A"®Cj and, for p > 0 and a®c € A"®C),

d(a®c) = Z abc,a(ci1) ® cop—1.

The differential d* maps A"®C) to A" ®C),_1. Thus K?(A, C,m) is a subcomplex of K¢ (A4, C),
for all m € N, where K'(A4,C,m) = A" ® Cy;,—,. Note that, by convention, C), = 0 for p < 0, so
KI'(A,C,m) is trivial if either n < —1 or n > m.

Using the fact that (A°P, C°P) is an almost-Koszul pair over R°P, cf. [5, Remark 1.4]), a com-
plex of left C-comodules is obtained by setting Kj (A, C') = K?(A°P, C°P).

By combining the complexes K7 (A, C) and K} (A, C), in [5] one constructs another cochain
complex K*(A,C) in the category of C-bicomodules. Since we do not use it in this paper, we
omit its definition.

By duality, to an almost-Koszul pair correspond also three chain complexes Kl,(A,C ), Ki(A,C)
and Ko(A, C). For instance, K. (A, C) is the complex of left A-modules,

K. ,(4,0)=R and K. (4,0)=A®C,,
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whose differential dé is given by the left action of A on R = Cy. For n > 0, the map d!, acts as
dy(a®c) = Z abc,a(c11) ® c2n-1-

The complex K!(A,C) also decomposes as a direct sum Bm>0 KL(A,C,m) of subcomplexes,
where K'(A,C,m) = A™ " ® C,. Note that, K (A,C,m) =0, for n > m.

We conclude this subsection by recalling that the exactness of any of these six complexes
implies the exactness of all the others, cf. [5, Theorem 2.3]. Whenever this is the case, (A, C)
is called Koszul. Thus, for a Koszul pair (A, C), the complexe Kl,(A, C) is a resolution of R by
graded projective left A-modules. Similarly, for such a pair, K?(A, C) is a resolution of R by
injective graded right C-comodules.

The subcomplex K. (A, C,0) is trivial in degree n, for all n # —1,0 and d* ;: R — A% ® Cy,
coincides with the canonical isomorphism R 2 R ®g R. Thus, K. (A, C,0) is always exact. We
deduce that the pair (4, C) is Koszul if and only if the complexes K. (A, C,m) are exact for all
m > 0. By duality, (A, C) is Koszul if and only if K} (A, C,m) is Koszul for all m > 0.

2.7 Examples of morphisms of almost-Koszul pairs

We start by defining a morphism (I4, ¢) from (A, A') to (A,T(A)). The graded coring mor-
phism ¢4 is obtained applying [5, Proposition 1.24] as follows. We keep the notation from the
above mentioned result. Deleting the component of degree —1 and then applying the functor
R®a (—) to ¢e: KL(A, A") — BL(A) we get a morphism of complexes from R ®4 Ki(A, A")
to R ®4 BL(A). Note that the last two complexes are concentrated in non-negative degrees.
By [5, Proposition 1.23] the former complex is isomorphic to (A',0), the complex with tri-
vial differential maps and whose module of n-chains coincides with A;l. On the other hand,
by definition, the latter complex equals Q4(A). Since Ir ®¢e is compatible with the coring
structure of A' and Q° (A), by applying the homology functor we get the desired coring map
¢4: A" — T(A). Let us remark that

n—1
A!n — m (Al)(Z—l) ® Ker Ml’l ® (Al)(n—l—l) C AS:L),
i=1

so any x in A}, is an n-cycle in Q4(A) and ¢ () as the homology class of x. It is easy to check
now that (I, ¢*) is a morphism of almost-Koszul pairs.

In a similar way one defines a canonical morphism of almost Koszul-pairs (¢¢,I¢) from
(E(C),C) to (C',C). Deleting the component of degree —1 of ¢*: 52(C) — K2(C',C) and
then applying the functor HomC(R, —) to the resulting map of complexes we get a morphism 5.
from Q° (C’) to the cochain complex with trivial differential maps (C*,0), cf. [5, Propositions 1.23

and 1.24]. Henceforth, we can define the coring map ¢¢: E(C) — C' by ¢c = H*(¢'). Let us
notice that, for any z1,...,z, € Cy, we have

(1 ®-- ®@x,) =araz---an € Ch,
where a; = (01 ¢ o T1) () € C} and 71 : Cy — C denotes the map induced by the projection
C — (1. Thus, ¢¢o maps the cohomology class of an n-cocyle w to an(w)
3 Koszul R-rings revisited

The main goal of this section is to characterize Koszul R-rings in terms of properties of the
R-coring T'(A). In particular, we shall recover the well known result that A is Koszul if and
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only if T}, (A) = 0 for n # m (cf. [9, Theorem 1.9(6)]). We also include here a new proof of
the fact that a Koszul R-ring is quadratic, cf. [1, Proposition 1.2.3]. Our approach will allow us
to show in the next section that similar results holds true for connected graded R-corings.

A comprehensive characterization of Koszul rings was given in [9, Theorem 1.10]. For com-
pleteness, let us recall it here, in a slightly modified form, to put in evidence the interplay with
Koszul pairs.

Theorem 3.1. Let A be a connected strongly graded R-ring. The following are equivalent:

(1) the R-ring A is Koszul;
the pair (A, T(A)) is Koszul;
the pair (A, A" is Koszul;
the canonical R-coring morphism ¢*: A' — T(A) is an isomorphism;
the R-coring T'(A) is strongly graded;
any primitive element of T'(A) is homogeneous of degree 1;
if n # m, then T, m(A) = 0.

Note that compared to the cited result, we have added statement (2), which is equivalent

with (1), taking into account [5, Theorem 2.13].

Next we give a new proof of the fact that a Koszul R-ring is quadratic, which is based on
Lemma 3.2 and Proposition 3.3. These results may be of interest in their own right.

Lemma 3.2. For any connected strongly graded R-ring A = ©,>0A", the following sequence is
exact

AJAZ™
2m

0 — Tor4,,,(R, R) — Tor (R,R) = A™ — 0,

>m
where A=™ denotes the ideal ®p>mAP and Tor;{f*

degree m of Torgl/Azm(R, R).

(R, R) is the component of homological

m

d
Proof. Since A is strongly graded, for any positive 2-partition m of m, we have that A™ 2
A™ is surjective, so the following sequence is exact:

0—Kerdf' = @5 A™—A™ 0. (3.1)
mePa(m)
Using the complex Qq4(A, m) we get
Tor},, (R, R) = Kerdy'/ Im d5". (3.2)

On the other hand, to work with the algebra A/AZ™, we use the complex Q4(A/AZ™, m). Since
in degree 1 this complex is trivial, for any m, we have

Tory /2" (R,R) = @B A™/Imdy. (3.3)

2,m
mePa(m)

Putting all the information together, we get the sequence

0 — Kerdy'/Imdy' — P A™/Imdy — A™ — 0,
mEﬂPQ(m)

which is also exact due to (3.1) and gives the desired sequence, because of the relations (3.2)
and (3.3). [



10 A. Manea and D. Stefan

Proposition 3.3. Let m: B — A denote a morphism of strongly graded connected R-rings.
If m is a positive integer such that the components m are bijective, for all 0 < i < m, and
T01r‘24’m(R7 R) =0, then ™ is bijective as well.

Proof. By the relations (3.2) and (3.3), it follows that 7 induces the maps:

B/B=™
2,m

AjAZ™

7™ Tor (R,R) — Toryy  (R,R)y,  7": Tory,,(R.R)— Tory,, (R, R).

By construction, the squares of the following diagram are commutative,

m

B/B=™ Pp

0 —= Tor,, (R, R) —~Tory """ (R, R)

o

0 Torf,, (R, R) —~ Tory " (R, R) — AT,
A ’ A

B™ 0

Tm

Since the homogeneous components of the graded R-rings A/AZ™ and B/B=™ are zero in degree
i > m, and 7 is bijective for i < m, we deduce that 7 induces an isomorphism ,(B/B=") =
Qe(A/AZ™). In particular, we get that 7™ is an isomorphism of R-bimodules. By the Snake
lemma, the kernel of 7™ is isomorphic to Coker 7™. As Torém(R, R) = 0 it follows that 7™ is
injective. Clearly, Coker 7™ = 0. |

To a connected graded R-ring A we associate the R-ring (A', K ), where K4 denotes the
kernel of pl't: A1 @ A — A2 There is a unique R-ring morphism ¢4: (A!, K4) — A which
lifts !, This morphism is surjective, provided that A is strongly graded. Following [1], we say
that A is quadratic if and only if A is a connected strongly graded R-ring such that ¢4 is an
isomorphism.

We now fix a connected strongly graded R-ring A. Let V' = Al. The kernel of the canonical

R-ring map T{(V) — A will be denoted by K4 = > K. Obviously, the m-degree compo-
meN

nent I?ff of K 4 coincides with the kernel of the iterated multiplication py,: V™ — A™ and
K C (Ka)™.
Let Z.m = Kerdy' and Ba,, = Imds'. Recall that {am }mep,(m) is a 2-cycle if every am

is an element in A™ and Y.  u™(am) = 0. For any positive integer m we set ay,(z) :=
mEﬂPQ(m)

{,um(a:)}me%(m). It is easy to see that a,,(x) belongs to Zs ,,, as x is an element in the kernel
of fmm, = ™ 0 ly, for any positive 2-partition m of m. Thus z — ay,(x) defines an R-bimodule
map apm: (Ka)™ — Zo .

Furthermore, for any element x € IN(T, we have o, () € Ba . Indeed, by definition of IN(IT, it
is enough to show that a,,(x) is a boundary for all = € VDo K, @Vm=i=1) and1 <i < m—1.
Let i = 1. Since z € K4 ® V"2 we have a,(r) = {Tm fmep, (m), Where

(V& ulm — D) (@), itm=(l,m—1),
Tom, =
0, otherwise.
Thus ap(z) = —d§'(y), where y = (V(2) ® p(m — 2))(z). For all other values of 4, the proof of
the fact that «a,,(z) is a boundary is similar, so it will be omitted.
Summarizing, a,, defines a map from K}’ to Ba ,,, still denoted by «,,. In other words, the
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diagram

K7 2"~ By

_

Qm

(Ka)™ —= Zam
is commutative, where the vertical arrows denote the canonical inclusions.

Lemma 3.4. Let A be a connected strongly graded R-ring. If R’?:<KA>m7 then Torém(R, R)=0.

Proof. Let{ =ay---a; ®a;t1 -+ - am, Where aq, ..., ap, are arbitrary elements in V' = Al. Since
— dm
§=a1-ai1®a; Ay +d3' (a1 01 ®a; @ a1 ),

we deduce by induction on i that { = a; ® ag - - - an, + d§*(C), for some ¢ € Q3(A, m).

We now pick a 2-cycle x € Zs,,. Since A is strongly graded, in view of the above remarks,
there exist y € A' @ A™ 1 and 2 € Q3(A,m) such that x = y + d7*(z). Note that y is a 2-cycle
as well.

Our goal is to show that z is a boundary. It is enough to prove that y € Ba,,. As A is
strongly graded, the map f = V ® u,,_1 is surjective. Hence, there exists 3/ € V(™) such that

f(¥) = y. Since y is a cycle, we also get that y’ belongs to (K 4)™, the kernel of fi,,.
~ m—1 . .
By assumption, (K4)" = K’}. Thus ¢/ = Y y., for some y} € Vi~ @ K @ V(m=i=1),
i=1
Note that f(y,) =0, for any ¢ > 1. Thus y = f(y}). As um(y}) = 0, for any positive 2-partition
m # (1,m — 1), it follows that y = a,,(y]). We conclude the proof that y is a boundary by

remarking that o, maps K'}' to Ba . [ |

Proposition 3.5. Let A be a strongly graded R-ring. Then A is quadratic if and only if
Torém(R, R) wvanishes for all m > 3.

Proof. Let B := (A', K4). We first prove that A is a quadratic R-ring, provided that
Tor’ém(R, R) =0, for all m > 3. It is enough to show that the components ¢’} of the canonical
map ¢4: B — A are all isomorphisms. We proceed by induction on m. The maps (;5?4 and ¢}4
are obviously injective, because they coincide with the identity maps of R and A®, respectively.
Let us assume that gbffl is an isomorphism, for all ¥ < m — 1, where m > 3. By assumption,
Tor‘ém(R, R) =0 for all m > 3. Hence, using Proposition 3.3, it follows that ¢'} is bijective.
The converse follows directly by the preceding lemma, as I?;l” = (K4)™, for all m, by the
definition of quadratic R-rings. |

4 Koszul R-corings

In this section we introduce and study the properties of Koszul corings, the dual notion of Koszul
R-rings. Here we shall also show that any Koszul coring is quadratic.

Strongly graded comodules, the substitute for strongly graded rings when one works with
graded corings instead of graded rings, will play an important role in this part of the paper.
Hence, we start by discussing their main properties.

Let (X, pX) be a graded right comodule over a graded R-coring C. For every n, the map p~
defines a morphism of graded C-comodules p:X from X to X, ®C, whose component of degree k
is pikfn. Note that the component of degree k of X,, ® C'is X,, ® Ck_,,, where C; = 0, for all

1 < 0. Thus, in particular, pgk_n =0 for k < n.
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Definition 4.1. Let X = ®,,>0X,, be a graded right C-comodule, with structure map pX. We
say that X is strongly graded in degree n if the morphism of graded C-comodules pf: X —
X, ® C is injective.

Let us remark that, by definition, a graded right C'-comodule is strongly graded in degree n
if and only if X, = 0 for all p < n and py, q: Xpnt+q = X, ® Cy is injective for all ¢ > 0.
Some useful properties of graded comodules are collected in the following lemma.

Lemma 4.2. Let C be a strongly graded R-coring. Let (X,pX) denote a graded right C-
comodule.

1. The inclusion Ker pffm_i C Ker p])-fm_j holds for all 0 < j <i < m.

2. There is a canonical isomorphism Hom® (R, X),, = NI, Ker Piom_i = Kerpy ;.

3. X is strongly graded in degree n if and only if X; = 0, for i <n, and pffl is injective for
1> n.

4. Let f: X — Y be a morphism of graded right C-comodules. If X is strongly graded in
degree n and f,: X, — Y, is an injective map then f is injective as well.

Proof. To prove (1), consider the following commutative diagram:

X
Pim—i

X b'e
pj,ma’i ipj;ij

X; ® Cpye X;®Ci—j @ Cyi.

7 IXj ®A£]‘,mﬂ'
Let x € Ker pffmfi. Using the fact that I, ®A£j’m7i is injective, as C' is strongly graded, it

follows that pfm_ j(a:) is zero, hence x € Ker pfm_ j» as required.

(2) Let X and Y denote two graded C-comodule. By definition, f € Hom®(X,Y),, if and
only if f is a morphism of C-comodules and f(X}y) C Y1k, for all k. In particular, for a C-
colinear map f: R — X of degree m, we have f(1) € X, and p*(f(1)) = f(1) ® 1. The latter
relation is equivalent to the equations pi)’{mfi( f(1)) =0, for all 0 < i < m—1. In conclusion, the
required isomorphism is given by the map f — f(1). The equation from the statement follows
by the first part of the lemma.

(3) In view of the remark just after the Definition 4.1, the condition X; = 0 for i < n is part
of the hypothesis for both implications. We must prove that pi(l is injective for all ¢ > n if and
only if pi‘:q: Xntq = Xpn ® Cy is injective for all ¢ € N.

To prove that p%‘: ¢ 1s injective for ¢ € N we proceed by induction on g. The map pnj‘/{0 coincides
with the canonical isomorphism M,, = M,,® R and pf{{l is injective by assumption. Let us assume
that pé‘: 4 is injective. Thus, the horizontal arrow on the bottom of the following commutative
diagram is injective,

X
Pr,q+1
KXntq+1 Xn ® Cyt1
p§+q,1l ‘LIX" ®A§1
Xntq @ Ch = Xp, ®Cy® Ch.
pn,q®IC1

Since, by hypothesis, the leftmost vertical map is injective it follows that pf’ 4+1 18 also injective.
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For the converse one uses the commutative diagram

le
X1 ’ X ®Cy
an,,i—&—l—ni lpiin®lcl
X, ®Ciiq1- X, RCi_, ®C1.
n 1+1—n IXn ®AZ~C,H71 n 1—n

The component pii 41_p 18 injective by assumption, while Iy, ®Aic_n71 is so as C is strongly
graded. We conclude that pffl is injective, as required.

(4) We have to prove that all components fj are injective. For k < n this property trivially
holds as, by preceding part of the lemma, we have X; = 0. The map f,, is injective by assump-
tion, so we can suppose that k > n. The following diagram is commutative, as f is a morphism
of graded comodules,

X, L Yi
pik—nl lpz,k—n
Xn @ Cr—p, h@l—%> Y, ® Cp_p.

By hypothesis, f, ® I, _, is injective. On the other hand, an w_n 18 injective, as X is strongly
graded in degree n. We conclude that z = 0. |

We can now introduce Koszul corings by dualizing [1, Definition 1.2.1]. Several characteri-
zations of this class of graded corings are given in Theorem 4.4.

Definition 4.3. A connected R-coring C' is called Koszul if R has an resolution 0 - R — Q°
by injective graded right C-comodules such that every term Q" is strongly graded in degree n.

Theorem 4.4. Let C be a connected, strongly graded R-coring. The following are equivalent:

) the coring C is Koszul;
) the pair (E(C),C) is Koszul;
) the pair (C*,C) is Koszul;
4) the canonical morphism E(C) — C' is an isomorphism;
) the R-ring E(C) is strongly graded;
) the canonical map QE(C) — EY(C) is an isomorphism;
) the relation E™™(C) = 0 holds for all n # m.

Proof. Note that, for any Koszul pair (A, C), the complex K?(A,C) is a resolution of R sa-
tisfying the conditions from the definition of Koszul corings. In particular it follows that C' is
Koszul, so the implications (2) = (1) and (3) = (1) are obvious.

To prove (1) = (7), assume that C' is Koszul. That is, following the definition, R has
an injective resolution 0 — R — @°® such that Q" is strongly graded in degree n. Note that
E™™(C) = Extg (R, R) is the cohomology in degree n of the complex obtained by applying
the functor Hom® (R, —),,, to this resolution. Thus, to conclude the proof of this implication,
it is enough to show that Hom®(R,Q"),, is trivial for m # n. By Lemma 4.2(2) we have
Hom® (R, Q™),, = Ker Pgil,l‘ Thus, the claim follows from the fact that Q™ is strongly graded

since, in view of Lemma 4.2, we have Q™™ = 0 for m < n, and the component sz—1 | is injective
for all m > n.
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For (7) = (3), let us assume that E(C) is diagonal. We shall prove by induction on n that
K2(C",C) is exact in degree n. The sequence

0—R—CeC—CiaC

is exact by the definition of K®(C*,C') and the fact that C' is strongly graded, cf. [5, Lemma 2.1].
We now assume that K®(C", C) is exact in degree 4, for all 0 < i < n — 1, and prove that it
is exact in degree n as well. We consider the exact sequence

a2 drt

0 1
IR Cechoech . Y0 90X 0le0 Sy o, (4.1)

where Y := Cokerd” ! and a denotes the canonical projection. We claim that Y is strongly
graded in degree n + 1. Since d» (7 ® ¢) = T@c®1, for all z € C{L*l and ¢ € (1, the
homogeneous component (C!, @ C),, is included into the image of d?~'. Thus Y has no non-zero
elements of degree n. On the other hand, if Y}, denotes k-degree component of Y, then Y, = 0
for all k < n, as Y is the quotient of C!, ® C by a graded subcomodule. In conclusion, for proving
our claim, it remains to show that ,032_1’1 is injective for all m > n + 1.

Let X := Kera = Imd?~!. We complete 0 — X — C!, @ C to a resolution
0= X-C oC—-Qrt5Qnt?s...

by injective graded right C-comodules, which combined with (4.1) yields us a new injective
resolution

0R—=>CaC—-CloC = =CLoC Q" Q2. ...
Thus we can compute Extg+1’m(R, R) as the cohomology in degree n + 1 of the complex:

0 — Hom“(R, C) ® ), — Hom® (R, C} @ C)py — - - — Hom% (R, C}, @ C)
— Hom® (R, Q") — -

Since Extlclm(R, X) is the 1-st cohomology group of the complex
0 — HomY(R, C}, ® C),, — Hom® (R, Q"*1),,, — Hom® (R, Q”+2)m —

we deduce that Extélm(R,X) = Extgﬂ’m(R, R). Recall that X is the kernel of «, so the long
exact sequence connecting the functors of Extgy™ (R, —)p, can be written as follows

0 — Hom®(R, X),, — Hom® (R, C} ® C),, = Hom®(R,Y),, — Extg" (R, X) = --- .

From the standing assumption, F(C) is diagonal, so using the above isomorphism between the
Ext-groups, it follows that Exté:m(R,X ) = 0, for all m > n + 1. Moreover, Hom® (R, C}, @ C)
is isomorphic to Homp(R, C,'L) as graded R-modules, where the latter module is concentrated
in degree n. It follows that Hom“(R,Y),, = 0, for all m > n + 1. By Lemma 4.2(2) it follows
that pfn_m is injective for all m > n + 1. Since we already know that ¥}, = 0 for k <n +1, we
conclude by Lemma 4.2(3) that Y is strongly graded in degree n + 1, that is our claim has been
proved.

We can now prove that K'(C!, () is exact in degree n. We must show that the kernel of
the map 0: Y — CﬁLH ® C induced by d is trivial. In view of Lemma 4.2(4), as Y is strongly
graded in n + 1, it is enough to prove that the component 9,11: Y11 — Cha1 ® Cy of 0 is
injective.
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Let y be an element in the kernel of 0,,41. Hence there are y1,...,y, € C™ andey,. .., cp € Ch
P
such that y is the equivalence class of 3> 7; ® ¢; in Yy iy = (C), @ C1)/d?P"H(C!,_, ® Cy). Here 3;
i=1
) ol k- (n—k-1)
denotes the class of y; in C;, = C}"’ /W, where W,, = > C} ®@ImA;; ®C) . Since
k=1

Ont1(y) = 0 and using the fact that d? is induced by the multiplication in C', it follows that
P

Yy =Y y; ® ¢; belongs to the submodule W,,11 C C(+Y) from the construction of C}Hl. Note
i=1

q A ,
that Wo = Im Ay ;. Thus ¢’ =z + > ¢ @i ®cyy, for some 2 € W, @ C1, oy, ...,y € C’fn_l)
j=1

and c',...,c? € Cy. The relation y = 0 now follows by the computation

—

p q q
Dmiwa=) yod,ed,=d |} yod
i=1 j=1 j=1

For the implication (3) = (4) we use the morphism of complexes ¢*: 52(C) — K*(C",C),
which lifts the identity of R, see Section 2.7. Since both K®(C", C') and 82(C) are resolutions of R
by injective right C-comodules, by the comparison theorem, the morphism {¢"},cx is invertible
up to a homotopy in the category of complexes of right C-comodules. Hence HomC(R, @°®) is
invertible up to a homotopy in the category of complexes of right R-modules. It follows that
H"(Hom® (R, ¢*)) is an isomorphism for all n > 0. Thus ¢%: E,(C) — C} is an isomorphism,
as it coincides with H"(Hom® (R, ¢*)), see Section 2.7.

The implication (4) = (5) follows immediately since C' is always strongly graded, hence
E(C) is so. Furthermore, (5) <= (6) and (5) = (7) are direct consequences of Lemma 2.1.

We conclude the proof by remarking, for the implication (3) = (2), that the complex
K?(C", C) is isomorphic to K(E(C), C), which makes the latter exact. [

Remark 4.5. By the proof of [5, Theorem 2.14], the complex K!(A, A') is isomorphic to the
Koszul complex of A, which was introduced in [1, p. 483]. By analogy, K*(C',C) will be seen
as the Koszul complex associated to a connected R-coring C.

Using the method from the previous section we are going to show that any Koszul coring is
quadratic. This property of Koszul corings will follow as a direct application of a cohomological
criterion for bijectivity of a morphism between two strongly graded corings.

Lemma 4.6. Let C be a strongly graded R-coring. Then the following sequence is exact:
0 — Cp — Extg™ (R, R) — Extg™ (R, R) — 0.

Proof. The differential d, of Q*(C,m) maps ¢ € Cy, to the family {Ap(¢)}mep,(m) Where,
by notation, Ay, is the component Ay, iyt Crny4my — Oy @ Chyy, for any positive 2-partition
m = (mq1,ma) of m. By hypothesis A,, is injective for all m € Po(m), so d., is injective as
well. Thus the sequence

1
0 — Cp 2 Kerd?, — Kerd2,/Imd’, — 0

is exact. Note that Ext%m(R, R) = Kerd?,/Imd},. On the other hand, the complex Q°*(C,,,m)
coincides in small degrees with

0 1 2
0—0202% @ Cm™ P Cums,

maE€Pa(m) m3z€P3(m)

so we conclude the proof by remarking that Ext%:?m (R, R) ~ Ker d2,. [
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Proposition 4.7. Let m: C' — D denote a morphism of strongly graded connected R-rings.
If m is a positive integer such that Extém(R, R) = 0 and the components m; are bijective, for
all 0 <1 < m, then my, s bijective as well.

Proof. As in the case of graded R-rings, m induces morphisms
7 Extg™(R,R) — Exti™(R,R)  and  7": Extg™ (R,R) - Extp” (R, R),
such that the following diagram is commutative,

0 —— Cp — Ext3" (R, R) —> ExtZ™ (R, R) —> 0

S

0 —> Dp — Ext" (R, R) —= Ext};" (R, R) —= 0.

The map 7, is an isomorphism, as 7; is bijective, for all i < m. Therefore, by Snake lemma, we
have Ker 7, = 0 and Coker w,,, = Ker7,, = 0. |

4.1 Quadratic corings

For a connected R-coring C, the family {A(n)},en of iterated comultiplications A(n): C,, —
C’f") defines a morphism ¢c: C — T§(Ci). The image of ¢¢ is a subcoring C of C =
{C1,ImA; ;}. Hence we may regard ¢¢c as a coring morphism from C to C. We shall say
that C is quadratic if and only if this morphism is a bijection. Therefore, C' is quadratic if and
only if it is strongly graded and C = C.

Let C' be a strongly graded R-coring. As in the case of R-rings, we can relate Z Zm = Ker d2,,
the set of all 2-cocycles in Q2° (C’, m), and Cy,. To do this we first notice that, for any 2-cocycle
T = {Tm }mep,(m), the element A(m)(xp,) does not depend on m € Py(m), as the components
of the (iterated) comultiplication are all injective. Recall that A(m) = A(m1) ® A(mg), for
any positive 2-partition m = (m1, mz). Since A(m) = A(m) o A, for any positive 2-partition
of m, it is not difficult to see that A(m)(zm) € Cp,. Hence, we can define the function
a™: 72 — Cp, by o™ (z) = A(m)(zm,).

Let B>™ :=Imd}, denote the set of 2-coboundaries. If 2 = {Tm }mep,(m) is @ 2-coboundary,
then there is ¢ € Cy, such that x,, = A™(c), for all positive 2-partitions m. Thus o (z) € Cp,.
Henceforth, o™ induces a map, still denoted by o™, from B?>™ to C,,. We get the following
commutative diagram

2 am™ =
B>" —C),

m o~
ZQ,m o Cm;
where the vertical arrows represent the canonical inclusions.

Lemma 4.8. Let C be a strongly graded R-coring. If C,, = Crn, then Ext%’,m(R, R)=0.

Proof. If ¥ = {Zm}mep,(m) 18 @ 2-cocycle, then a™(z) € Cpm = Cyn. Since Cy, is the image
of A(m), there is ¢ € Cp, such that A(m)(zm,) = A(m)(c). As A(m) = A(m)o A,y and A(m)
is injective, we deduce that z,, = An,(c), for any positive 2-partition m. Thus z is a 2-
coboundary. |

Proposition 4.9. A strongly graded R-coring C is quadratic if and only if Extém(R, R) =0,
for allm > 3.
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Proof. In view of the preceding Lemma, the vanishing of Extém(R, R) is a necessary condition.
To prove that it is a sufficient condition as well, using Proposition 4.7 and proceeding as in the
proof of Proposition 3.5, one shows by induction that the components of ¢o: C — C are all
isomorphisms. |

Corollary 4.10. Any Koszul R-coring C is quadratic.

Proof. The conclusion follows by combining the results in Proposition 4.9 and the fact the
statements (1) and (7) of Theorem 4.4 are equivalent. [

Finally, let us add that a direct (co)product of two Koszul (co)rings is still Koszul. For R-
rings the result was used in [9, Section 2.10] to “patch” tiles forming a Koszul poset. We restate
and prove the proposition using Koszul pairs, obtaining at the same time a similar result for
Koszul corings.

Let R and S be semisimple rings. We assume that A is a connected R-ring, B is a connected
S-ring, C' is a connected R-coring and D is a connected S-coring. We also suppose that (A, C)
and (B, D) are almost-Koszul pairs with respect to the R-bilinear map 6¢ 4: C; — A' and the
S-bilinear map 0p p: D1 — B!, respectively.

For an R-bimodule V' and an S-bimodule W we shall regard the abelian group V @& W as an
Rx S-bimodule with respect to the actions: (r, s)-(v,w) = (rv, sw) and (v, w)-(r', s") = (vr', ws’).
Note that we have an isomorphism of left A x B-modules

(Ax B)®pxs VEW) 2 (A V)@ (Bog W), (4.2)

where the A x B-action on the direct sum of AQrV and B®gW is also defined component-wise.
This isomorphism is defined by the map (a,b) @rxs (v,w) — (a g v,b g w).
Recall that the comultiplication of the coproduct C' ® D is given by

Apgle;d) = (c1p,0) @rxs (¢24,0) + Y _(0,d1) Drxcs (0, dag)-
Let ¢ := 0¢ 4 and 0" := 0p . We define §: Cy ® Dy — A' x B! given by 0(c,d) = (6/(c),8"(d)).

Proposition 4.11. The pair (Ax B,C @ D) is almost-Koszul with respect to the isomorphism 6.
Moreover, this pair is Koszul if and only if the pairs (A,C) and (B, D) are so.

Proof. To show that (A x B,C @ D) is almost-Koszul we take (¢,d) € Cy @& Dy. We have

(1! o (0 ®rxs 0) 0 Av1)(c,d) = Z (6'(c1,1)0 (c21),0) + Z 0,6"(d,1)8" (d2,1)) = 0.

Using the identification (4.2) and performing a similar computation as above one can show easily
that

KL(Ax B,CaD)=K.\ (A C)e K. \(B,D).
Thus, obviously, (A x B,C @ D) is Koszul if and only if both (A, C) and (B, D) are so. |

Remark 4.12. We have seen that a connected R-ring A is Koszul if and only if there is
a connected graded R-coring C' such that (A,C) is Koszul. Similarly, a given connected R-
coring C' is Koszul if and only if there is a connected graded R-ring A such that (4,C) is
Koszul. In view of the preceding proposition, we deduce that the connected graded R x S-
ring A x B is Koszul if and only if A and B are Koszul too. Similarly, the connected graded
R x S-coring C x D is Koszul if and only if C' and D are so.
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5 Locally finite Koszul (co)rings

In this section, we provide a first application of the results developed so far. More precisely, we
shall prove that a left (right) locally finite R-ring is Koszul if and only if its left (right) graded
dual R-coring is Koszul as well. This result will allow us to show in the subsequent section that
in a more particular case, the incidence R-ring of a graded finite poset is Koszul if and only if
its incidence R-coring is also Koszul.

Recall that a graded left R-bimodule V' = @®,enV;, is called left (right) locally finite if and
only if its components V,, are finitely generated as left (right) modules. In the case when V is
both left and right locally finite, we will simply say that V is locally finite. Throughout this
section we keep the assumption that R is a semisimple ring, so all R-bimodules are projective
as left (and right) R-modules.

5.1 The left dual of an R-bimodule

Let V be an R-bimodule. Define the left dual of V' by *V = Hompg(rV, gR). This becomes a bi-
module over the opposed ring R°P with respect to the actions defined, for » € R and o € *V, by

(r-a)(v) =alv)r and (a-7r)(v) = a(vr).

In the case that V = ®,cnV;, is a graded R-bimodule we define the left graded dual of V' to
be the R°P-bimodule *&V := ®,eny* V.

It is known that the dual of the tensor product of two finite-dimensional vector spaces is
the tensor product of their duals (see, e.g., [1, Section 2.7]). A similar property holds for
R-bimodules. More precisely, if V and W are R-bimodules, there exists a bi-additive map

¢ VW = (Ver W), ¢ (o, B) (v @ w) = a(vB(w)).

Furthermore, we have ¢/((a - 1) @por 8)(v @p w) = (a - 7)(vB(w)) = a(rvB(w)) = ¢ @pgep (1 -
B))(v ®g w). Thus ¢’ is R°P-balanced, so it induces a morphism of abelian groups

¢: V @por W = *(VorW),  é(a®@gew B)(vQrw) = a(vf(w)).

As a matter of fact, ¢ is an R°P-bimodule map, as ¢((r - @) Q@por 8)(v @gw) = (r-a)(vB(w)) =
a(vf(w))r. On the other hand, [r- ¢(a @por B)](v ®r w) = ¢(a @pgor )(v @p w)r = a(vf(w))r.
Right-linearity is proved analogously.

We claim that, under the additional assumption that W is finitely generated as a left R-
module, the map ¢ is a bijection. Indeed, since R is semisimple, W is projective as a left

R-module. So, there are finite dual bases on W, that is two sets {wi,...,w,} € W and
{*w1,...,"wy,} € *W such that w = Y *w;(w)w;, for all w € W. Let ¢: *(V @gr W) —
i=1

*V ®@por *W be the map given by
Z’Y QR W;i) @Ror “W;.

In the above formula v denotes an element in *(V @z W) and the application y(—®@rw;): V — R
acts as v — y(v ®g w;). The only thing left to show is that ¢ and ¢ are mutual inverses.

Let v =: ¢(a ®pop (), for some a € *V and § € *W. Thus v(v @r w) = a(vf(w)), for all
v €V and w € W. Hence, by the definition of v, we get

n

Z’y ® w;) @por “w; = Za(—ﬁ(wi)) ®pger Fw; = Za - B(w;) @Ror *wj.

i=1 i=1
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By the definition of the left R-action on *W and the definition of dual bases, together with the

fact that [ is a morphism of left R-modules, we have 5 = ) B(w;) - *w;. Hence
i=1

¥(7) = a @por (Z Bws) - *wi> =a®p,

i=1
so 1 is a left inverse of ¢. On the other hand, if v belongs to the left dual of V @z W then

n

[P(W(V)](v @R w) Z $(7(— ®rw) @por “w;)) (v @ W) = V(= @p w;) (Vwi(w)).

=1

Thus the computation below implies that v is a right inverse of ¢ as well

Z'Y ®sz v wz 27 v wz ®sz) =7 U®RZ wz wz) :’)/(U®R’LU).
=1

5.2 The graded dual of an R-(co)ring

The left (right) dual of a left (right) finitely generated R-ring was first introduced in [3, Sec-
tion 17.9]. This construction can be easily adapted for a left locally finite connected graded
R-ring A = @, A". First, we define *#'A = @,,*(A"), which is an R°P-bimodule with respect
to the actions defined in the previous subsection. When there is no risk of confusion, we shall
drop the parentheses to avoid unnecessary clutter. As such, we will write *A™ instead of *(A™).

Furthermore, for making *#A a graded connected R°P-coring, we consider the following
diagram:

*An+m *An—l—m
*Mn,ml An,m
\
*(An ®R Am) * AT ®R°P *Am

The leftmost vertical arrow denotes the transposed map of p™»™: A" @ A™ — A" the com-
ponent of the multiplication of A. The lower morphism 1 is the isomorphism described in the
previous subsection. Then A, , := ¥ o ", 1, is a morphism of R°P-bimodules and the family
{Asn,m}nmen induces a map A: *#A4 — *8'A ® *$'A that respects the gradings on *#'4 and
*-gr A ® *-grA

Let o € *A™™™_ One can show that the relation

P

/ 1

a) = E a; @ Rop
i=1

holds true for some o, ..., and af, ..., a; if and only if we have

/ // Za / // (5.1)

for all a’ € A™ and a” € A™. Using this equivalence it is easy to see now that A defines
a coassociative comultiplication on the left graded dual of A, which respects the grading on *&'A.
Let us note that we have an isomorphism of rings Homg(gR, R R) = R°P, so we can identify *A°
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and R°P as R°P-bimodules. This isomorphism can be extended in a unique way to an R°P-
bimodule morphism e: *#A — R°P so that it vanishes on all other homogeneous components
of *#"A. Obviously, (*8"A, A ¢) is a connected graded R°P-coring, which will be called the graded
left dual R°P-coring of A. For the comultiplication of *8'A we will use the Sweedler type notation

An,m(a) = Z a1 n ® Q2 m.- (52)

Thus, for a € *A"™™ o' € A" and a” € A™, the relation (5.1) can be rewritten as

a(dd”) = o1 n(dazm(d”)). (5.3)

Dually, to any graded connected R-coring C' corresponds a graded connected R°P-ring *8'C' that
we will call the graded left dual of C. By definition we have (*#'C)" = *(C},). To simplify the
notation we shall write *C,, instead of *(C,,). The graded convolution product of a € *C,, and
B € *C,y, is given by the relation a * = p™(a ® ). Hence, for ¢ € Cy4yp,, we have

(ax*p)(c) = Z a(cl,nﬁ(ch)).

The unit of the graded left dual of C coincides with the counit of C. Note that the graded left
dual makes sense for a graded R-coring C' which is not necessarily left locally finite.

In a similar way we can define the graded right dual A*#" of a right locally finite connected
graded R-ring A and the graded right dual C*#" of a right locally finite connected graded R-
coring C'. One can prove that, for a locally finite R-ring A, there are canonical isomorphisms
(erA)ter = A = *8r( A*e") of graded R-rings. Similar isomorphisms can be proved for a locally
finite R-coring C.

In order to investigate the Koszulity of the dual of a locally finite R-ring we shall use once
again almost-Koszul pairs. More precisely, we have the following result.

Proposition 5.1. Let (A,C) be an almost-Koszul pair. If A and C are left locally finite,
then the pair (*8'C,*®'A) is almost-Koszul. Similarly, if A and C are right locally finite then
(C*8&", A*8) is almost-Koszul.

Proof. Let 6 := 0c 4 denote the isomorphism from the definition of almost-Koszul pairs. We
claim that (*8A4,*8(C) is almost-Koszul with respect to the transposed map *6: *A2 — *Cj.
Clearly, *6 is an isomorphism of R°P-bimodules, so we have to prove equation (2.1). For o € *A?
and ¢ € Cy we have

Z ("0(ar,1) = *0(a21))(c) = Z *O(on1) (c1,1%0(c2,1)(c2,1))
= Z04171(9(0171)062,1(9(62,1))) = Za(@(clyl)ﬁ(czl)) = 0.

Note that the first and the second equalities follow by the definitions of the product of *&'C
and of the transposed map, respectively. Taking into account the equivalence between the rela-
tions (5.2) and (5.3) we get the third equality. The ultimate equation holds as # satisfies the
relation (2.1).

The fact that (A*®", C*#") is almost-Koszul can be proved in a similar way. [

We can take this result a step forward and prove that a Koszul pair corresponds by left
duality to a Koszul pair.

Theorem 5.2. Let (A,C) be a Koszul pair. If A and C are left locally finite, then (*8°C,*8"A)
is Koszul. Similarly, if A and C are right locally finite, then (C*¢", A*¢") is Koszul.
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Proof. Let us assume that (A, C) is a Koszul pair, so the complex K. (A, C,m) is exact for all
m > 1, see Section 2.6. We will show that Kj(*#'C,*5"A,m) is also exact, for all m > 0, as
a consequence of the fact that it is isomorphic to the graded left dual of K (A,C,m). In turn,
the claimed isomorphism will be proved by showing that the diagram

O—>*Am®*COLO>*Am71®*Cl &, .. 2 *Alo* m—1£>*140®*0m4>0

o T

5m2

0 (AT @ Cy)— o * (AL Cy) e B2 Ay ) SR (AR ) —0

has commutative squares, where 0" and 0" denote the differential map of K} (*5'C,*#" A, m)
and the transposed map of the restriction of dm ni1 to A" ® Oy, _py1, Tespectively.

Indeed, if § := ¢ 4 and we pick o € *A", B € *Cpp—p, a € A" ! and ¢ € Cpy—py1, then we
have 0"(a ® B) = Y. 1,1 ® *0(ag1) * B. Using the definition of ¢, the definition of the left
convolution product, the fact 6 is right R-linear and the equivalence between the relations (5.2)
and (5.3), we get

((pod™)(a® B))( = arn-1(a(*6(aza) = B)(c))
= a1n-1(ac1(0(c118(cam-n)))
= a1n-1(ac1(0(c1,1)B(cam-n)))
= a(ab(c11)B(camn))-

Similarly, since §™ is the transposed map of the restriction of dfn_n 41 to A" 1 ® Cpy_pi1, using
once again the definition of ¢, we have

(5" 0 )@ ® §))(a @ ) = dla @ B)(dhy-ya(a ® ) = bla@ B)( D ab(e11) ® amn)
= Z a(a@(cl,l)ﬁ(@,mfn))'

By comparing the results of the computations from the two sequences of equations we deduce
that the squares of the above diagram are commutative, as we claimed.
In a similar way one proves the second statement of the corollary. |

Corollary 5.3. Let A be a connected graded R-ring. If A is a left (right) locally finite Koszul
R-ring then its left (right) graded dual is a Koszul R°P-coring.

Proof. Note that A} is a submodule of the finitely generated left R-module A' ® --- @ A,
where the tensor product has n factors. Since R is a Noetherian ring it follows that A' is left
locally finite. By Theorem 3.1, the pair (A,A!) is Koszul. Using the preceding theorem we
deduce that (*&"(A"),*8" A) is Koszul. In particular, *#"4 is Koszul. [

Corollary 5.4. Let C be a connected graded R-coring. If C is a left (right) locally finite Koszul
R-coring then its left (right) graded dual is a Koszul R°P-ring.

Proof. One proceeds as in the proof of the preceding corollary. |
Corollary 5.5. Let A be a Koszul R-ring and let C' be a Koszul R-coring.

1. If A and C are left locally finite, then E(*2'A) =2 *&T(A) and T(*8°C) = *$"E(C).
2. If A and C are right locally finite, then E(A*8") = T(A)*¢" and T(C*#") = E(C)**".
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Proof. Let us assume that A is left locally finite. As A is Koszul, then (A,T'(A)) is a Koszul
pair and A' 2 T(A), see Theorem 3.1. By the proof of Corollary 5.3, the coring A' is left locally
finite. Hence, a fortiori, T'(A) is also left locally finite and (*#'T(A),* " A) is Koszul. By [5,
Theorem 2.9], for any Koszul pair (B, D) the graded corings D and T'(B) are isomorphic. In
particular, for the Koszul pair (*8'T(A),*8"A), we get E(*8'A) = *&'T(A).

The remaining three isomorphisms can be similarly proved. |

As an application of Corollaries 5.3 and 5.4 we are going to show that the incidence ring of
a finite graded poset is Koszul if and only if the incidence coring of that poset is Koszul.

This class of examples was considered previously in [14, 17]. They were also studied even in
a more general (nongraded) setting in [16].

6 Incidence (co)rings

In this final section of the article, we will use the general results developed in the first three
sections, restricting ourselves to the locally finite context provided by the fourth section. The
main direction of applications in this section is that of incidence algebras of finite graded posets,
which we endow with R-(co)ring structures, such that our theory of Koszul pairs and Koszul
corings could be applied. Lastly, we add that these results could be seen as a framework in
which particular cases of Koszul posets could be studied, as per [9, Section 2].

Since the theory is generally well established, we only state the particular hypotheses and
notations which are used here. As such, we restrict our study to the case of finite graded posets P,
i.e., those in which every maximal chain included in an interval is of the same length (which we
denote by I([x,y]) for the closed interval [x,y]). Let J, denote the set of all intervals of length p
in the poset.

Fixing a base field k, denote by k*[P] the incidence algebra of P. As a vector space, it has
a basis of the form B = {e;, |z < y} and introducing a multiplication

€xy Cru = 5y,zex,ua

which is extended by linearity, we obtain the associative unital algebra structure. Note further-
more that k®[P] is an R-bimodule, where R = (e, |z € P) ~ k?l is regarded as a k-algebra as
above and the actions are defined by the relation

€xx * Cy,z* Cuu = 5x,y5z,uey,z-

Finally, k*[P] becomes an R-ring, which will be referred to as the incidence R-ring of P.
By duality, to every finite poset corresponds a coalgebra, namely its incidence coalgebra k¢[P],
which as a linear space coincides with k®[P]. The comultiplication is given by the formula

exy E €zr,z Ok €z 2

z€[z,y|

The counit ¢ is uniquely defined such that e(ez ) = dz.y-

It is not difficult to see that £ o A: k[P] — k[P] @g k[P] define an R-coring structure,
where &: k[P] @k k[P] — k°[P] @ k¢[P] is the canonical map. The counit of this coring maps
€,y 10 Oy yeq . The comultiplication and the counit of k°[P], regarded as a coring, will still be
denoted by A and e. Let us notice that

ea: y E €.z & €225
z€[z,y]

where, as usual in this paper, ® = ®g.
The relation between k%[P] and k¢[P] is explained in the following result.
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Theorem 6.1. We keep the notation from the preceding subsection. If P is a finite graded poset
then k®[P] = *&'ke[P]. In particular, the R-ring k*[P] is Koszul if and only if the R-coring k°[P]
s Koszul.

Proof. Let A := k%®P] and C := k°[P]. Therefore, we have to prove that there exists an
isomorphism of graded R-rings A = *&'C. For two comparable elements x < y we define the
k-linear map f,4: Cp = R by fry(€uv) = 0zulyveuu, for all w < v such that I([u,v]) =p. An
easy computation shows that f; , is left R-linear. Moreover, if f € *C), and [z, y] € Jp,, then there

is a a certain element o, in k such that f(eyy) = @y yeqq. It follows that f= > apyfey.
[w)y]ejp
Thus f can be written in a unique way as linear combination of the elements of { f5 , | [z, y] € I},

so this set is a linear basis of *C),.
For <y, 2 <t and v < w one proves, by a straightforward computation, that

(g * fo)eu) = { Sy omumdiE
0, otherwise.

On the other hand, by definition, f; i(€vw) = dzvt.wevw. Thus foy* frr =y . frr, for all z, y,
z, v and w as above.

Summarizing, the k-linear map x,: AP — *C,, defined by x,(esy) = fozy, for all <y such
that [([x,y]) = p, is the component of degree p of an isomorphism of graded R-rings.

By Corollary 5.4, if C is a Koszul coring, then A = *8'C' is a Koszul ring. Both A and C are
locally finite, being finite dimensional linear spaces. Thus, C' = (*8'C)*&" = A*&" Hence C is
Koszul, provided that A is so, cf. Corollary 5.3. |

Definition 6.2. We say that a graded poset P is Koszul if its incidence ring k*[P] is Koszul.

For a graded poset P let us denote the homogeneous component of degree 1 of its incidence
ring by V. For every interval [z, y] of length 2 we define the element

Cz,y = E €x 2 ®R €zy-

z€(z,y)

Let Ip denote the ideal generated in TH(V') by the set {Cyy |I([x,y]) = 2}. With this notation
in our hands, we have the following result.

Theorem 6.3. If A is the incidence ring of a Koszul poset P, then the R-ring Tj(V)/Ip is
Koszul.

Proof. By Theorem 6.1 the incidence coring C := k°[P] is Koszul. Hence, in view of Theo-
rem 4.4, the R-ring C' is Koszul as well. We conclude by remarking that C' = Ta(V)/Ip, as
Coy = A1,1(ezy), for any interval [z, y] of length 2. [

As final closing remarks, let us add that we have explored some rich examples of Koszul posets
in [9, Section 2], where we also provided a constructive algorithm to produce new examples
starting from old ones. All of the examples included in the cited article exhibit also Koszul
corings, by Theorem 6.1 above.
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